PATTERNS OF ECONOMIC GROWTH

Real Wages and Output per Worker

Real Wage

Output per Worker-Hour

Real Wage Rate, Output per Worker-Hour (percent of 1900, ratio scale)

Year

1900 1920 1940 1960 1980
ABOUT THE AUTHORS

Paul A. Samuelson (left) founder of the renowned MIT graduate department of economics, was trained at the University of Chicago and Harvard. His many scientific writings brought him world fame at a young age, and he was the first American to receive a Nobel Prize in economics (1970). One of those rare scientists who can communicate with the lay public, Professor Samuelson long wrote an economics column for Newsweek. He testifies often before Congress and serves as academic consultant to the Federal Reserve, the U.S. Treasury, and various private, nonprofit organizations. He was economic adviser to President John F. Kennedy. Professor Samuelson plays tennis daily, and his family’s size doubled when triplets arrived.

William D. Nordhaus (right) is one of America’s eminent economists. Born in New Mexico, he was an undergraduate at Yale, received his Ph.D. in economics at MIT, and is now the John Musser Professor of Economics at Yale University and a member of the Cowles Foundation for Research in Economics. His economic research has spanned a wide variety of topics—including inflation, energy, technological change, regulation, resource and environmental economics, and trends in profits and productivity. In addition, Professor Nordhaus takes a keen interest in economic policy. He served as a Member of President Carter’s council of Economic Advisors from 1977 to 1979 and writes occasionally for The New York Times and other periodicals. From 1986 to 1988, he served as Provost of Yale University; in this capacity he negotiated a labor contract, helped invest a large endowment, oversaw a major investment program, and managed a large organization. He regularly teaches the Principles of Economics course at Yale. Professor Nordhaus and his family live in New Haven, Connecticut and share an enthusiasm for music, hiking, and skiing.
To Our Children and Students
Books are the carriers of civilization. Without books, history is silent; literature dumb; science crippled, thought and speculation at a standstill. They are engines of change, windows on the world, lighthouses erected in a sea of time.

Barbara Tuchman

This book has served as the standard bearer for the teaching of elementary economics since the landmark 1948 edition. Each new edition has distilled the deepest thinking of economists about how the economy works and about what society can do to improve people's living standards.

But economics is an evolving science; it must solve emerging puzzles and grapple with current dilemmas of public policy. The 1980s saw the emergence around the world of a new emphasis on the use of markets to allocate resources. This rediscovery of the market occurred not only in capitalist countries like the United States but also in socialist countries like China and the Soviet Union. As countries turned increasingly to the market to answer the age-old questions of political economy, the need to understand the strengths and weaknesses of the price mechanism—which is the study of microeconomics—takes on a renewed vitality.

The other major development of the 1980s was the discovery by Americans that they were part of a complex global trading system. Over the course of the last decade, many American industries lost their preeminence to competitors from East Asia. As a result, the United States began to incur huge trade deficits so
that, by decade’s end, the United States was the world’s largest debtor. International
economics came again to the fore.

All these and a host of other issues test the ingenuity of modern economics. The
need to keep Economics at the forefront of modern economic analysis in the rapidly
evolving world economy motivated the fruitful collaboration of the twelfth edition—a
collaboration between two scholarly generations. This thirteenth edition continues that
new tradition, affording the authors an exciting opportunity to forge a synthesis of
modern mainstream economics and to present not only the enduring truths of microeco-
nomic analysis but also the new approaches to microeconomics that are being applied
to so many areas of social and political activity. New approaches featured here include
the rise of the Chicago school and the impact of that school on regulation and antitrust
policy, the neo-conservative doctrines about poverty and social programs, and the
new-wave theories of economic protection.

Our task in these pages is straightforward: to present a clear, accurate, and interest-
ing introduction to the principles of modern microeconomics and to the institutions of
the American and world economy. Our primary goal is to survey microeconomics. But
in doing this we would rather be right than exciting; our experience shows that eco-
nomics no longer deserves its old title as “the dismal science,” and besides it is
anything but dull.

THE THIRTEENTH EDITION

The thirteenth edition continues the last edition’s sweeping reorganization and rewrit-
ing. The book has been through a searching review for superfluous elements: every
paragraph, every figure, and every table has been scrutinized to ensure that it is both
necessary and clearly expressed. Many a sentence and appendix has fallen before the
merciless scissors. While we have ruthlessly trimmed unnecessary details or outmoded
theories, nothing essential has been sacrificed.

We are sometimes asked our philosophy in writing an introductory textbook. Above
all, we want this book to be authoritative, comprehensive, and clear:

* The thirteenth edition contains an authoritative statement of modern economic
science. The road to economic knowledge has been an arduous one traveled by many
generations of economists. The outcome of this journey, surveyed in these pages, is an
improved understanding of comparative advantage and international trade, the pricing
of products and inputs, the determinants of poverty along with the structure of antipo-
verty programs, and the forces that lead to economic discrimination. This text will
explain how modern microeconomics views each of these pivotal topics.

* A comprehensive survey of modern microeconomics needs 650 pages. Reports of
teachers advised us that no major topic has been omitted. Between these covers you
will find all the major themes and topics of our subject, from absolute advantage to
zero-pollution emissions, from mercantilism to libertarian economics. There is free-
dom to choose.

* Most of all, we try to be clear. What good are deep theorems that no student can
understand? Every page has been studied by reviewers and students to weed out ines-
sential digressions or inapt phrasing. Nietzsche once complained about “the offensive
simplicity of the style” of the nineteenth century economist John Stuart Mill. We
would love to be indicted for that offense.
Revisions in this Edition

Economics is a dynamic science—changing to reflect the shifting trends in economic affairs, in finance, in the world economy, and in society at large. This book evolves along with the science it surveys. Every chapter has moved forward in time to keep pace with economic analysis and policy. What are the major changes?

1. Increased Emphasis on International Economics
Americans are learning that no nation is an island. Our living standards are affected by technological developments in Japan and Germany; our companies must contend with competitors from Korea and Brazil. Similarly, no complete understanding of modern economics is possible without a thorough grounding in the world economy. The thirteenth edition therefore contains a new emphasis on the essential elements of international economics.

The major new themes in this edition include: analysis of the relation of protectionism to game theory in Chapters 12 and 26; an up-to-date analysis of the debt-crisis in Chapter 24; a new presentation of the theory of comparative advantage in Chapter 25; an analysis of the reasons behind economists' realistic disillusionment with floating exchange rates in Chapter 27; and a survey of the problem of the stubborn U.S. trade deficit and growing foreign indebtedness in Chapter 27.

2. Comprehensive Modern Treatment of Factor Markets
In a modern economy, factor markets are just as important as product markets. Our approach is to present a thorough analysis of the general principles of price and output determination in factor markets, a lucid treatment of marginal productivity theories, and thoughtful studies of labor, resource, and capital markets.

This analysis of factor markets contains a number of special topics that are indispensable for understanding today's complex world: the theory of rent and unique factors of production; the tragedy of the commons related to global environmental problems; the theory of capital and interest along with an application to the determination of business profits; two chapters on labor markets, including the modern theory of discrimination and the doctrine of comparable worth; and a discussion of the economic roots of poverty, including an audit of neoconservative fears that the mixed economy is losing ground on economic betterment of poorer groups.

3. Unified Treatment of Production and Cost
Earlier editions treated production and cost theory separately. The thirteenth edition has unified these two topics into a pair of chapters, Chapters 8 and 9, so that the essential duality of these two topics can be exploited. The exposition is buttressed by a real-world example of oil pipelines, based on engineering data, that allows students to appreciate how cost and production data are grounded in technological data and shows diminishing returns at work.

4. Clear Exposition of Major Ideas
We have pored over every chapter to improve the clarity of the exposition. The comments of over 1000 students as well as suggestions of teachers, practitioners, and experts have been incorporated in the thirteenth edition.
The introductory chapter now spells out the essence of economics with intriguing and important illustrations; more than 100 new end-of-chapter examples have been added to focus student attention on key concepts or policy issues; Chapter 5’s elementary analysis of supply and demand now includes additional examples and has been redrafted for ease of comprehension; the treatment of comparative advantage in Chapter 25 has been revised for greater coherence; new tables help summarize essential points of analysis, and new sections on economic growth, price and income elasticities, and comparative advantage help deepen students’ understanding.

The glossary, which was first introduced in the twelfth edition, has been carefully tuned to meet the needs of this edition; all major terms now have a capsule definition that students can easily turn to. As a new study aid, the most important terms are printed in boldface when first defined in the text; they all then appear again in the glossary to reinforce the indispensable vocabulary of economics in the student’s mind.

One of the distinguishing features of Economics has been the presentation of central but sometimes advanced theories in understandable ways. For the thirteenth edition we have redrafted the chapters on general equilibrium, public choice, and decisions of the firm to make these topics understandable to beginning students.

5. Increased Emphasis on History and Policy
Economics is at its core an empirical science. It first aims to explain the world around us and then helps us craft economic policies, based on sound economic principles, that can improve society’s real-world functioning.

Drawing upon history, economic chronicles, and the authors’ experience, the thirteenth edition places a renewed emphasis on empirical evidence to illustrate economic theories. The chapters on microeconomics draw upon case studies, economic history, business decisions, and real-world experience to illustrate the fundamental principles. Examples such as OPEC pricing, airline deregulation, the comparable worth controversy, antitrust policy and practice, collective bargaining by labor unions, production theory, and an analysis of tax reform help bring the theorems of microeconomics to life.

This “hands-on” approach to economics allows students to understand better the relevance of economic analysis to real-world problems.

Optional Matter
Economics courses range from one-quarter surveys to year-long intensive honors courses. This textbook has been carefully designed to meet all situations. The more advanced materials have been placed in appendixes or specially designated sections. These will appeal to curious students and to demanding courses that want to survey the entire discipline thoroughly. As is traditional with this book, we have included advanced problems to test the mettle of the most dedicated student.

If yours is a fast-paced course, you will appreciate the careful layering of the more advanced material. Hard-pressed students can skip the advanced sections, encountering the core of microeconomic analysis without losing the thread of economic reasoning. And for those who teach the bright honors students, this book will challenge the most advanced young scholar. Indeed, many of today’s leading economists have written to say they have used parts of Economics all along their pilgrimage to the Ph.D.
Format

The thirteenth edition has adapted the successful new format introduced in the last edition. There are more headings to remind the student of the thrust of the argument. Special footnotes (in gray boxes) are reserved for important and useful illustrations of the core material in the chapter.

New features in this edition include scores of fresh end-of-chapter questions, with a special emphasis upon short problems that reinforce the major concepts surveyed in the chapter. Terms printed in bold type mark the first occurrence and definition of the most important words that constitute the language of economics. And many tables and figures have been added or redrawn to crystallize essential parts of the analysis.

But these many changes have not altered one bit the central stylistic beacon that has guided Economics since its first days: to use simple sentences, clear explanations, and concise tables and graphs.

The Microeconomics Split Edition

An important innovation in the thirteenth edition is the decision to provide two paperback volumes, Microeconomics (Chapters 1–4 and 18–40 of the full text) and Macroeconomics (Chapters 1–17 and 36–40 of the full text). This new format will allow greater economy and flexibility to the one-semester or one-quarter course.

In designing the paperback split editions, we have made each split completely self-contained. You can move straight through the chapters in Microeconomics knowing that the exposition, cross-references, and examples have been tailored with your needs in mind. At the same time, no material has been cut from this split edition, so you can be confident that a careful study of Microeconomics will provide the full range of analysis, policy discussion, and history that is given in the full text. Whether your special interest is comparable worth, the tragedy of the commons, or oligopoly theory, you can find in these pages the entire discussion of microeconomics contained in the thirteenth edition of Economics.

Auxiliary Teaching and Study Aids

Students of this edition will benefit greatly from the Study Guide. This carefully designed aid has been prepared by Professor Gary Yohe of Wesleyan University, who worked in close collaboration with us in our revision. Both when used alongside classroom discussions and when employed independently for self-study, the Study Guide has proved to be an impressive success.

In addition, instructors will find the Instructor's Manual and Test Bank useful for planning their courses and preparing multiple sets of test questions in both print and computerized format. Moreover, McGraw-Hill has designed a beautiful set of two-color overhead transparencies for presenting the tabular and graphical material in the classroom. Additional figures from the text are available on transparency masters. These items can all be obtained by contacting your local McGraw-Hill sales representative.
Economics in the Computer Age

This edition is accompanied by the Interactive Economic Graphic Tutorial to accompany Samuelson/Nordhaus, which combines text, graphics, page references to the book, and key concepts on the same screen. Shifts in curves are shown by arrows that guide the student through economic processes step by step. The program is available for the IBM PC and compatibles; it will reinforce the text and provide personal instruction for the central concepts of Economics.

Acknowledgments

This book has two authors but a multitude of collaborators. We are profoundly grateful to colleagues, reviewers, students, and McGraw-Hill’s staff for contributing to the timely completion of the thirteenth edition of Economics.

In addition, we have benefitted from the tireless devotion of those whose experience in teaching elementary economics is embodied in this edition. We are particularly grateful to John E. Anderson, Eastern Michigan University; Jeff A. Ankrom, Wittenberg University; Mark Bagnoli, University of Michigan; James H. Barrow, Wilkes Community College; Gerald E. Breger, University of South Carolina; Thomas P. Breslin, Trenton State College; Kristyn C. Brown, Baylor University; Dennis M. Byrne, University of Akron; Sue Cain, Pittsburgh State University; K. Laurence Chang, Case Western Reserve University; Charles R. Chittle, Bowling Green State University; Raymond L. Cohn, Illinois State University; Christopher M. Cornwell, West Virginia University; Michael J. Cravatta, Richland Community College; Ross P. Daniel, Louisiana State University; William Dawes, SUNY at Stony Brook; Loraine Donaldson, Georgia State University; Joseph Earley, Loyola Marymount University; Paul G. Fairham, Georgia State University; Raymond P. H. Fishe, University of Miami; Eric Fisher, Cornell University; Kevin F. Forbes, Catholic University; Ralph G. Fowler, Diablo Valley College; George C. Georgiou, Towson State University; Frank W. Gery, St. Olaf College; Ron D. Gilbert, Texas Tech University; Amihai Glazer, University of California—Irvine; Michael J. Gootzeit, Memphis State University; Mitchell Harwitz SUNY—University at Buffalo; Roger S. Hewett, Drake University; Ann Helwege, Tufts University; John Hillard, University of Leeds, England; Harold Hotelling, Oakland University; John Hutman, San Francisco State University; Eric Jensen, College of William and Mary; Nasrin Jewell, College of St. Catherine; Warren L. Jones, Western Illinois University; M. Barbara Killen, University of Minnesota; Philip A. Klein, Pennsylvania State University; Soyon Lee, Illinois Benedictine College; Dennis Patrick Leyden, University of North Carolina at Greensboro; David Loschky, University of Missouri—Columbia; Steven J. Matusz, Michigan State University; Richard A.
Miller, Wesleyan University; Robert M. Mulligan, Providence College; Alannah Orrison, New York University; John E. Page, Dominican College of Blauvelt; Hong Y. Park, Saginaw Valley State University; Barbara B. Reagan, Southern Methodist University; Paul D. Roman, Saint Louis University; Howard N. Ross, Baruch College; Marc Rubin, Loyola College; Jean Hart Sandver, Capital University; John L. Solow, University of Iowa; Allan D. Stone, Southwest Missouri State University; Gilbert S. Suzawa, University of Rhode Island; William O. Thweatt, Vanderbilt University; Darwin Wassink, University of Wisconsin at Eau Claire; Arthur Welsh, Pennsylvania State University; James N. Wetzel, Virginia Commonwealth University; Jack C. Wimberly, University of Southern Mississippi; Larry A. Wohl, Gustavus Adolphus College; William C. Wood, Bridgewater College; and Gavin Wright, Stanford University.

Students at MIT, Yale, and other colleges and universities have served as an "invisible college." They constantly challenge and test us, helping to make this edition less imperfect than its predecessor. Although they are too numerous to enumerate, their influence is woven through every chapter.

A small group of student coworkers devoted their time and energy to this edition, especially Larry Bartsch, Howard Chang, Akiva Dickstein, Elizabeth Gregory, Keith Hwang, Martin Lariviere, John Garen, and Don Smythe. The statistical and historical material was prepared and double-checked by Tan Yong Hui. Clerical assistance was provided by Glenda Ames. Judith Hickey provided invaluable editorial, logistical, and stylistic assistance.

McGraw-Hill's New York team included Designer Joan O'Connor, Senior Editing Supervisor Peggy Rehberger, Assistant Production Manager Diane Renda, and Economics Editor Scott Stratford, along with Senior Editor Elisa Adams who provided unerring advice from the inception of this edition to its completion. This group of skilled professionals turned a mountain of paper into a finely polished work of art.

TO THE SOVEREIGN READER

The thirteenth edition marks the fortieth birthday of Economics. The first twelve editions of this book have opened the world of economics to millions of students around the world, and this edition can also serve you well.

One book studied in a single course cannot make you an expert in the subject. But then, most students are not pursuing careers in economics. Rather, you are likely to be concerned with gaining a basic understanding of how our complex economy works. We have therefore laid out a survey of the essential concepts and policy problems of modern microeconomics as simply as we can, omitting no important topics, using no misleading oversimplifications, but burdening you with no unnecessary complications.

Who has been uppermost in our minds as we wrote this thirteenth edition? You, the beginning student. On every page we have asked: What are the crucial forces that will influence our economy in the 1990s and the early twenty-first century? What tools will be most helpful for men and women entering careers in business, law, government, and the 1001 other paths that young people follow?
At every point in the writing of this edition we have worked to clarify and sharpen the analysis, to make sure the tables and charts are well labeled, and to check for the relevance of each historical illustration.

The Intellectual Marketplace
Markets will hold center stage in the pages that follow: markets for corn and wheat, stocks and bonds, French francs and Japanese yen, unskilled labor and highly trained neurosurgeons. There is also a marketplace of ideas, where contending schools of economists develop their theories and attempt to persuade their colleagues. You will find a fair and impartial review of the thinking of the intellectual giants of our profession in the chapters that follow—from the early economists like Adam Smith, David Ricardo, and Karl Marx to modern-day titans like Milton Friedman and Robert Solow.

You have probably read in the newspaper about supply and demand, antitrust policy, the trade deficit, and the government debt. After you have completed a thorough study of microeconomics in this textbook, you will not only know precisely what these words mean; you will also understand the economic forces that influence and determine them.

How to Study Economics

We have designed this book so that it can be fruitfully used by the beginning freshman as well as by advanced students in the severest honors course. It is carefully layered so that each reader can pursue topics quickly or in depth.

Divide and Conquer

No one can tell you the best way to read a textbook, for individual styles differ greatly among students. But educators and psychologists offer counsel about certain tried-and-true methods that will help you learn the subject more quickly and retain the material longer.

To begin with, this is obviously not a novel or a detective story. Economics is best learned by daily study in small chunks. Don’t wait until 2 or 3 days before a test to begin your studies; make steady progress through the material by keeping up with the assigned reading.

For each chapter, begin by searching for the basic ideas for perspective. You may first want to skim through the material, look at the summary, and study the major concepts and definitions. Next, read the material carefully, underlining the important sentences and taking notes on focal ideas. Then refresh your memory by reading the final summary, reviewing the major concepts, and going back through the chapter to doublecheck the highlights.

Read Actively

Above all, be an active participant in your study. Always ask yourself, “Why is this important?” or “What is a current example of this theory?” Think of new examples as you study the text. Read the newspaper to witness economic history unfolding daily. Argue about the analysis or examples with your teachers and classmates. Do the end-
of-chapter questions and work through Professor Gary Yohe’s Study Guide to help cement the important concepts in your mind and test the limits of your understanding.

Skoal!
Our envy goes with you, the beginning student, as you set out to explore the exciting world of economics for the first time. This is a thrill that, alas, you can experience only once in a lifetime. So, as you begin, we wish you bon voyage!

Paul A. Samuelson
William D. Nordhaus
CONTENTS IN BRIEF

PREFACE TO MICROECONOMICS ix

PART ONE BASIC CONCEPTS 1

1 INTRODUCTION 3

Appendix: 1 How to Read Graphs 14

2 BASIC PROBLEMS OF ECONOMIC ORGANIZATION 23

A. Problems of Economic Organization 24
B. Society’s Technological Possibilities 26

3 MARKETS AND COMMAND IN A MODERN ECONOMY 37

A. How Markets Solve the Basic Economic Problems 38
B. The Economic Role of Government 43
C. Specialization, Money, and Capital 46

4 THE ELEMENTS OF SUPPLY AND DEMAND 55
PART TWO MICROECONOMICS: SUPPLY, DEMAND, AND PRODUCT MARKETS 73

5 SUPPLY AND DEMAND IN INDIVIDUAL MARKETS 75
 A. Elasticity of Demand and Supply 77
 B. Applications of Supply and Demand 86

6 DEMAND, UTILITY, AND CONSUMER BEHAVIOR 100
 Appendix: 6 Geometrical Analysis of Consumer Equilibrium 116

7 BUSINESS ORGANIZATION 125
 A. Big, Small, and Infinitesimal Businesses 128
 B. The Corporation 127
 Appendix: 7 Elements of Accounting 139

8 THEORY OF PRODUCTION AND MARGINAL PRODUCTS 152

9 ANALYSIS OF COSTS 166
 Appendix: 9 Production, Cost Theory, and Decisions of the Firm 185

10 COMPETITIVE SUPPLY AND COMPETITIVE MARKETS 193
 A. Supply Behavior of the Competitive Firm 194
 B. Supply Behavior in Competitive Industries 198
 Appendix: 10 Special Cases of Competitive Markets: Supply and Demand at Work 211

11 MONOPOLY: ANALYSIS AND REGULATION 221
 A. Patterns of Imperfect Competition 221
 B. Analysis of Monopoly 229
 C. The Cost and Control of Monopoly 236
 Appendix: 11 Economics of Risk and Uncertainty 249

12 IMPERFECT COMPETITION AND ANTITRUST POLICY 258
 A. Patterns of Imperfect Competition 259
 B. Behavior of Large Corporations 266
 C. Antitrust Policy 271
 Appendix: 12 Game Theory 283
PART THREE WAGES, RENT, AND PROFITS: THE DISTRIBUTION OF INCOME

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>13 INTRODUCTION TO INCOMES AND INEQUALITY</td>
<td>293</td>
</tr>
<tr>
<td>A. Measurement of Incomes and Inequality</td>
<td>294</td>
</tr>
<tr>
<td>B. The Sources of Inequality</td>
<td>302</td>
</tr>
<tr>
<td>14 PRICING OF FACTORS OF PRODUCTION</td>
<td>310</td>
</tr>
<tr>
<td>A. Marginal-Productivity Theory of Distribution</td>
<td>311</td>
</tr>
<tr>
<td>B. Factor Pricing: The Case of Land Rents</td>
<td>320</td>
</tr>
<tr>
<td>15 WAGES AND THE LABOR MARKET</td>
<td>330</td>
</tr>
<tr>
<td>A. Wage Determination under Perfect Competition</td>
<td>331</td>
</tr>
<tr>
<td>B. Discrimination by Race and Gender</td>
<td>341</td>
</tr>
<tr>
<td>16 LABOR UNIONS AND COLLECTIVE BARGAINING</td>
<td>352</td>
</tr>
<tr>
<td>A. The American Labor Movement</td>
<td>353</td>
</tr>
<tr>
<td>B. Impact of Imperfect Competition on Wages</td>
<td>360</td>
</tr>
<tr>
<td>17 CAPITAL, INTEREST, AND PROFITS</td>
<td>371</td>
</tr>
<tr>
<td>Appendix: 17 Advanced Analysis of Capital and Interest</td>
<td>386</td>
</tr>
</tbody>
</table>

PART FOUR EFFICIENCY, EQUITY, AND GOVERNMENT

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>18 MARKETS AND ECONOMIC EFFICIENCY</td>
<td>395</td>
</tr>
<tr>
<td>19 ECONOMIC ROLE OF GOVERNMENT</td>
<td>409</td>
</tr>
<tr>
<td>A. Government's Role in a Modern Economy</td>
<td>410</td>
</tr>
<tr>
<td>B. Public-Choice Theory</td>
<td>416</td>
</tr>
<tr>
<td>C. Public Choice and Externalities</td>
<td>424</td>
</tr>
<tr>
<td>20 ECONOMIC ROLE OF GOVERNMENT: EXPENDITURE AND TAXATION</td>
<td>434</td>
</tr>
<tr>
<td>A. Government Expenditures</td>
<td>435</td>
</tr>
<tr>
<td>B. Economic Aspects of Taxation</td>
<td>436</td>
</tr>
<tr>
<td>21 POVERTY, EQUALITY, AND EFFICIENCY</td>
<td>458</td>
</tr>
</tbody>
</table>
22 THE WINDS OF CHANGE: ALTERNATIVE ECONOMIC SYSTEMS 477

A. Evolution of Economic Thought 478
B. Marxism and Alternative Economic Systems 486

PART FIVE ECONOMIC GROWTH AND INTERNATIONAL TRADE 503

23 ECONOMIC GROWTH: THEORY AND EVIDENCE 505

A. The Theory of Economic Growth 506
B. The Trends and Sources of Economic Growth 513

Appendix: 23 Modern Economic-Growth Theories 525

24 THE ECONOMICS OF DEVELOPING COUNTRIES 531

A. Developing Countries 532
B. Population and Economic Conditions 533
C. The Process of Economic Development 539

25 INTERNATIONAL TRADE AND THE THEORY OF COMPARATIVE ADVANTAGE 551

A. Economic Basis for International Trade 552
B. The Balance of International Payments 564

26 PROTECTIONISM AND FREE TRADE 573

27 EXCHANGE RATES AND THE INTERNATIONAL FINANCIAL SYSTEM 591

A. The Determination of Foreign Exchange Rates 592
B. Evolution of the International Monetary System 599

EPILOGUE 615

GLOSSARY 616

INDEX 639
CONTENTS

PART ONE BASIC CONCEPTS 1

1 INTRODUCTION 3
 For Whom the Bell Tolls / What Is Economics? 4 / Have You Ever Wondered ... /
 A Historical Perspective / Definitions of Economics / The Scientific Approach 5 / Pitfalls in
 Economic Reasoning 7 / Failing to Keep "Other Things Equal" / The Post Hoc Fallacy /
 The Whole Is Not Always the Sum of the Parts / Subjectivity / Uncertainty in Economic Life /
 The Uses of Economics 10 / Economic Description and Policy / Economics in Government /
 Why Economists Disagree / Preview

Summary 12 Concepts for Review 13 Questions for Discussion 13

Appendix: 1 How to Read Graphs 14
 The Production-Possibility Frontier 14 / Production-Possibility Graph / Slopes and Lines /
 Shifts of and Movement along Curves / Some Special Graphs

Summary to Appendix 21 Concepts for Review 21 Questions for Discussion 21

2 BASIC PROBLEMS OF ECONOMIC ORGANIZATION 23
 A. Problems of Economic Organization 24
Contents

1 Inputs and Outputs / Alternative Economic Systems: Custom, Command, and Market
2 The Law of Scarcity

B. Society's Technological Possibilities

The Production-Possibility Frontier 26 / Efficiency / Putting the PPF to Work 29 / Pictures
at an Exhibition / Opportunity Cost 32 / The Law of Diminishing Returns 33 / Some
Examples

Summary 34 Concepts for Review 35 Questions for Discussion 36

3 Markets and Command in a Modern Economy 37

Market, Command, and Mixed Economies

A. How Markets Solve the Basic Economic Problems

Not Chaos but Economic Order / The Market Mechanism 39 / Solution to the Three
Problems / Who Rules? / A Picture of Prices and Markets / The Invisible Hand and "Perfect
Competition"

B. The Economic Role of Government

The Three Functions of Government 43 / Efficiency / Equity / Stability

C. Specialization, Money, and Capital

Specialization and Division of Labor 48 / The Perils of Oberspecialization / Money: The
Lubricant of Exchange 49 / Capital 50 / Capital, Time, and Interest

Summary 52 Concepts for Review 54 Questions for Discussion 54

4 The Elements of Supply and Demand 55

The Market Mechanism 56 / Analysis of Supply and Demand 56 / The Demand Schedule
The Demand Curve / Behind the Demand Curve / Supply Schedule and Supply Curve /
Equilibrium of Supply and Demand 62 / Effect of a Shift in Supply or Demand Curves /
Three Hurdles / Rationing by Prices / The Role of Perfect Competition / Three Markets

Summary 69 Concepts for Review 70 Questions for Discussion 70

Part Two Microeconomics: Supply,
Demand, and Product Markets 73

5 Supply and Demand in Individual Markets 75

Preview

A. Elasticity of Demand and Supply 77
B. Applications of Supply and Demand

The Economics of Agriculture 86 / Long-Run Relative Decline of Farming / Decline of the Farm: Graphical Analysis / Further Examples of Supply-and-Demand Analysis 88 / Incidence of a Tax / A Common Fallacy / Four Examples of Supply and Demand at Work / Government Intervention in Markets 91 / Is the Law of Supply and Demand Immutable? / Prices Fixed by Law / Minimum Floors and Maximum Ceilings / Efficiency and Equity of Supply-Demand Pricing 94 / Evaluation of Government Intervention / Equity through Taxes; Efficiency through Markets

Summary 96 Concepts for Review 97 Questions for Discussion 97

6 DEMAND, UTILITY, AND CONSUMER BEHAVIOR

Summary 112 Concepts for Review 114 Questions for Discussion 114

Appendix: 6 Geometrical Analysis of Consumer Equilibrium

The Indifference Curve 116 / Law of Substitution / The Indifference Map / Budget (or Consumption-Possibility) Line 118 / The Equilibrium Position of Tangency 120 / Changes in Income and Price 121 / Income Change / Single Price Change / Deriving the Demand Curve 122 / Balanced Price Changes and the Quantity Theory 122

Summary to Appendix 123 Concepts for Review 124 Questions for Discussion 124

7 BUSINESS ORGANIZATION

A. Big, Small, and Infinitesimal Businesses

B. The Corporation

Incorporation / Corporate Structure / Advantages and Disadvantages of the Corporate Form 131 / Private Advantage / Economic Advantages / How a Corporation Can Raise Capital 132 / Common Stocks or Equities / Bonds / Hybrids / Bank Credit / Advantages of Different Securities / The Giant Corporation 134 / Divorce of Ownership and Control in the Large Corporation / The Conservative 1980s 136
8 THEORY OF PRODUCTION AND MARGINAL PRODUCTS 152

Basic Concepts 153 / The Production Function / Total, Average, and Marginal Product / Marginal Products and Diminishing Returns / An Engineering Example: Oil Pipelines 156 / Returns to Scale 156 / Monotonic Run, Short Run, and Long Run 159 / Technological Change 160 / The Aggregate Production Function for the United States 161 / From Production to Cost

Summary 162 Concepts for Review 163 Questions for Discussion 163

9 ANALYSIS OF COSTS 166

Summary 181 Concepts for Review 182 Questions for Discussion 183

Appendix: 9 Production, Cost Theory, and Decisions of the Firm 185

Summary to Appendix 191 Concepts for Review 191 Questions for Discussion 191

10 COMPETITIVE SUPPLY AND COMPETITIVE MARKETS 193

A. Supply Behavior of the Competitive Firm 194

Competitive Supply and Marginal Cost / Perfect Competition / Competitive Supply / Deriving the Firm's Supply Curve from Its MC Curve / Total Cost and the Shutdown Condition

B. Supply Behavior in Competitive Industries 198

Summing All Firms' Supply Curves to Get Market Supply / The Very Long Run for a Competitive Industry / Decreasing Costs and the Breakdown of Perfect Competition / The
11 MONOPOLY: ANALYSIS AND REGULATION

A. Patterns of Imperfect Competition

Imperfect Competition Defined / Behavior of Imperfect Competitors 222 / Varieties of
Imperfect Competition / Sources of Market Imperfections / Cost Patterns and Structure of
Market Imperfection / Barriers to Competition / Measuring Market Power

B. Analysis of Monopoly

Price, Quantity, and Total Revenue / Marginal Revenue and Price / Point of Maximum
Profit / Graphical Depiction of Monopoly / Perfect Competition as a Polar Case of Imperfect
Competition / Let Bygones Be Bygones

C. The Cost and Control of Monopoly

Economic Costs of Monopoly 236 / Deficient Output of Monopoly / Measure of the Waste
from Monopoly / Excess Profit of Monopoly / Intervention Strategies 239 / The Nature of
Regulation 240 / Economic Regulation of Imperfect Competition / Why Regulate Industry? /
Public-Utility Regulation of Natural Monopoly / The Deregulation Movement

Summary 245 Concepts for Review 246 Questions for Discussion 247

Appendix: 11 Economics of Risk and Uncertainty

The Role of Speculation 249 / Arbitrage and Geographical Price Patterns / Speculation and
Price Behavior over Time 250 / Stabilizing Seasonal Patterns / Spreading of Risks, or
Hedging / Uncertainty and Diminishing Marginal Utility 252 / Chance and the Law of
Diminishing Marginal Utility / Why Stabilization by Speculators Can Increase Utility 253 /
Economics of Insurance 254 / Uninsurable Events and Social Insurance 255

Summary to Appendix 254 Concepts for Review 256 Questions for Discussion 256

12 IMPERFECT COMPETITION AND ANTITRUST POLICY

A. Patterns of Imperfect Competition
PART THREE WAGES, RENT, AND PROFITS:
THE DISTRIBUTION OF INCOME 291

13 INTRODUCTION TO INCOMES AND INEQUALITY 293

A. Measurement of Incomes and Inequality 294

The Fruits of Industrialization / Income and Wealth / Measurement of Inequality 297 / Distribution of Income in the United States / How to Measure Inequality among Income Classes / Trends of Inequality / Distribution of Wealth

B. The Sources of Inequality 302

Inequality in Labor Income 303 / Abilities and Skills / Intensity of Work / Differences among Occupations / Differences in Education (Is College Worthwhile?) / Other Factors / Inequalities in Property Income 305 / Inheritance / Saving and Risk Taking / Markets and Inequality

Summary 307 Concepts for Review 308 Questions for Discussion 308

14 PRICING OF FACTORS OF PRODUCTION 310

A. Marginal-Productivity Theory of Distribution 311

Demands for Factors Are Interdependent 311 / Marginal Productivity 311 / Marginal Revenue Product / The Demand for Inputs 314 / Demand for Factors Is a Derived Demand / Factor Demands for Profit-Maximizing Firms / Demand for Labor and Marginal Revenue Product / Determination of Factor Prices by Supply and Demand 316 / Marginal-Productivity Theory of Distribution 317 / Marginal-Productivity Theory with Many Inputs
B. Factor Pricing: The Case of Land Rents

Rent as Return to Fixed Factors / Rent and Costs / Henry George's Single-Tax Movement: Taxing Land's Surplus / Ramsey Taxes / Factor Pricing and Efficiency: Rent and Factor Prices as Devices to Ration Scarce Resources 323 / The Tragedy of the Commons / Conclusions

Summary 325 Concepts for Review 327 Questions for Discussion 327

15 WAGES AND THE LABOR MARKET

A. Wage Determination Under Perfect Competition

B. Discrimination by Race and Gender

Summary 348 Concepts for Review 350 Questions for Discussion 350

16 LABOR UNIONS AND COLLECTIVE BARGAINING

A. The American Labor Movement

B. Impact of Imperfect Competition on Wages

Summary 367 Concepts for Review 368 Questions for Discussion 368

17 CAPITAL, INTEREST, AND PROFITS

PART FOUR EFFICIENCY, EQUITY, AND GOVERNMENT

18 MARKETS AND ECONOMIC EFFICIENCY

19 ECONOMIC ROLE OF GOVERNMENT

A. Government's Role in a Modern Economy

The Instruments of Government Policy 410 / Taxing and Spending / The Growth of Government Controls and Regulation / Political Evolution / The Functions of Government 413 / The Legal Framework / Macroeconomic Stabilization / Allocation / Income Redistribution

B. Public-Choice Theory

C. Public Choice and Externalities

Public vs. Private Goods / Market Inefficiency with Externalities 425 / Analysis of Inefficiency / Policies to Correct Externalities 427 / Government Policies / Private Approaches
20 **ECONOMIC ROLE OF GOVERNMENT: EXPENDITURE AND TAXATION**

A. Government Expenditures

Federal, State, and Local Functions 435 / Federal Expenditures / State and Local Expenditures / Fiscal Federalism

B. Economic Aspects of Taxation

Summary 454 Concepts for Review 455 Questions for Discussion 455

21 **POVERTY, EQUALITY, AND EFFICIENCY**

Summary 473 Concepts for Review 474 Questions for Discussion 474

22 **THE WINDS OF CHANGE: ALTERNATIVE ECONOMIC SYSTEMS**

A. Evolution of Economic Thought

B. Marxism and Alternative Economic Systems

Summary 499 Concepts for Review 500 Questions for Discussion 500
PART FIVE ECONOMIC GROWTH AND INTERNATIONAL TRADE 503

23 ECONOMIC GROWTH: THEORY AND EVIDENCE 505

A. The Theory of Economic Growth 506

Stages of History 506 / Fact and Fiction / Economic Theories 508 / The "Magnificent Dynamics" of Smith and Malthus / Economic Growth with Capital Accumulation / Geometrical Analysis of the Neoclassical Model / Technological Change and Continued Growth

B. The Trends and Sources of Economic Growth 513

Summary 521 Concepts for Review 522 Questions for Discussion 522

Appendix: 23 Modern Economic-Growth Theories 525

Schumpeterian Innovation 525 / Neoclassical Growth Model 526 / Explaining the Trends / Input-Output Tables 527

Summary to Appendix 530 Concepts for Review 530 Questions for Discussion 530

24 THE ECONOMICS OF DEVELOPING COUNTRIES 531

A. Developing Countries 532

Definitions / Life in Low-Income Countries

B. Population and Economic Conditions 533

The Legacy of Malthus 534 / The New Malthusians / Modern Views on Population 536 / Birth and Death Rates / The Demographic Transition / Population Explosion

C. The Process of Economic Development 539

The Four Elements in Development 539 / Human Resources / Natural Resources / Capital Formation / Foreign Borrowing and the Debt Crisis / Technological Change and Innovations / Vicious Cycle / Strategies of Economic Development 542 / Comprehensive Theories / Recent Approaches to Development / Issues in Economic Development

Summary 547 Concepts for Review 549 Questions for Discussion 549

25 INTERNATIONAL TRADE AND THE THEORY OF COMPARATIVE ADVANTAGE 551

International vs. Domestic Trade

A. Economic Basis for International Trade 552
Trends in Foreign Trade / The Sources of International Trade 553 / Diversity in Conditions of Production / Decreasing Costs / Differences in Tastes / The Principle of Comparative Advantage 555 / Uncommon Sense / The Logic of Comparative Advantage / Ricardo’s Analysis of Comparative Advantage / The Economic Gains from Trade / Effects of Tariffs and Quotas / Extensions to Many Commodities and Countries 558 / Many Commodities / Many Countries / Triangular and Multilateral Trade / Graphical Analysis of Comparative Advantage 560 / America without Trade / Opening Up to Trade / Qualifications and Conclusions

B. The Balance of International Payments 564

Balance-of-Payment Accounts 564 / Debits and Credits / Details of the Balance of Payments / Stages of the Balance of Payments 567

Summary 568 Concepts for Review 570 Questions for Discussion 570

26 PROTECTIONISM AND FREE TRADE 573

Supply-and-Demand Analysis of Trade and Tariffs 574 / Supply-and-Demand Analysis of a Single Traded Good / Tariffs and Quotas / The Economic Costs of Tariffs / Diagrammatic Analysis / An Example of Tariffs on Textiles / The Economics of Protectionism 579 / Non-Economic Goals / Grounds for Tariffs Not Based on Sound Economics / Arguments for Protection under Dynamic Conditions / Other Barriers to Trade / Multilateral Trade Negotiations 583 / Negotiating Free Trade

Summary 587 Concepts for Review 588 Questions for Discussion 588

27 EXCHANGE RATES AND THE INTERNATIONAL FINANCIAL SYSTEM 591

A. The Determination of Foreign Exchange Rates 592

B. Evolution of the International Monetary System 599

Summary 610 Concepts for Review 611 Questions for Discussion 612

EPILUGE 615

GLOSSARY 616

INDEX 639
MICROECONOMICS
PART ONE
BASIC
CONCEPT
As you begin your reading, you are probably wondering, why study economics? In fact, people do it for countless reasons. Some study economics because they hope to make money. Others worry that they will be illiterate if they cannot understand the laws of supply and demand. People are also concerned to learn how budget deficits and inflation will affect their future.

For Whom the Bell Tolls

All these reasons, and many more, make good sense. Still, we have come to realize, there is one overriding reason to learn the basic lessons of economics. All your life—from cradle to grave—you will run up against the brutal truths of economics. As a voter, you will have to make decisions on issues—the budget deficit, taxes, and foreign trade—that cannot be understood until you have mastered the rudiments of this subject.

Choosing your life's occupation is the most important economic decision you will make. Once you have earned your income, economics will help you decide how much to spend or save. Of course, studying econ-
nomics is not guaranteed to make you a genius. But without economics the dice of life are simply loaded against you.

No need to belabor the point. We hope you will find that, in addition to being useful, economics is a fascinating field in its own right. Generations of students, often to their surprise, have discovered how stimulating economics can be.

WHAT IS ECONOMICS?

Economics covers all kinds of topics. But at the core—it is devoted to understanding the way businesses, households, and governments behave; it attempts to figure out the 1001 puzzles of everyday life.

Have You Ever Wondered . . .

You have undoubtedly asked a multitude of economic questions even before you picked up your first textbook on economics. You might come into your first class with questions like these:

Why is it sometimes hard to find a summer job? Sometimes easy? Why do people worry about the government budget deficit? What are the effects of the deficit on inflation? For that matter, why do people worry about inflation? What is the money supply and why is it important? Why are women so often paid less than men? Why are some people rich and others poor? How can foreign countries like Japan or Korea produce goods so much more cheaply than America? What would happen if we kept foreign cars out of the United States to ‘‘protect’’ domestic workers and firms? How much is it really costing me to go to college?

The list could go on for pages, and the answers will fill this book, for trying to answer these questions forms the very essence of economic science.

A Historical Perspective

As a scholarly discipline, economics is two centuries old. Adam Smith published his pathbreaking book The Wealth of Nations in 1776, a year also notable for the Declaration of Independence. It is no coincidence that both documents appeared in the same year. The movement for political freedom from the tyranny of European monarchies appeared almost simultaneously with attempts to emancipate prices and wages from heavy-handed government regulation.

Adam Smith, of course, represented only a beginning. Almost a century later, as vibrant capitalist enterprises in railroads, textiles, and other sectors began to spread their influence into every region of the world, there appeared the massive critique of capitalism: Karl Marx’s Capital (1867, 1885, 1894). Marx proclaimed that capitalism was doomed and would soon be followed by business depressions, revolutionary upheavals, and government-run socialism. More than a century later, one-third of the world’s population live in countries where Marxian doctrines are economic gospel.

In the decades that followed, Marx’s predictions seemed borne out. Economic panics and deep depressions in the 1890s and 1930s led intellectuals of the twentieth century to question the viability of private-enterprise capitalism. In the trough of the Great Depression, however, appeared John Maynard Keynes’ The General Theory of Employment, Interest and Money (1936). This landmark work described a new approach to economics, one that would help government monetary and fiscal management tame the worst ravages of business cycles.

Smith, Marx, and Keynes are but three of the many thinkers who have shaped economics and made it the vital science it is today.

Definitions of Economics

On first encountering economics, you may want a definition. Here are a few that are commonly heard:

• Economics is the study of those activities that involve the production and exchange of goods.

• Economics analyzes movements in the overall economy—trends in prices, output, and unemployment. Once such phenomena are understood, economics helps develop policies by which governments can improve the performance of the economy.

• Economics is the science of choice. It studies how people choose to use scarce or limited productive resources (land, labor, equipment, technical knowledge), to produce various commodities (such as
wheat, beef, overcoats, concerts, roads, and missiles), and to distribute these goods to various members of society for their consumption.

* Economics is the study of commerce among nations. It helps explain why nations export some goods and import others, and analyzes the effects of putting economic barriers at national frontiers.

* Economics is the study of money, banking, capital, and wealth.

The list is a good one, yet you could extend it many times over. But if we boil down all these definitions, we would find a common theme like the following:

Economics is the study of how societies use scarce resources to produce valuable commodities and distribute them among different groups.

Macroeconomics and Microeconomics A major distinction is made between macroeconomics, which studies the functioning of the economy as a whole, and microeconomics, which analyzes the behavior of individual components like industries, firms, and households.

This split edition covers the subject of microeconomics. It studies the individual participants in a market economy—firms, households, and government. Microeconomics analyzes how prices are set, inquires into the determination of incomes, wealth, and poverty, and studies the impact of government taxes and spending on the economy.

Macroeconomics, which is covered in the twin split of this volume, studies the "big picture" in economics. It investigates the determination of output, employment, and incomes, and studies other features of the overall economy.

THE SCIENTIFIC APPROACH

The list of economic questions is so long that you might naturally ask how we could ever hope to answer them. How could anyone hope to know in a rigorous, scientific way why teenagers have such high unemployment rates? Can economists really understand the reasons why some people are fabulously rich while others can hardly scratch out one square meal a day?

Of course, economists have no monopoly on the truth about the important issues of the day. Indeed, many puzzling phenomena are poorly understood and highly controversial. But economists and other scientists have developed techniques—sometimes called the scientific approach—that give them a head start in understanding the forces that underlie issues like unemployment, prices and wages, income distribution, or foreign trade.

Observation One of the major sources of economic knowledge is observation of economic affairs, especially drawing upon the historical record. As an example, consider inflation, which occurs when there is a rise in the general level of prices. Citizens, bankers, and political leaders often fret about high inflation rates when prices are rising 10 or 20 or even 100 percent per year.

How can we understand the damage done by inflation? One way is to study historical inflations. For example, during the German inflation of the 1920s, prices rose 1,000,000,000,000 percent in 2 years. This destroyed much of the wealth of the middle class, led to social unrest, and, many people believe, abetted Hitler's rise to power. By examining the impacts of these virulent forms of inflation, we can gain insight into the more moderate inflations of the 1970s and 1980s.

The philosopher Santayana said that those who forget history are condemned to repeat it. Economics too has much to learn from the history books, and the lessons are found on virtually every page of this textbook.

Analysis History and facts are central to an empirical science like economics, but facts cannot tell their own story. To recorded history we must add economic analysis, for only by developing and testing economic theories can we shape the jumble of data and facts into a coherent view of reality.

What do we mean by economic analysis? This is an approach which deduces or predicts certain kinds of

1Developing an understanding of economic issues requires a specialized vocabulary. If you find yourself confused about a particular word or phrase, you should consult the Glossary at the back of this book. The Glossary contains most of the major technical economic terms used in this book. All terms printed in boldface are also defined in the Glossary.
economic behavior on the basis of prior assumptions about how people or firms are motivated or will act. As an example of analysis, consider the drive to protect domestic workers and firms from foreign competition. In recent years, the United States has bought much more from abroad than it has sold to foreigners. As a result employment in heavy manufacturing industries has declined. Workers in industries such as automobile, steel, machinery, and textiles have complained that "cheap foreign labor" is stealing their jobs. What might be done? Some people suggest putting barriers on trade, say by taxing imports or by setting quotas limiting their quantity. In recent years, for example, imports of Japanese autos have been limited to 2.2 million per year.

People could argue endlessly about the impacts of such import restraints. Or they could study the predictions of economic supply-and-demand analysis. Such an analysis shows that, under certain assumptions, import restraints on cars increase the number of jobs in the domestic car industry, raise car prices, but lower the total national income. And case study piled on case study confirms the validity of these kinds of predictions.

In the pages that follow, you will find an array of analytical tools: supply and demand, cost schedules, and the like. Mastery of the use of these tools will help you answer myriad economic questions that arise every day.

Statistical Analyses As we move into advanced topics, the use of statistics grows in importance. Governments and businesses issue volumes of data that can be analyzed to help us understand economic behavior quantitatively. While the actual use of these tools requires mathematical methods in probability and econometrics, understanding the results requires primarily careful reading and common sense.

Where might we use statistics? Let’s say that you are wondering why, on average, women earn only 60 percent of the wages of men. With millions of workers, you can hardly hope to compile a history of each one to explain the disparity. Instead, you collect representative data on wages of men and women, along with their personal characteristics (education, years of experience, occupation, and so forth). Using these data, you might then employ statistical techniques to estimate what fraction of the difference in earnings of men and women is due to differences in characteristics. For example, studies have found that a significant part of the difference in earnings is associated with the fact that men have tended to spend more time in the work force and have generally entered higher-paying occupations. But after all the statistical dust has settled, studies generally leave a significant part of the wage differential unexplained, and some believe this remaining differential is due to discrimination.

Experiments Sometimes history, analysis, and statistics still are unable to provide a clear answer to important questions. The economic world is enormously complicated, with thousands of prices and millions of households. In an exciting new development, economists are turning to laboratory and other controlled experiments to understand complex economic processes.

What are controlled experiments? A scientist sets up a controlled experiment by dividing a population into two or more groups, each of which is treated exactly the same except for a single factor. In a test to determine whether saccharin causes cancer in rats, a "control" group would get no saccharin, while the "experimental" group might get different amounts of saccharin in its diet each day. The key ingredient in such a controlled experiment is to vary saccharin and hold all other things (water, light, diet, genetics) equal, thereby allowing the scientist to determine whether saccharin has any measurable impact on the rats.

Experiments in economics are more difficult than in most sciences. To begin with, economists cannot measure economic variables with the precision that physical scientists can measure mass, velocity, or distance. Moreover, it is difficult to replicate the real economy in a laboratory, and people often behave peculiarly in experimental situations. Nevertheless, in one group of controlled experiments over the last 15 years, economists and others have measured people’s reactions to different kinds of government programs to raise the incomes of the poor. These experiments were extremely helpful in showing how changes in government programs might affect people’s work habits and saving behavior.
In the last decade, economists have turned increasingly to laboratory experiments. In these, groups of people are set up as firms and consumers to determine how prices would behave in different markets. Already we have seen some surprising differences that no one had imagined before the experiments were run.2

These four techniques—observation, analysis, statistics, and experiments—form the approach by which economic science progresses. Every day, a new puzzle arises. In response, economists test new ideas and reject old ones, and economics evolves and changes. Textbooks embody both the established wisdom and the hot controversies of today. But in a decade or two, new facts will have toppled old theories, and the subject will evolve anew.

PITFALLS IN ECONOMIC REASONING

No matter what the problem or what the approach, certain pitfalls lie in the path of the serious economist. This section reviews a few of them.

Failing to Keep “Other Things Equal”

In most economic problems, many variables are at work. For example, the number of cars bought in a given year is determined by the price of cars, by consumer incomes, by gasoline prices, and so forth. How can we isolate the impact on car sales of a single variable, such as the price of cars?

As we noted in our discussion of controlled experiments, the key step in isolating the impact of a single variable is to hold other things equal. This phrase means that the factor under consideration is varied while all other factors are held constant. If we want to measure the impact of car prices on the number of cars purchased, we must examine the effect of changing car prices while ensuring that consumer incomes, gasoline prices, and other such variables are unchanged, that these “other things are held equal.”

Say that you are interested in determining the im-

The Post Hoc Fallacy

A common fallacy which often arises in interpreting cause-and-effect relationships is the “post hoc fallacy.” This occurred in ancient times when the medicine man believed that both witchcraft and a little arsenic were necessary to kill his enemy. Another example is a reporter’s claim that, because Florida has the highest death rate of any state, it must have a terribly unhealthful climate.

In each case we see the post hoc fallacy.3

The fact that event A is observed before event B does not prove that event A caused event B. To conclude that “after the event” implies “because of the event” is to commit the post hoc fallacy.

The medicine man committed the post hoc fallacy because he concluded that witchcraft caused death because it preceded death. The reporter committed the same fallacy when assuming that Florida’s climate must be responsible for the high death rate, forgetting to take into account that Florida’s residents are older than those of any other state. Only after we have corrected the mortality figures for the age of the population and other important variables can we judge whether Florida is a healthful or dangerous place to live.

The Whole Is Not Always the Sum of the Parts

Have you ever seen people jump up at a football game to gain a better view? They usually find that, once everybody is standing up, the view has not improved at all. Such behavior, where what is true for an indi-

3In logic, this is known as the post hoc, ergo propter hoc fallacy (translated from the Latin as “after this, therefore necessarily because of this”).
vidual is not necessarily true for everyone, illustrates the "fallacy of composition," which is defined as follows:

The fallacy of composition occurs when what is true of a part is therefore believed to be true for the whole.

The following examples are true statements that might surprise people who had fallen into the fallacy of composition.

- If all farmers produce a big crop, total farm income will probably fall.

- Attempts of individuals to save more in a depression may lessen the community's total savings.

- If a single individual receives more money, that person will be better off; if everybody receives more money, no one will be better off.

- It may benefit the United States to reduce tariffs charged on imported goods, even if other countries refuse to lower their tariffs.

In the course of this book, these apparent paradoxes will be related to the fallacy of composition. There are no magic formulas or hidden tricks. Rather, these are examples in which what seems to be true for individuals is not always true for society as a whole. You might, at the end of your studies, check over the above examples to see how they involve the fallacy of composition.

Subjectivity

Perhaps the deepest pitfall in studying economics arises from the subjectivity we bring to studying the world around us. People sometimes believe that there is an objective reality outside themselves and that the task of science is to discover the facts and laws of nature or society.

Alas, learning is not so simple. When we are young, our minds are open to new ideas. Newborn babies see light but do not yet perceive that the light forms objects. As they grow up, they begin to organize light, touch, and sound into parents, food, and dogs. But no sooner do we begin to understand the world around us, than we become captives of our own knowledge. Growing up on planet Earth, it was natural for our ancestors to believe that the rest of the universe revolved around them. Growing up in a capitalist economy, we may find it hard to sympathize with or even understand socialist systems. In the end, the way we perceive the observed facts depends on the theoretical spectacles we wear.

The same is true of scientists. Like other people, they are prisoners of their theoretical preconceptions. If physicists learned Newtonian physics well, this might actually hinder their grasp of Einsteinian relativity theories.

That is why science belongs to the young. The old "know" too many things that they cannot forget. A striking illustration of this is given by Nobel laureate Max Planck, the physicist renowned for his discovery of the revolutionary quantum theory. In his Scientific Autobiography, Planck reports what he observed in the development of physics:

This experience gave me also an opportunity to learn a fact—a remarkable one in my opinion: A new scientific truth does not triumph by convincing its opponents and making them see the light, but rather because its opponents eventually die, and a new generation grows up that is familiar with it.

Just as Newton, Einstein, and Planck revolutionized perceptions in physics, so did the giants of economics like Smith, Marx, and Keynes—indeed, all whose names appear on the family tree of economics shown on the back endpaper of this book—transform economic understanding by converting the young and open-minded.

Is It a Bird? A simple picture can illustrate the subjectivity that exists in every science. Does picture (b) in Figure 1-1 show a bird looking to the left? Or is it an antelope looking to the right?

There is no right answer. Either may be correct depending upon the context. In the presence of Figure 1-1(a)'s field of birds, most people think it is a bird. But next to (c)'s field of antelopes, people see it as an antelope.

So it is with scientific facts and theories. After you have studied and learned a body of economic principles, you comprehend reality in a new and different way. This important insight helps us understand why people who live on the same planet can have funda-
mentally different economic perceptions—why some believe capitalism is the best system while others hold communism to be optimal, or why some believe government spending is wasteful and others believe it useful.

So let us be forewarned to question the inevitable subjectivity of our own beliefs and philosophies and to be open-minded about views that differ from our own.

Uncertainty in Economic Life

More than a century ago, the French mathematician Laplace thought that, with sufficient data and time for computation, we could see the future as clearly as the present. In today's age of uncertainty, we know this is not so; there is an inherent unpredictability in even the most precise physical sciences. The social sciences are even less precise than the physical sciences, for they involve more complex relationships and must attempt to predict human behavior. More and more today, economists must cope with the fact that uncertainty pervades economic life.

In the last 40 years, economics has been in the forefront of developing tools that explain how uncertainty affects human behavior. As a result of this work, we now understand more about chess strategies, about how to invest in the stock market, and even about the arms race.

One of the first principles to understand is that economic laws hold on average and not in every particular case. For example, economics would hold that, other things equal, lower gasoline prices raise the amount of gasoline used. A skeptic would retort, "But my cousin Jane hasn't changed her driving habits at all." Or, "You say that lower unemployment tends to raise inflation. What about 1983? It didn't happen then!"

The critics have apt observations; economics is not an exact science. Rather:

Economic laws hold true only on the average, not as exact relationships.

Figure 1-2 gives a preview of a vital statistical relationship whereby consumption (spending by households on goods like food, clothing, and housing) can be related to income. Note that the dots do not fall exactly on the line, as they might in chemistry or astronomy. This consumption-income relationship illustrates that even very accurate-looking economic laws are still only approximate, not exact.

What lies behind the consumption-income relation in Figure 1-2 is a country of 90 million households, each spending a certain amount in light of its income, wealth, tastes, and idiosyncratic elements. The consumption of individual households may be highly unpredictable in a given year, depending on whether they bought a new car or went on a long vacation or were unemployed. But individual differences largely

Figure 1-1 The same facts may tell different stories to scientific observers who wear different theoretical spectacles

Is (b) a bird or an antelope? When (c) is covered up, most people think it is a bird. But when (a) is covered, most will see it as an antelope. [Source: N. R. Hanson, *Patterns of Discovery* (Cambridge University Press, London, 1961).] Thus do differences in perception affect people's views on economic policy.
disappear when overall behavior is examined. The law of averages states that the average behavior of groups will be much more predictable than the behavior of individuals.

Thus, even when there are enormous differences in individual behavior (such as consumption or saving or buying gasoline) we can often see great regularities of overall community behavior.

THE USES OF ECONOMICS
After seeing the way economics advances and the pitfalls that lie on the road to progress, we might wonder, What is the ultimate destination? Why do we study economics? What are its uses?

As we suggested earlier, our economic knowledge serves us in managing our personal lives, understanding society, and designing better economic policies.

The role of better economic understanding in guiding our individual lives will be as varied as are our personalities or physiognomies. Learning about the stock market or about interest rates may help people manage their own finances better; knowledge about price theory and antitrust policy may improve the skills of a lawyer; better awareness of the determinants of cost and revenue will produce better business decisions. The doctor, the investor, and the farmer all need to understand about accounting and regulation to make the highest profit from their businesses.

Economic Description and Policy
In addition to helping people in their personal lives, economics is required for understanding key national issues and for making progress in dealing with them. People who have never made a systematic study of economics are handicapped in even thinking about national issues; they are like the illiterate trying to read.

Economics plays two distinct roles in promoting the understanding of national economic issues. It first helps to describe, explain, and predict economic behavior—as for example when it helps us understand the causes of poverty. But for many people, the pay-off from such economic knowledge comes when it is applied to a second task, that of improving economic performance. This distinction between description and prescription is central to modern economics.

Normative vs. Positive Economics When using economics, we must be careful to distinguish between normative statements (or value judgments) and positive (or factual) statements.

Positive economics describes the facts and behavior in the economy. What percent of teenagers are
unemployed? How many people earn less than $12,000 a year? What will be the effect of higher cigarette taxes on the number of smokers? These are questions that can be resolved only by reference to facts—they may be easy or tough questions, but they are all in the realm of positive economics.

Normative economics involves ethics and value judgments. Should the government give money to poor people? Should the public sector (government) or the private sector (business) provide extra jobs for unemployed teenagers? Should the budget deficit be reduced by higher taxes or lower spending? These are questions involving deeply held values or moral judgments. They can be argued about, but they can never be settled by science or by appeal to facts. There simply is no right or wrong answer to how high inflation should be, whether society should help poor people, or how much the nation should spend on defense. These questions are resolved by political decision, not by economic science.

Economics in Government

Economists have in recent years become the counselors of presidents and prime ministers. The political agenda is full of economic issues: Should we raise taxes to curb the budget deficit? Should the nation protect the automobile industry from Japanese competition? What should we do to curb acid rain? Political leaders need economic advisers to provide counsel on such complicated questions.

It is sometimes said that the nineteenth century was the age of the clergy, while the first half of this century saw government by lawyers. Today, economists are frequently in the middle of political analysis, debate, and execution. Economic analysis is indispensable for sound public policy. It provides many of the factual answers that are the prelude to choosing the most effective tax or spending or regulatory program.

The heads of government must constantly make vital decisions that involve economics. But of course national leaders need not themselves be professional experts in economics. Rather, they need to be literate "consumers" of the conflicting economic advice given them.*

Similarly, few students will become professional economists. Many will study economics for only a term or two. This book is intended to give a thorough introductory overview of the whole subject. Your view of the world will never be the same after a single semester of economics.

Why Economists Disagree

In recent years, economists have developed a reputation for being a querulous lot who can't agree on anything. One writer complained, "If you laid all economists end to end, they still wouldn't reach a conclusion." A randomly selected radio or television show will often find two economists disputing about almost anything. Why?

The media are partly to blame. Heated arguments make exciting theater and, seeing a row of nodding economists, you would probably nod off yourself.

But surveys reveal that economists have fewer disagreements than is popularly supposed. A broad consensus exists on many questions of positive economics: economists agree on many issues in microeconomics, such as the effects of rent control, minimum wages, and tariffs upon the economy. Many areas of macroeconomics, by contrast, stir up controversy, especially the role of money and the sources of unemployment in today's society. Many economists are desperately seeking solutions to these puzzles.

The major disagreements among economists, however, lie in the normative arena. Economists differ as much as the rest of the population on issues such as the appropriate size of government, the power of unions, the relative importance of inflation and unemployment, and the fair distribution of income. They

*As an example of how leaders require economic advice, consider the distinguished British statesman Winston Churchill. He was a great orator, gifted writer, and shrewd judge of the Hitlerian threat while most around him slept. Yet, all his life, Churchill felt himself to be a true dolt in the woods when it came to the subject of economics. Critics noted that he was "without a deep appreciation of decimal points."

Thus, in 1925, as chancellor of the exchequer, Churchill was persuaded by his advisers to put England back on the gold standard at the wrong price level. Outside experts warned at the time against such folly, and history has recorded that England never quite recovered from the stagnation of the 1920s that this mistake produced.
are as divided as their parents or cousins on the broad political and ethical issues of the day.

... ...

We have come to the end of our overture. Return briefly to our opening theme, Why study economics? Perhaps the best answer to the question is a famous one given by Lord Keynes in the final lines of his 1936 classic, *The General Theory of Employment, Interest and Money*:

The ideas of economists and political philosophers, both when they are right and when they are wrong, are more powerful than is commonly understood. Indeed the world is ruled by little else. Practical men, who believe themselves to be quite exempt from any intellectual influences, are usually the slaves of some defunct economist. Madmen in authority, who hear voices in the air, are distilling their frenzy from some academic scribbler of a few years back. I am sure that the power of vested interests is vastly exaggerated compared with the gradual encroachment of ideas. Not, indeed, immediately, but after a certain interval; for in the field of economic and political philosophy there are not many who are influenced by new theories after they are twenty-five or thirty years of age, so that the ideas which civil servants and politicians and even agitators apply to current events are not likely to be the newest. But, soon or late, it is ideas, not vested interests, which are dangerous for good or evil.

After a careful study of economics you will begin to recognize the ideas that lie behind the arguments in the popular press or political platform. To understand the ideas of generations of economists and how they apply to the problems of personal life and national issues—ultimately, this is why we study economics.

Summary

1. Economics, both a science and an art, is studied for a variety of reasons: to understand problems facing the citizen and family, to help governments promote growth and improve the quality of life while avoiding depression and inflation, and to analyze fascinating patterns of social behavior. Because economic questions enter into both daily life and national issues, a basic understanding of economics is vital for sound decision making by individuals and nations.

2. Among many definitions, the most comprehensive is: *Economics is the study of how societies choose to use scarce productive resources that have alternative uses, to produce commodities of various kinds, and to distribute them among different groups.*
3. Economists and other scientists have a variety of weapons that can be deployed to attack economic questions. Observation of economic history provides countless episodes from which to find patterns of behavior. Economic analysis allows the facts to be arrayed into general propositions. Often statistical studies permit understanding of complex situations. And experiments are a recent way to test for economic relationships. In approaching economic questions, we confront basic methodological problems that must be solved: holding other things equal; trying to keep descriptions distinct from value judgments; avoiding the post hoc and composition fallacies; realizing the inevitable subjectivity in observation and theory.

CONCEPTS FOR REVIEW

economics
normative vs. positive economics
macroeconomics vs. microeconomics
the scientific approach
controlled experiment

fallacy of composition
post hoc fallacy
other things equal
uncertainty, law of averages

QUESTIONS FOR DISCUSSION

1. Give some definitions of economics. Which is the most comprehensive one?
2. Define each term in your own words: post hoc fallacy; other things equal; normative and positive economics.
3. Identify which of the following are normative and which are positive statements:
 (a) Lower gasoline prices lead to higher consumption of gasoline.
 (b) Bread prices should be lower.
 (c) The poor should pay no taxes.
 (d) Restricting the imports of Japanese cars will raise GM's profits and is therefore desirable.
 (e) Rising food prices contributed to the French Revolution.
4. Is it possible to be "objective" in a social science like economics? On what can conservatives and liberals agree? Give examples of the fallacy of composition and of the post hoc, ergo propter hoc fallacy. Is the former involved in the debate over cigarette smoking and longevity? (Why not?) Might the latter be involved in this debate? (Why so?)
5. In commenting on the role of economics in government, one economic adviser to presidents said, "Economists should be on tap, not on top." What did he mean? Do you agree?
6. The gravestone of Karl Marx contains the following words he wrote at the age of 26:

 Up 'til now the philosophers have only interpreted the world in various ways. The point, though, is to change it!

 Could a scientist believe in "changing the world," but not necessarily agree with a Marxian program for thoroughgoing violent revolution? How would different people draw the line? How would you, before beginning your first course in economics?
APPENDIX: 1
How to Read Graphs

A picture is worth a thousand words.
Chinese proverb

Before you can master economics, you must have a working knowledge of graphs. They are as indispensable to the economist as a hammer is to a carpenter. So if you are not familiar with the use of diagrams, invest some time in learning how to read them—it will be time well spent.

What is a graph? It is an illustration showing how two or more sets of data or variables are related to one another. And its power arises from the fact that so much data can be packed into a small space and can be easily comprehended.

You will encounter a wide variety of graphs in this book: graphs showing how variables move over time, relationships between variables (as in Figure 1-2, page 10), as well as diagrams dealing with supply and demand. We begin with a simple example that will arise in the next chapter.

THE PRODUCTION-POSSIBILITY FRONTIER

One of the first graphical diagrams you will encounter in this text is the production-possibility frontier. At any point in time, a country can produce only a certain amount of goods and services with its limited resources. The United States can produce only so much gasoline, so much heating oil, so many aircraft, and so forth. Moreover, the country cannot increase its production of one good without giving up at least some of another good: for example, the more gasoline produced, the less heating oil can be produced.

In economics, we represent this limitation on a country’s productive potential by the production-possibility frontier (PPF). The PPF represents the maximum amounts of a pair of goods or services that can both be produced with an economy’s given resources.

Let’s look at a basic example using food and machines. The essential data for the PPF are shown in Table 1A-1. Of the two sets of data, one set gives possible outputs of food; the other set gives possible outputs of machines. Each level of output of food is paired with the number of machines that could be produced at the same time. Thus if the economy produced 10 units of food, it could produce a maximum of 140 machines.

Production-Possibility Graph

The data shown in Table 1A-1 can also be presented as a graph. To construct the graph, we represent each of the pairs of data of Table 1A-1 by a single point on a two-dimensional plane:
A graph is an illustration showing how two or more sets of data are related to one another.

Figure 1A-1 displays in a graph the relationship between food and machines shown in Table 1A-1. It is constructed by representing each pair of numbers by a single point in the graph. Thus the row labelled A in Table 1A-1 is graphed as point A in Figure 1A-1, and similarly for points B, C, and so on.

In Figure 1A-1, the vertical line at left and the horizontal line at bottom correspond to the two variables—machines and food. A variable is an item of interest that can be defined and measured. Important variables studied in economics are prices, quantities, hours of work, acres of land, dollars of income, and so forth. Each line is marked off to show the range of numbers that the goods might take.

The horizontal line is referred to as the horizontal axis (or sometimes the X axis). The horizontal axis is simply a convenient line for measuring the quantity of one of the variables. In Figure 1A-1, food is on the red horizontal axis, which has been divided into numbers from 0 to 50.

<table>
<thead>
<tr>
<th>POSSIBILITIES</th>
<th>FOOD</th>
<th>MACHINES</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>150</td>
</tr>
<tr>
<td>B</td>
<td>10</td>
<td>140</td>
</tr>
<tr>
<td>C</td>
<td>20</td>
<td>120</td>
</tr>
<tr>
<td>D</td>
<td>30</td>
<td>90</td>
</tr>
<tr>
<td>E</td>
<td>40</td>
<td>50</td>
</tr>
<tr>
<td>F</td>
<td>50</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1A-1 The pairs of possible outputs of food and machines

The table shows six potential pairs of outputs that can be produced with the given resources of a country. The country can choose one of the six output couples.

Figure 1A-1 Six possible pairs of food-machines production levels

This figure shows the data of Table 1A-1 in graphical form. The data are exactly the same, but note how a visual display strikes the eye more vividly.
Similarly, the vertical line at the left is known as the vertical axis or Y axis. In this example, it measures the number of machines produced. Thus, any point on the horizontal line running through point C on the red vertical axis stands for 120 machines.

The lower left-hand corner at which the two axis lines meet is the origin. It signifies 0 food and 0 machines.

A Smooth Curve When drawing graphs, we go beyond simply putting a few dots on a page. A graph is usually a continuous curve, filling in the space between the points expressed in a table. Figure 1A-2 fills in the space between each pair of points with a smooth curve from A to F.

Why do economists often use graphs rather than tables? The food versus machine diagram in Figure 1A-2 can illustrate a number of interesting points. The smooth curve ABCDEF reflects the menu of choice for the economy. It is a visual device for showing what types of goods are available in what quantities. By using graphs like the production-possibility frontier, we can more easily understand economic principles.

Slopes and Lines

The essential elements of graphs have been introduced. Let's move on to further aspects of their use.

Most graphs have lines on them. In Figure 1A-2, for example, we see a line depicting the relationship (or "function") between output of food and machines. An important way to describe the relationship between the two variables is by the slope of the line. Let's first define slope and then see why it is an important concept.

The slope of a line represents the change in one variable that occurs when another
variable changes. More precisely, it is the change in the variable on the vertical axis per unit change in the variable on the horizontal axis. For example, in Figure 1A-2, say that food production rose from 25 to 26 units. The slope of the curve in Figure 1A-2 tells us the exact change in machine production that would take place. To repeat, slope is an exact measure of the relationship between the change in Y and the change in X.

Consider the case of straight lines, shown in Figure 1A-3. We want to measure the relationship between the quantities on the X and Y axes as given by the slope of the line AE. Let’s calculate the slope of the line between points B and D. Think of the movement from B to D as coming in two stages. First comes a horizontal movement from B to C indicating a 1-unit increase in the X value (with no change in Y). Second comes a compensating vertical movement up or down, shown as s in Figure 1A-3. (The movement of 1 horizontal unit is purely for convenience. The formula holds for movements of any length.) The two-step movement assures us that at the end we are still on the straight line.

Assuming the BC movement is a 1-unit increase in X, then the length of CD (marked as s in Figure 1A-3) indicates the change in Y per unit change in X. On a graph, this change is called the slope of the line $ABDE$.

Some important points to remember are:

1. Slope is always expressed as a number. It measures the change in Y per unit change in X.
2. If the line is straight, its slope is constant everywhere.
3. The slope of the line indicates whether the relationship between X and Y is direct or inverse. Direct relationships occur when variables move in the same direction (that is, they increase or decrease together); inverse relationships occur when the variables move in opposite directions (that is, one increases as the other decreases). Thus a negative slope indicates the X-Y relation is inverse, as in Figure 1A-3(b). Why? Because an increase in X calls for a decrease in Y.

Often slope is defined as “the rise over the run.” The rise is the vertical distance involved; in Figure 1A-3, the rise is the distance from C to D. The run is the horizontal distance; it is BC in Figure 1A-3. The rise over the run in this instance would be CD over BC. Thus the slope is CD/BC.

Figure 1A-3 Calculation of slope for straight lines

It is easy to calculate slopes for straight lines as “rise over run.” Thus in both (a) and (b), the numerical value of the slope is rise/run = $CD/BC = s/1 = s$.

Note that in (a), CD is negative, indicating a negative slope, or an inverse relationship between X and Y.
People sometimes confuse slope with the appearance of steepness. This conclusion is often valid—but not always. The steepness depends on the scale of the graph. Diagrams (a) and (b) in Figure 1A-4 both portray exactly the same relationship, and both are accurate. But in (b), the horizontal scale has been stretched out compared to (a). If you calculate carefully, you will see that the algebraic slopes are exactly the same (and equal to $\frac{1}{2}$).

Slope for Curved Lines A curved line is one whose slope is different at different points. Consider the curved line $ABCDEF$ in Figure 1A-5. Suppose we are at point B. We can easily calculate the slope from B to other points on the curve. To calculate the slope from B to E, we would draw a right-angled triangle underneath, with corners at B and E, just as in Figure 1A-3. The slope of the curve between B and E is then calculated using the right-angle measuring technique shown in Figure 1A-3; the slope

Figure 1A-5 Slopes of curved lines
The lines BE and BD can be used to calculate the average slope between two points. These are called arc slopes.
is called the arc slope between two points. Note that, because the line is curved, the arc
slope between B and E is different from that between B and D.

Sometimes arc slopes are sufficient for the problem at hand. On other occasions it
is useful to ask what the slope of the curved line is at a point, such as B.

The easiest way to calculate the slope at a point is to draw a tangent to the curved
line at the point. The tangent to a curved line is itself by definition a straight line; it
does not cross the curved line but only touches it, and it touches it at one point only.
The slope of this tangent line measures the slope of the curve at that point, where we
can use the usual right-angle measuring technique to calculate the slope. By inspection
of Figure 1A-6, we see how the slope of the tangent line FJ measures the slope of the
curved line at point B. Similarly, the tangent line GH gives the slope of the curved line
at point D.

Shifts of and Movement along Curves

One of the key distinctions in economics is between shifts of curves and movements
along curves. We can examine the distinction in Figure 1A-7. The inner production-
possibility frontier reproduces the PPF in Figure 1A-2. At point D society chooses to
produce 30 units of food and 90 units of machines. If society decides to consume more
food with a given PPF, then it could move along the PPF to point E. This movement
along the curve represents choosing more food and fewer machines.

The inner PPF might represent society's production possibilities for 1990. If we
return to the same country in 2000, the PPF has shifted from the inner 1990 curve to
the outer 2000 curve. (This shift would occur as the economy grew and became more
efficient, as we will see in the next chapter.) In the later year, society might choose to
be at point G, with more food and machines than at either D or E.

The key point to remember as similar examples occur later in this text is that in one
case (moving from D to E) we witnessed movement along a curve, while in the second case (from D to G) we witnessed a shift of the curve.

Some Special Graphs

We have encountered one of economics' most important graphs in Figure 1A-2: that which shows the relationship between two economic variables (such as food and machines, or guns and butter). You will encounter other types of graphs in the pages that follow.

Time Series Some graphs show how a particular variable has changed over time. Some examples appear on the inside front cover of this book, where output, capital, population, and real wages are plotted against time. Generally, in time-series graphs such as these, the horizontal axis is time while the vertical axis shows an economic variable under consideration.

Scatter Diagrams Sometimes individual pairs of points will be plotted, like the points of the food-or-machines diagram in Figure 1A-1; more often, combinations of variables for different years will be plotted. An important example is the consumption function, shown in Figure 1-2, page 10. By showing whether the points lie tightly or loosely around the line, scatter diagrams allow us to see whether a relationship (say, between consumption and income) is reliable or unreliable.

Diagrams with More Than One Curve Often it will be extremely useful to put two curves in the same graph, thus obtaining a "multicurve diagram." The most important example is the supply-and-demand diagram, shown in Chapter 4 (see page 64). These
graphs can show two different relationships simultaneously, such as how consumers’ purchases respond to price (demand) and how businesses’ production responds to price (supply). By graphing the two relationships together, we can determine the price and quantity that will hold in a market.

* * *

This concludes our brief excursion into graphs. With these basic principles mastered, the graphs in this book, and in other areas, can be both fun and instructive.

SUMMARY TO APPENDIX

1. Graphs are an extremely important tool of modern economics. They allow a quick visual presentation of data or of the relationship between two variables.
2. The important points to understand about a graph are: What is on each of two axes (horizontal and vertical)? What are the units on each axis? What kind of relationship is depicted in the curve or curves shown in the graph?
3. The relationship between the two variables in a curve is given by its slope. The slope is defined as “the rise over the run,” or the increase in Y per unit increase in X. If it is upward (or positively) sloping, the two variables are directly related and move upward or downward together. If it has a downward (or negative) slope, then the two variables are inversely related.
4. In addition, we sometimes see special examples of graphs: time series, which show how a particular variable moves over time; scatter diagrams, which show the observations on a pair of variables; and multicurve diagrams, which show two or more relationships on a single figure.

CONCEPTS FOR REVIEW

- horizontal, or X, axis
- vertical, or Y, axis
- origin
- slope (negative, positive, zero)
- slope as “rise over run”
- direct, inverse relationship
- slope of curved line: arc slope, tangent at a point
- special graphs: time series, scatter, multicurve

QUESTIONS FOR DISCUSSION

1. Consider the following problem for a student. You have 16 hours a day to divide between leisure and study. Let leisure be the X variable and study hours be the Y variable. Plot the straight-line relationship between all combinations of X and Y on a blank piece of graph paper. Be careful to label the axes and mark the origin.
2. In question 1, what is the slope of the line showing the relationship between study and leisure hours? Is it a straight line?
3. Let us say that you absolutely need 6 hours of leisure per day, no more, no less. Mark the point on the graph that you will choose. Now consider a movement along the curve: Assume that you decide that you need only 4 hours of leisure a day. Plot the new point.

4. Next show a shift of the curve: You find that you need less sleep, so that you have 18 hours a day to devote to leisure and study. Draw the new (shifted) curve.

5. Keep a record of your own leisure and study for a week. Plot the hours of leisure and study each day as a point on a graph. This is a scatter diagram. Do you see any relationship between the hours of study and leisure?

6. Consider the following data. Plot the relationship on a scatter diagram. Why can’t you be sure which of the variables “causes” movement in the other variable (remember the post hoc fallacy)?

<table>
<thead>
<tr>
<th>YEAR</th>
<th>MONEY SUPPLY (billions)</th>
<th>GNP (billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1965</td>
<td>$170</td>
<td>$705</td>
</tr>
<tr>
<td>1970</td>
<td>217</td>
<td>1,016</td>
</tr>
<tr>
<td>1975</td>
<td>291</td>
<td>1,598</td>
</tr>
<tr>
<td>1980</td>
<td>414</td>
<td>2,732</td>
</tr>
<tr>
<td>1985</td>
<td>627</td>
<td>3,998</td>
</tr>
</tbody>
</table>

Every gun that is made, every warship launched, every rocket fired signifies, in the final sense, a theft from those who hunger and are not fed.

President Dwight D. Eisenhower

Whenever people gather into a community, they must necessarily confront a few universal economic problems. These fundamental questions are as crucial today as they were in the days of the Romans or the Greeks. And they will just as surely be faced by the brave new world of the future.

Section A of this chapter describes the three central problems of economic organization. There we see that every society must determine what commodities shall be produced, how these goods should be made, and for whom they will be produced. In addition, in this first section we will begin to understand that scarcity is a key fact of economic life.

Section B then illustrates the problem of scarcity in terms of the limited levels of production available to an economy. It shows that society's choices between different goods and services are limited by the amount of resources available and by the technological knowledge of the society. Given the production possibilities, society must choose between necessities and luxuries, between public and private goods, or between consumption and investment.
A. PROBLEMS OF ECONOMIC ORGANIZATION

Every human society—whether it consists of an advanced industrial nation, a centrally planned communist society, a Taos commune, or an isolated island society—must confront and answer three fundamental and interdependent economic problems.

* What commodities are to be produced and in what quantities? How much of each of the many possible goods and services should the economy make? And when will they be produced? Should we produce pizzas or shirts today? A few high-quality shirts or many cheap shirts? Should we produce many consumption goods (like pizzas and concerts), or few consumption goods and many investment goods (like pizza factories and concert halls), allowing more consumption tomorrow?

* How shall goods be produced? By whom and with what resources and in what technological manner are they to be produced? Who hunts, and who fishes? Is electricity to be generated from oil and coal, or waterfalls and atoms, or sun and wind? Handicrafts or mass production? In large privately owned corporations or in state-owned companies? If from all these sources, in what quantities from each?

* For whom shall goods be produced? Who is to enjoy and get the benefit of the nation's goods and services? Or, to put it another way, how is the national product to be divided among different individuals and families? Are we to have a society in which a few are rich and many poor? Or in which all share the nation's output equally? Shall high earnings go to muscles or to IQ? Shall selfish go-getters inherit the earth? Shall the lazy eat well?

These three problems are fundamental and common to all economies. But, as we will see later, different societies try to solve them using different institutions.

Inputs and Outputs

Now that we have outlined the three major economic tasks of every society, we can translate these into economic language. On close reading, we see that the three problems are really about the limitations and choices among an economy's inputs and outputs.

Inputs are commodities or services used by firms in their production processes. Inputs are combined to produce outputs, while outputs consist of the varied array of useful goods or services that are either consumed or used for further production.

For example, when a cook makes an omelette, the eggs, salt, heat, frying pan, and the chef's skilled labor are the inputs. A fluffy omelette is the output.

We classify inputs, also called factors of production, into three broad classes: natural resources, labor, and capital.

Natural resources represent the gifts of nature to our productive processes. They consist of the land used for farming or for supporting houses, factories, and roads; energy resources to fuel our cars or heat our homes; nonenergy resources like copper and yttrium and sand. We might view our physical environment—the air we breathe and the water we drink—as part of the natural resources of an economy.

Labor consists of the human time spent in production—working in automobile factories, tilling the land, teaching in schools, or cooking omelettes. Thousands of occupations and tasks, at all skill levels, are performed by labor. It is at once the most familiar input and the most crucial to an advanced industrial economy.

Capital resources form the durable goods of an economy, produced by the economy in order to produce yet other goods. Capital goods include the countless machines, roads, computers, hammers, trucks, steel mills, and buildings that dot the landscape of any modern economy. As we will later see, the accumulation of numerous specialized capital goods is essential to the task of economic development.

Restating the three economic problems, a society must decide: (1) what outputs to produce, and in what quantity; (2) how to produce them—that is, by what techniques should inputs be combined to produce the desired outputs; and (3) for whom should the outputs be produced and distributed.
Alternative Economic Systems: Custom, Command, and Market

The three economic problems faced by societies are universal, but the solutions vary from place to place. The study of alternative economic systems is concerned with the different mechanisms that a society can use to allocate its scarce resources.

Custom rules every facet of behavior in many primitive civilizations. What, how, and for whom may be decided by traditions passed on from elders to youths. In ancient Egypt and even sometimes today in India, a son unswervingly adopts the trade of his father. Sometimes the customs appear bizarre to outsiders; the Kwakiutl Indians consider it desirable not to accumulate wealth but to give it away in the potlatch—a roisterous celebration.

However strange many customs look to outsiders, they often are efficient at performing the three functions of organizing the economy. In some cases, though, customs may be so unyielding that societies become extinct defending their traditions.

Another system is a command economy—one in which the government makes all decisions about production and distribution. Such a government might be dictatorial or it might be democratic; in the extreme it would tell people what to eat and drink, how food and steel should be made, and who should live well or poorly.

A final approach, developed at length in Chapter 3, is the market economy. Here, a system of prices, of markets, of profits and losses, of incentives and rewards determines what, how, and for whom. Firms produce those commodities that yield the highest profits (the what) by the techniques of production that are least costly (the how), and people’s consumption arises from their decisions about how to spend the wages and property incomes generated by their labor and property ownership (the for whom).

No economy today is one of these pure forms. Rather, societies are mixed economies, with elements of market, command, and custom. There has never been a 100 percent market economy (although nineteenth-century England came close). In American capitalism today, the government has an important role in setting the legal framework for economic life, producing education and police services, and regulating pollution and business. But most decisions in the United States today are made when markets determine prices and quantities.

The Law of Scarcity

Why are we concerned with the fundamental questions of what, how, and for whom? These problems arise because people want to consume far more than an economy can produce. If infinite quantities of every good could be produced, or if human desires were fully satisfied, people would not worry about the efficient use of scarce resources. Nor would business managers lose sleep over wasteful use of labor or energy. Moreover, since all of us could have as much as we pleased, no one would care about the distribution of incomes among different people or classes.

In such an Eden of prosperity, there would be no economic goods—that is, no goods that are scarce or limited in supply. There would be no need to economize on consumption, and indeed economics would no longer be a vital science. All goods would be free, like sand in the desert or water at the beach.

Limited Goods But no society has reached a utopia of limitless possibilities. Goods are limited while wants seem unbounded. Even in the United States, the most productive society yet known, annual production in the mid-1980s has averaged around 80 million tons of steel, 8 million cars, and 3.2 billion barrels of oil. The country has but a few hundred miles of sandy beaches. Ski areas and concert halls have limited capacity, and our rock idols can hardly sing more than 300 live concerts a year. Our national output would have to be many times larger before the average American could live at the level of the average doctor or lawyer. And outside the United States, particularly in Africa and Asia, hundreds of millions of people suffer from undeniable hunger and material deprivation.

Unlimited Wants By comparison with the poor nations or early civilizations, advanced industrial economies seem very wealthy indeed. But higher incomes bring in their train higher consumption standards and
ever higher "needs." An investigation of consumption patterns would find that people want and need central heating and cooling, movies and compact disks, autos and personal computers, concerts and recreation, leisure time and privacy, clean air and pure water, safe factories and clean streets, and innumerable other goods and services. If you add up all the wants, you quickly find that there are simply not enough goods and services to satisfy a small fraction of everyone's consumption desires.

It is little comfort that the biologist tells us that we can be adequately nourished for a few cents a day. Anyone who has kept a budget knows that the social necessities of life in America—the absolute musts—far surpass the minimum physiological needs for food, clothing, and shelter. Thirty years ago, in *The Affluent Society*, John Kenneth Galbraith analyzed how consumers often flit from one purchase to another in response to the pressures of fashion and advertising.

But economics must reckon with consumer wants and needs whether they are genuine or contrived. Shakespeare's King Lear said, "Reason not the need"—and economists do not; rather they analyze how limited goods get rationed among whatever wants a society generates.

The law of scarcity states that goods are scarce because there are not enough resources to produce all the goods that people want to consume.

Faced with this undeniable truth—that goods are scarce relative to wants—economics describes and analyzes how different societies cope with limited resources—choosing different bundles of goods (the *what*), selecting among different techniques of production (the *how*), and deciding in the end who should consume the goods (the *for whom*).

B. SOCIETY'S TECHNOLOGICAL POSSIBILITIES

We have seen how limitations of resources force people and society to choose among alternative uses of the scarce resources. We now illustrate the law of scarcity with the help of examples.

THE PRODUCTION-POSSIBILITY FRONTIER

Consider an economy with only so many people, so much technical knowledge, so many factories and tools, and so much land, water power, and natural resources. In deciding *what* shall be produced and *how*, the economy must really be deciding just how these resources are to be allocated among the thousands of different possible commodities. How much land should go into wheat growing? Or into pasture? How many factories are to produce knives? How much skilled labor for shoelaces?

1A study suggests that standard requirements of adult nutrition could be bought in 1988 for about $360 per year, or a little less than a dollar a day. But what a diet this implies: cabbage, spinach, pork liver, and flour.

Table 2-1 Limitations of scarce resources implies the guns-butter tradeoff
As we go from A to B ... to F, we are transferring labor, materials, and other resources from the gun industry to the butter industry.

a maximum amount of butter that can be produced per year. (The exact amount depends upon the quantity and quality of resources of the economy in question and the technological efficiency with which they are used.) Suppose 5 million pounds of butter is the maximum amount that can be produced with the existing technology and resources.

At the other extreme, imagine that 100 percent of society's resources had instead been devoted to the production of guns. Only some maximum number of guns could then be produced: 15 thousand guns of a certain description can perhaps be produced if we are willing to produce no butter.

These are two extreme possibilities. In between there are many others. If we are willing to give up some butter, we can have some guns. If we are willing to give up still more butter, we can have still more guns.

A schedule of possibilities is given in Table 2-1. Combination F shows the extreme where all butter and no guns are produced, while A depicts the opposite extreme where all resources go into guns. In between—at E, D, C, and B—increasing amounts of butter are being given up in return for more guns.

Butter is transformed into guns, not physically, but by the alchemy of diverting resources from one use to the other.

We can represent an economy's production possi-

Figure 2-1 Graphical depiction of alternative production possibilities
This figure displays the data from Table 2-1.
satisfy people's needs and desires. More specifically, the economy is producing efficiently when it cannot produce more of one good without producing less of another—when it is on the production-possibility frontier.

How do we know that any point on that frontier is efficient? Let us start in the situation shown by point D in Figure 2-2. Decree that we want another million pounds of butter. If we ignored the constraint shown by the PPF, we might think it possible to produce more butter without reducing gun production, as in moving to point I, due east of point D. But point I is in the "impossible" region, outside the frontier. Starting from D, we cannot get more butter without giving up some guns. Hence point D is efficient, and point I is infeasible.

Productive efficiency occurs when society cannot increase the output of one good without cutting back on another good. An efficient economy is on its production-possibility frontier.

One further point about an efficient economy can be illustrated using the PPF. Being on the PPF means that producing more of one good inevitably implies sacrificing other goods. When we produce more guns, we are substituting guns for butter. Substitution is the law of life in a full-employment economy, and the production-possibility frontier depicts the menu of society's choices.

Unemployed Resources and Inefficiency Even casual observers of modern life know that we often witness unemployed resources in the form of idle workers, idle factories, and idle land. Chapter 1 hinted that economic laws might be different when resources are less than fully employed. Being inside the PPF is one such instance.

With unemployment of resources we are not on the production-possibility frontier at all, but rather somewhere inside it. Thus, U in Figure 2-2 represents a point inside the PPF; at U society is producing only 2 units of butter and 6 units of guns. Some resources are idle, and by putting them to work we can have more butter and more guns. We can move from U to D, thereby producing more butter and more guns and improving the economy's efficiency.

Taking into account the possibility of unemployed resources throws important light on the historical experience in World War II of two countries: the United States and the Soviet Union. After 1940, how was the United States able to become the "arsenal of democracy" and to enjoy civilian living standards higher than ever before? Largely by taking up the slack of unemployment and moving toward the PPF.

The case of wartime U.S.S.R. was different. The Soviets had little unemployment before the war and were already on their rather low production-possibility frontier. To move northwest along their PPF the Soviets had no choice but to substitute war goods for civilian goods—with consequent privation.

 Having unemployed resources is not the only rea-
son why an economy might be inside its PPF. If an economy is inefficiently organized, it may also fall well short of the frontier. Such a case occurred during an outbreak of general strikes in Poland in 1981 and 1982. There, output fell dramatically as the price system broke down. Political turmoil pushed Poland inside its PPF.

Less dramatic, but no less important, are cases where an economy is inside its PPF because it is riddled with monopoly or inefficient regulation, or because a command economy is subject to arbitrary decrees by inept bureaucrats. Deregulation or removing government rules on business operations, such as occurred for airlines in the United States in the last decade, can improve efficiency and move the economy toward its frontier.

No Free Lunches? You may have heard the saying, "There is no such thing as a free lunch." This adage expresses the notion that you can't get something for nothing. Someone who treats you to a lunch often wants something in return—perhaps a favor, a job, or some free help. We can illustrate the no-free-lunch principle with the PPF, for this shows that an efficient economy cannot produce more guns without sacrificing butter; that is, it cannot get more of one good (lunch) without sacrificing another (money to buy other things).

But the no-free-lunch principle might break down if you were inside the frontier: If your luncheon host simply has free time and wants company, then you both might move toward the happiness-possibility frontier. More generally, a genuine improvement in economic conditions can take place by getting rid of waste and inefficiency. When waste is rooted out or when people exchange goods, everyone may end up better off, in a sense getting something for nothing.

PUTTING THE PPF TO WORK

In addition to illustrating efficiency, the production-possibility curve can help introduce many of the most basic concepts of economics.

1. Figure 2-2 illustrates the basic definition of economics given in Chapter 1; there we defined economics as the science of choosing what goods to produce. Should we live in a fortress economy bristling with guns but with austere living habits, as at point B in Figure 2-2? Or should we reduce the military to a pittance and instead enjoy an economy with much bread and butter, as at point E?

Such debates are heard in peacetime as well as in wartime. During the 1980s, President Reagan lobbied successfully for a larger share of national output going to defense, and real defense spending rose almost 50 percent from 1980 to 1988.

2. The production-possibility frontier provides a rigorous definition of scarcity.

Economic scarcity refers to the basic fact of life that there exists only a finite amount of human and nonhuman resources, which the best technical knowledge is capable of using to produce only limited maximum amounts of each economic good. The PPF shows the outer limit of the combination of producible goods.

And thus far, nowhere on the globe is the supply of goods so plentiful or are tastes so limited that the average family can have more than enough of everything it might fancy. Scarcity is a reflection of the fact that the PPF constrains our living standards.

3. The production-possibility schedule can also illustrate the three basic problems of economic life: what, how, and for whom.

What goods are produced and consumed can be depicted by the point that ends up getting chosen on the PPF.

How goods are to be produced involves an efficient choice of methods and a proper assignment of different amounts and kinds of limited resources to the various industries.

For whom goods are to be produced cannot be discerned from the PPF alone. Sometimes, though, you can make a guess from it. If you find a society on its PPF with many yachts and furs, but few potatoes and compact cars, you might suspect that it experiences considerable inequality of income and wealth among its people.

4. The production-possibility frontier can also illustrate the inherent need to choose among limited op-
portunities of many kinds. People have limited time available to pursue different activities. For example, as a student, you might have 10 hours to study for upcoming tests in economics and math. If you study only math you will get a high grade there and do poorly in economics, and vice versa. Treating the grades on the two tests as the "output" of your studying, sketch out the PPF for grades, given your limited time resources.

Alternatively, if the two student commodities are "grades" and "fun," how would you draw this PPF? Where are you on this frontier? Where are your lazier friends?

Pictures at an Exhibition

The same analysis that applies to choosing between the pair of goods—guns and butter—applies to any choice of goods. Thus the more resources the government uses to build public goods (like roads), the less will be left to produce private goods (like houses); the more we choose to consume of food, the less we can consume of clothing; the more society decides to consume today, the less can be its production of capital goods (durable productive goods like equipment or factories) to turn out more consumption goods for the next year or decade.

The graphs of Figures 2-3 to 2-6 are self-explanatory. They show that the production-possibility frontier can illustrate many familiar and basic economic processes. Later chapters will deal with each of these in depth, and it is necessary here only to comprehend the common-sense ideas involved.

Figure 2-3 shows the effect of economic growth and development. As a result of an increase in both inputs and an improvement in a nation’s technology, the PPF shifts out. A nation can have more of all goods as its economy grows. The figure illustrates as well how a society devotes most of its effort to food production when it is poor but shifts toward comforts and luxuries as it develops.

Figure 2-4 illustrates how the electorate must choose between private goods (bought at a price) and public goods (paid for by taxes).

Figure 2-5 illustrates how an economy chooses between (a) current consumption goods and (b) invest-
Figure 2-4 With prosperity comes greater emphasis on public rather than private goods

(a) The first economy is poor and dispersed, as in Thomas Jefferson's frontier days. The proportion of resources going to public goods (defense, roads, public health) is low.
(b) The second economy is more prosperous and chooses to spend more of its higher income on public goods or governmental services (roads, defense, sewage systems, education).

Figure 2-5 Investment for future consumption requires sacrifice of current consumption

A nation can produce either current consumption goods (bread, concerts) or investment goods (trucks and trains, houses and factories, computers and steel mills).
(a) Three countries start out even: They have the same PPF shown in the panel on the left. They have different investment rates, however. Country 1 does no investment for the future and remains at A₁ (merely replacing machines). Country 2 abstains modestly from consumption and invests a bit at A₂. Country 3 invests much and sacrifices much of current consumption.
(b) In the following years, countries that invest more forge ahead. Thus thrifty country 3 has shifted its PPF far out, while country 1's PPF has moved not at all. After thrift, country 3 is still investing but has more current consumption as well.
ment or capital goods (machines, factories, etc.). By sacrificing current consumption and producing more capital goods, a nation’s economy can grow more rapidly, making possible more of both goods (consumption and capital) in the future.

Figure 2-6 shows how the economy of country B, blessed by scientific and engineering discoveries and providing generous incentives for innovators, might surpass thriftier A, which was investing more for the future but with less rapidly advancing technology.

These four diagrams illustrate key themes of later chapters—how societies choose among different patterns of output, how they pay for their choice, how they benefit or lose in the future. A careful study of these diagrams is a good investment—just as a nation sometimes benefits from investing in capital goods for future enjoyment, so a few extra minutes spent here will bring rewards in later chapters.

OPPORTUNITY COST

Life is full of choices. Because resources are scarce, we are constantly deciding which good we want to buy or which activity we will pursue. Should we go to a movie or read a book? Should we take a vacation or get some extra work done? Should we take a year off from college to travel or try out a job? In each of these cases, making a choice in a world of scarcity requires us to give up alternative activities, in effect costing us the opportunity to do something else. That alternative forgone is called the *opportunity cost*.

To take a simple example, say that, after necessary expenses, your income is $100. With that sum you can either take a trip to Chicago or buy a radio. If you decide to go to Chicago, economists would say that the opportunity cost of your trip was the pleasure of enjoying the new radio.

The concept of opportunity cost can also be illustrated using the production-possibility frontier. Look back at the frontier in Figure 2-2 on page 28. Suppose the country has decided to step up its purchases of guns from 9000 guns at D to 12,000 guns at C. What is the opportunity cost of this decision? You might calculate it in dollar terms, but on the most fundamental level, the cost is the alternative butter that must be given up to produce the extra guns. In this example the opportunity cost of the 3000 guns is easily seen to be 1 million pounds of butter.
The opportunity cost of a decision arises because choosing one thing in a world of scarcity means giving up something else. The opportunity cost is the value of the good or service forgone.

The concept of opportunity cost is a useful reminder that the actual dollar outlays are not always an accurate index of true costs. For example, if the government decides to run a highway through a national park, the needed land might look cheap in out-of-pocket or budget costs, but the opportunity cost of paving over the park would be paid when people enjoyed fewer picnics or hikes or camping trips.

Another important example of opportunity cost is the cost of going to college. If you went to a public university, you might calculate the total costs of tuition, room, board, books, and travel to be about $9000 in 1989. Does this mean that $9000 is the opportunity cost of going to school? Definitely not! You must include as well the opportunity cost of the time spent studying and going to classes. A full-time job for a 20-year-old high school graduate would on average pay around $15,000 in 1989. If we add up both the actual expenses and the earnings forgone, we find the opportunity cost of college was $24,000 (equal to $9000 + $15,000) rather than $9000 per year.

In the end, the opportunity cost concept reinforces the point made by the no-free-lunch doctrine. Often, the real costs of our actions—whether going to college or building roads or increasing military outlays—are subtle and go far beyond the actual dollar outlays. This central lesson of economics—to look to the genuine costs of our decisions—will reappear again and again in the chapters that follow.

THE LAW OF DIMINISHING RETURNS

We can also use the production-possibility frontier to illustrate one of the most famous economic relationships: the law of diminishing returns. This law concerns the relationship between inputs and outputs in the productive process. More specifically, the law of diminishing returns holds that we will get less and less extra output when we add successive doses of inputs while holding other inputs fixed.

As an example of diminishing returns, consider the following controlled experiment: Given a fixed amount of land, say 100 acres, we shall first have no labor at all. We note that with zero labor input there is no corn output. So, in Table 2-2, we record zero product when labor is zero.

Now we make a second related experiment. We add 1 unit of labor to the same fixed amount of land. How much output do we now get? Say we observe that we now have produced 2000 bushels of corn.

Now make a third controlled experiment. We hold land fixed. Once more we vary the labor input, adding exactly the same extra unit of labor as before. That is, we now go from 1 unit of labor to 2 units of labor to match our earlier increase from 0 labor to 1 labor. We await the outcome of the experiment in terms of extra corn produced.

We can now observe whether diminishing returns has set in—that is, we can now see whether the quantity of extra output declines as equal-sized doses of additional inputs are added. Do we have proportional returns, with an extra output of 2000 bushels added to the original output of 2000 bushels? Or do we find diminishing returns, with the additional inputs adding less than the original 2000 bushels of output?

LAW OF DIMINISHING RETURNS

<table>
<thead>
<tr>
<th>UNITS OF LABOR (person-years)</th>
<th>TOTAL OUTPUT (bushels)</th>
<th>EXTRA OUTPUT ADDED BY ADDITIONAL UNIT OF LABOR (bushels per person-year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>2,000</td>
</tr>
<tr>
<td>1</td>
<td>2,000</td>
<td>1,000</td>
</tr>
<tr>
<td>2</td>
<td>3,000</td>
<td>500</td>
</tr>
<tr>
<td>3</td>
<td>3,500</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>3,800</td>
<td>100</td>
</tr>
<tr>
<td>5</td>
<td>3,900</td>
<td></td>
</tr>
</tbody>
</table>

Table 2-2 Diminishing returns is a fundamental law of economics and technology

According to the law of diminishing returns, as additional units of labor are added, with land held fixed, the extra output tends to decline.
Table 2-2 demonstrates that diminishing returns has indeed set in. The second extra unit of labor added only 1000 bushels of additional output, which is less than what the first unit of labor added. A third extra unit of labor adds even less additional output than does the second, and the fourth unit adds yet a bit less. The hypothetical experiment reported in Table 2-2 thus shows numerically what happens when the law of diminishing returns holds.

The law of diminishing returns is an important and often-observed economic relationship. But it is not valid for all technologies. Often the law holds only after a number of units of inputs have been added. Put differently, the first few units of inputs might actually yield increasing extra returns, since we may need a minimum amount of labor just to walk to the field and pick up a shovel. But, ultimately, decreasing returns will prevail at high levels of inputs for most technologies.

Some Examples

In fact, the law of diminishing returns makes good sense. Consider what happens as more and more labor cultivates the same 100-acre farm. For a while, output will increase smartly as we add labor—the fields will be more thoroughly seeded and weeded, irrigation ditches well-tended, scarecrows well-oiled. After a while, however, the additional labor becomes less and less productive. The third hoeing of the day, the fourth oiling of the machinery—these add little. Eventually, so many people crowd onto the farm that the crop gets trampled, as too many tillers spoil the crop. Ultimately, output may even turn down.

We can again use the example of studying to illustrate the law of diminishing returns. You might find that the first hour of studying economics on a given day was productive—learning new laws and facts, insights and history. The second hour might find your attention wandering a bit, with less learned. The third hour might show that diminishing returns had set in with a vengeance—that by the next day you could remember nothing of what you had read during the third hour. Does the law of diminishing returns suggest why the hours devoted to studying in an economics course should be evenly spaced rather than crammed into the day before exams?

We shall see in Part Three that the wage paid to workers depends upon the extra output added by the last worker. Diminishing returns reveals that living standards in crowded China or India are low because there are many workers per acre of land in these regions and not because land happens to be owned by the state or by absentee landlords. In conclusion, we may summarize as follows:

An increase in some inputs, with other inputs held constant, will increase total output. But after some point, the extra output resulting from additional doses of inputs will tend to become smaller and smaller.

* * *

With the fundamental concepts of economic organization and key concepts like the PPF behind us, the next chapter turns to an analysis of the way our own economy determines prices, quantities, and incomes.

SUMMARY

A. Problems of Economic Organization

1. Every economy must solve the three fundamental economic problems: What kinds and quantities shall be produced of all possible goods and services? How shall resources be used in producing these goods? And for whom shall the goods be produced (that is, what shall be the distribution of consumption among different individuals and classes)?
2. Societies meet these problems in different ways—by custom, by command and centralized control, and, in our mixed economy, largely by a system of prices and markets.

3. The basic problems matter because of the fundamental fact of economic life: Wants far outstrip the economy's capacity to produce goods and services. Economic goods are scarce, not free. Society must choose among them because not all needs and desires can be satisfied.

B. Society's Technological Possibilities

4. With given resources and technology, the production choices open to a nation between two such goods as butter and guns can be summarized in the production-possibility frontier (PPF). This indicates the way that one good can be transformed into another by transferring resources from its production to that of the other.

5. Productive efficiency occurs when production of one good cannot be increased without curtailing production of another good. This is illustrated by the PPF. When an economy is operating efficiently on its frontier, it can only produce more of one good by producing less of others. In our example, an economy increases its production of guns by sacrificing some butter.

Societies are not always on the frontier—for example, when unemployment is excessive, when there are monopolistic abuses, or when government regulation hampers firms' activities, the economy is inefficient and operates inside the frontier.

6. Production-possibility frontiers can illustrate many basic economic processes: how economic growth pushes out the frontier, how a nation uses relatively less resources for food and other necessities as it develops, how a country chooses between private market goods and public governmental goods, and how societies choose between current consumption goods and capital goods that enhance future capacity to produce. The PPF also shows technological change as a PPF that shifts out over time.

7. Dollar costs are not the same as true economic costs. When we measure the total cost of making choices in a world of scarcity, we calculate the opportunity cost, which measures the value of the things given up, or opportunities forgone.

8. The law of diminishing returns asserts that, after a point, as we add equal extra doses of a variable input (such as labor) to a fixed input (such as land), the amount of extra output will decline.

CONCEPTS FOR REVIEW

what, how, and for whom
organization by custom, command, market
economic goods and free goods
the law of scarcity
production-possibility frontier (PPF)
opportunity cost
alternative economic systems
efficiency
law of diminishing returns
inputs, outputs
QUESTIONS FOR DISCUSSION

1. Explain what economists mean by scarcity, free goods, and efficiency.

2. What does it mean for an economy to be on its production-possibility frontier? How can an economy be inside its frontier? Why can it not be outside (or to the northeast) of the frontier?

3. Assume Econoland produces haircuts and shirts with inputs of labor. Econoland has 1000 hours of labor available. A haircut requires $\frac{1}{2}$ hour of labor, while a shirt requires 5 hours of labor. Construct Econoland’s production-possibility frontier.

4. Redraw society’s production-possibility frontier in Figure 2-2 after scientific inventions have doubled the productivity of its resources in butter production only, and not in guns.

5. "Compulsory military service allows the government to fool itself and the people about the true cost of a big army." Compare the budget cost and the opportunity cost of a voluntary army (where army pay is high) and compulsory service (where pay is low). What does the concept of opportunity cost contribute to analyzing the quotation?

6. Many scientists believe that we are depleting our natural resources. Assume that there are only two inputs (labor and natural resources) producing two goods, haircuts and gasoline, and there is no improvement in society’s technology over time. Show what would happen to the PPF over time as natural resources are exhausted. How would invention and technological improvement modify your answer? Can you see from this example why economic growth is a contest between depletion and invention?

7. Would the production-possibility frontier look different in a command economy, a market economy, and an economy based on custom?

8. The how, what, and for whom are solved differently in different systems. Consider each of the following and explain how the three big questions of economic organization are solved: within your family, within your college or university, in the food industry, and in the army.

9. From 1982 to 1984, the American economy grew rapidly as unemployment fell and capital equipment was utilized more intensively. Draw a PPF for 1982 and 1984 and put in two points to illustrate where the economy might have been in both those years.
CHAPTER 3 ——
MARKETS
AND COMMAND
IN A MODERN ECONOMY

Every individual endeavors to employ his capital so that its produce may be of greatest value. He generally neither intends to promote the public interest, nor knows how much he is promoting it. He intends only his own security, only his own gain. And he is led by an invisible hand to promote an end which was no part of his intention. By pursuing his own interest he frequently promotes that of society more effectually than when he really intends to promote it.

Adam Smith
The Wealth of Nations (1776)

Before we begin to study the economic life of an advanced industrial economy like the United States, we should turn our eyes back to the history and evolution of the modern mixed economy. Centuries ago, government councils or town guilds directed much economic activity in regions of Europe and Asia. However, around the time of the American Revolution, governments began to exercise less and less direct control over prices and economic conditions. Feudal relationships were gradually replaced by what is called the market mechanism, sometimes also labelled “free enterprise” or “competitive capitalism.”

The nineteenth century became the age of laissez-faire. This doctrine, which translates as “leave us alone,” holds that government should interfere as little as possible in economic affairs. Many governments followed this approach in the middle and late nineteenth century. But before this trend had attained a condition of full laissez-faire, the tide turned the other way. Beginning a century ago, in almost all countries of North America and Europe, the economic functions of government expanded steadily.

Then, around 1980, the tide shifted yet again, as conservative economic policies produced a decline
from the high-water mark of intervention in ownership, taxation, and control of the economy. What are the principles that lie behind the market economy and government's command of economic affairs? In this chapter we will study in detail both these forms of economic organization.

Market, Command, and Mixed Economies

Recall our earlier definitions of market and command economies:

The *market mechanism* is a form of economic organization in which individual consumers and businesses interact through markets to solve the three central problems of economic organization. A *command economy* is one in which the resource allocation is determined by governments, commanding individuals and firms to follow the state's economic plans.

Today, neither of these polar extremes represents the reality of the American economic system. Rather, ours is a *mixed economy*, in which both private and public institutions exercise economic control: the private system through the invisible direction of the market mechanism, the public or government institutions through regulatory commands and fiscal incentives.

Section A of this chapter shows how a market mechanism tackles the three problems of economic organization that must be met by any society. Section B briefly reviews the role of the command economy as government directs a modern mixed economy. Section C describes some fundamental characteristics of the present economic order: its use of capital, division of labor, and use of money.

A. HOW MARKETS SOLVE THE BASIC ECONOMIC PROBLEMS

In a country like the United States, most economic questions are resolved through the market, so we begin our systematic study there. Who solves the three basic questions—*how, what, and for whom*—in a market economy? You may be surprised to learn that no individual or organization is consciously concerned with the triad of economic problems. Rather, millions of businesses and consumers interact through markets to set prices and outputs.

To see how remarkable this fact is, consider the city of New York. Without a constant flow of goods in and out of the city, it would be on the verge of starvation within a week. A wide variety of the right kinds and amounts of food is required. From the surrounding counties, from 50 states, and from the far corners of the world, goods have been traveling for days and months with New York as their destination.

How is it that 10 million people are able to sleep easily at night, without living in mortal terror of a breakdown in the elaborate economic processes upon which the city's existence depends? The surprise is that all these economic activities are undertaken without coercion or centralized direction by anybody.

Everyone in the United States notices how much the government does to control economic activity: it legislates police protection, speed limits, antipollution laws, minimum wages, taxation, national defense, drug prohibitions, highway construction, and so forth. But we often overlook how much of our ordinary economic life proceeds without government intervention.

Thousands of commodities are produced by millions of people, willingly, without central direction or master plan.

Not Chaos but Economic Order

Before they have studied the way the market works, most people see only a jumble of different firms and products. People seldom stop to wonder how it is that food is produced in the right amounts, gets transported to the right place, and arrives in a palatable form at the dinner table. But a close look at the example of New York is convincing proof that a market system is not a system of chaos and anarchy. A market system contains an internal logic. It works.
A market economy is an elaborate mechanism for unconscious coordination of people, activities, and businesses through a system of prices and markets. It is a communication device for pooling the knowledge and actions of millions of diverse individuals. Without a central intelligence, it solves a problem that today's largest computer could not solve, involving millions of unknown variables and relations.

Nobody designed it, and like human society, it is changing. But it does meet the first test of any social organization—it can survive.

History's most dramatic example of the importance of the market economy came in West Germany after World War II. In 1947, production and consumption had dropped to a low level. Neither bombing damage nor postwar reparation payments could account for this breakdown. Paralysis of the market mechanism was clearly to blame. Price controls and overarching government regulation hobbled markets. Money was worthless; factories closed down for lack of materials; trains could not run for lack of coal; coal could not be mined because miners were hungry; miners were hungry because peasants would not sell food for money and no industrial goods were available for them to purchase in return. Markets were not functioning properly. People could not buy what they needed or sell what they produced at free-market prices.

Then in 1948, the government freed prices from controls and introduced a new currency, quickly putting the market mechanism back into effective operation. Very quickly production and consumption soared; once again what, how, and for whom were being resolved by markets and prices. People called it "an economic miracle," but in fact the recovery was largely the result of a smoothly running market mechanism.

The fact to emphasize is that markets are performing similar miracles around us all the time—if only we look around and alert ourselves to the everyday functioning of the market mechanism. So central are markets to the high levels of output of a capitalist economy that history often witnesses political crises when the market mechanism breaks down. Indeed, a revolutionary out to destroy Western democracies could ask for nothing better than a galloping inflation or depression to paralyze markets and produce political chaos.

THE MARKET MECHANISM

Just how does the market mechanism go about determining wages, prices, outputs, and other economic variables? We can describe its workings easily.

Originally, a market meant a place where goods were bought and sold. Economic histories of the Middle Ages record that market stalls—filled with slabs of butter, pyramids of cheese, wet fish, and heaps of vegetables—would form the commercial centers of villages and towns.¹ Today, important markets include the Chicago Board of Trade, where oil, wheat, and other commodities are traded, and the New York Stock Exchange, where titles to ownership of the largest American firms are bought and sold.

Market transactions are often made over the telephone or electronically (as for many financial transactions), and sometimes markets are not centrally organized but operate through individuals buying and selling a house or a car.

A market is an arrangement by which buyers and sellers of a commodity interact to determine its price and quantity.

In a market system, everything has a price—each commodity and each service. Even the different kinds of human labor have prices, namely, wage rates. We receive income for what we sell, and we use this income to buy what we want.

Moreover, prices provide important signals to market participants. If consumers want more of any good—say, wheat—a flood of new orders will be placed for it. As buyers scramble around to buy more wheat, the sellers will raise the price of wheat to ration out a limited supply. And the higher price will encourage greater wheat production.

On the other hand, what if a commodity such as cars becomes overstocked at the going market price? Sellers will lower car prices in their rush to unload

unwanted models. At the lower price, more consumers will want cars, and producers will want to produce fewer cars. As a result, a balance (or equilibrium) between buyers and sellers (or what the next chapter and Part Two will call an "equilibrium of supply and demand") will be restored.

What is true of the markets for consumer goods is also true of markets for factors of production. Recall that a factor of production is an input into the productive process—one of the classical triad of land, labor, and capital. If computer programmers rather than typists are needed, job opportunities will be more favorable in the computing field. The price of computer programmers (their hourly wage) will tend to rise, and that of typists will tend to fall. The shift in relative wages will cause a shift of workers into the growing occupation.

Solution to the Three Problems

What happens when we put all the different markets together—wheat, cars, land, labor, capital, and everything else? These form a market mechanism that grinds out an equilibrium of prices and production.

By matching sellers and buyers (supply and demand) in each of these markets, a market economy solves our three problems simultaneously. Here are the bare outlines of such a market equilibrium.

1. **What** things will be produced is determined by the dollar votes of consumers—not every 2 or 4 years at the polls, but every day in their decisions to purchase this item instead of that one. The money that they pay into business cash registers ultimately provides the payrolls, rents, and dividends that consumers, as employees, receive as income.

 Firms in turn are driven by the desire for profits—**profits** being net revenues or the difference between total sales and total costs. Firms are lured into production of goods in high demand by the high profits there, leaving behind areas of low profits.

2. **How** things are produced is determined by the competition among different producers. The best way for producers to meet price competition and maximize profits is to keep costs at a minimum by adopting the most efficient methods of production. Producers are spurred on by the lure of profit—the production method that is cheapest at any one time will displace a more costly method.

 History is filled with examples of how more efficient and lower-cost technologies replaced more expensive ones. Steam engines displaced horses because steam was cheaper per unit of useful work. Diesel and electric locomotives replaced coal-driven ones because of the higher efficiency of the new technologies. In the 1990s, glass fibers and lightwave communications will displace Alexander Graham Bell’s traditional copper telephone lines.

 We can see the same phenomenon across nations. Bob Smith farms extensively, with much American land relative to each hour of labor. Pierre Reny farms intensively, using much labor to each hectare of French land.

 Who makes sure that these how decisions reflect the fact that land is scarcer in France than in America? Is it Congress? The National Assembly? The United Nations? Of course not.

 The price system is society’s signaling device. It tells farmer Smith that he should farm extensively by presenting him with a high ratio of wage rates to land rents. Peasant Reny, on the other hand, faces a low wage/rent ratio and uses more labor per unit of land than does Smith. By looking at price signals, farmers, firms, and other producers can choose the most appropriate technique of production.

3. **For whom** things are produced is determined by supply and demand in the markets for factors of production. Factor markets determine the wage rates, land rents, interest rates, and profits—prices being termed **factor prices**. By adding up all the revenues from factors we can calculate people’s incomes. The distribution of income among the population is thus determined by the amounts of factors (person-hours, acres, etc.) owned and the prices of the factors (wage rates, land rents, etc.).

 Be warned, however, that there are also important extra-market influences that affect the resulting distribution of income. This distribution is highly dependent upon the ownership of property, upon acquired or inherited abilities, upon luck, and upon the presence or absence of racial and gender discrimination.
Who Rules?

Who is in charge of a market economy? If we look beyond the details, we see that the economy is ultimately ruled by two monarchs: consumers and technology. Consumers direct their innate or learned tastes, as expressed in their dollar votes, the ultimate uses to which society’s resources are channeled. They pick the point on the production-possibility frontier.

But the available resources place a fundamental constraint on consumers. The economy cannot go outside its PPF. You can fly to London, but there are no flights to Mars. An economy’s resources, along with the available science and technology, limit the places where consumers can put their dollar votes.

In other words, consumers are not the dictators in deciding what goods should be produced. Consumer demand has to dovetail with business supply of goods. Businesses set their prices based on production costs—moving into areas with high profits and leaving unprofitable sectors. So business cost and supply decisions, along with consumer demand, do help to determine what. Just as a broker may help arrange a match between buyer and seller, markets act as the go-betweens who reconcile the consumer’s tastes with technology’s limitations.

It is important to see the role of profits in guiding the market mechanism. Profits provide the rewards and penalties for businesses. Profits lead firms to enter areas where consumers want more goods, to leave areas where consumers want fewer goods, and to use the most efficient (or least costly) techniques of production.

Like a master using carrots and kicks to coax a donkey forward, the market system deals out profits and losses to get how, what, and for whom decided.

A Picture of Prices and Markets

We can picture the circular flow of economic life as shown in Figure 3-1. This provides an overview of how market prices reconcile household transactions with business needs. Note two different kinds of markets: one set for outputs like tea and shoes and the second for inputs like land and labor. Further see how decisions are made by two different entities, households and businesses.

Households buy goods and sell factors of production; businesses sell goods and buy factors of production. Households use their income from sale of inputs such as labor and property to buy goods; businesses base their prices of goods on the costs of labor and property. Prices in goods markets are set to balance consumer demand with business supply; prices in factor markets are set to balance household supply with business demands.

All this sounds complicated. But it is just this intricate web of interdependent supplies and demands through which the prices in a market mechanism solve the how, what, and for whom. A few minutes spent studying Figure 3-1 now will pay many dividends later in furthering your understanding of the workings of a market economy.

The Invisible Hand and “Perfect Competition”

Adam Smith, whose The Wealth of Nations (1776) is the germinal book of modern economics, was thrilled by his recognition of an order in the economic system. Smith proclaimed the principle of the “invisible hand.” This principle holds that every individual, in selfishly pursuing only his or her personal good, is led, as if by an invisible hand, to achieve the best good for all. Smith held that, in this best of all possible worlds, any government interference with free competition is almost certain to be injurious. (Reread carefully this chapter’s introductory quotation.)

The invisible-hand doctrine is a concept for explaining why the outcome of a market mechanism looks so orderly. Smith’s insight about the guiding function of the market mechanism has inspired modern economists—both the admirers and the critics of capitalism. After two centuries of experience and thought, however, we now recognize the scope and realistic limitations of this doctrine. We know that the market sometimes lets us down, that there are “market failures,” and that markets do not always lead to the most efficient outcome. One of the major market failures, whose consequences will run as a theme through this book, is imperfect competition.

Perfect Competition Smith himself recognized that the virtues of the market mechanism are fully realized
Figure 3-1 The market system relies on supply and demand to solve the trio of economic problems.

We see here the circular flow of a market economy. Note how dollar votes of households interact with business supply in goods market at top, helping to determine what is produced. Further, business demand for inputs or productive factors meets the public’s supply of labor and other inputs in the lower factor markets to help determine wage, rent, and interest payments. Business competition to buy factor inputs and sell goods most cheaply determines how goods are to be produced. (But all parts of the diagram interact together. What depends on the lower part, just as for whom depends on the upper part—carpenter wages depend on housing demand, and demand for yachts depends on oil-land royalties.)

only when the checks and balances of perfect competition are present. What is meant by perfect competition? It is a technical economic term that refers to a market in which no firm or consumer is large enough to affect the market price. For example, the wheat market is perfectly competitive because the largest wheat farm, producing only a minuscule fraction of the world's wheat, can have no appreciable effect upon the price of wheat.

On the other hand, when a computer company, a steelworkers' labor union, or an airline is large enough to exert an influence on the price of computers, of steelworkers' labor, or of air transportation, some degree of "imperfect competition" has set in.
The invisible-hand doctrine is about economies in which all the markets are perfectly competitive. In such a circumstance, the economy will generate an efficient allocation of resources—where an efficient economy is on its production-possibility frontier. When all industries are subject to the checks and balances of perfect competition, as we will see later in this book, markets will produce the efficient bundle of outputs with the most efficient techniques and using the minimum quantity of inputs.

By contrast, when imperfect competition arises, society may move inside its PPF. This would occur, for example, because a single seller (or monopolist) raised the price of a good sky-high in order to earn extra profits. The output of that good would be reduced below the most efficient level, and the efficiency of the economy would thereby suffer. When sellers are few, inadequate checks exist to ensure that prices are determined by the costs of production. And in such a situation, the invisible-hand property of markets may vanish.

In summary, Adam Smith discovered a remarkable property of a competitive market economy: under perfect competition without market failures, markets will squeeze as many useful goods and services out of the available resources as is possible. But where monopolies or pollution or similar market failures become pervasive, the remarkable efficiency properties of the invisible hand may be destroyed.

B. THE ECONOMIC ROLE OF GOVERNMENT

The last section described the remarkable efficiency properties of the market mechanism. We saw how an ideal, perfectly competitive economy—where resource-allocation decisions are made through prices and markets—could squeeze the maximum amount of useful goods and services out of the available resources.

But the market does not always behave in an ideal fashion. Indeed, there has probably never been an absolutely pure and perfect competitive market. Rather, market economies suffer from monopoly and pollution, along with unemployment and inflation, and the income distribution in market economies is sometimes found unacceptable by voters.

In response to these flaws in the market mechanism, democracies have chosen to introduce the visible hand of government into the mixed economy. Governments displace markets by owning and operating certain enterprises (like the military); governments regulate businesses (like telephone companies); governments spend money on space exploration and scientific research; governments tax their citizens and redistribute the proceeds to poor people. In this section we provide a first survey of the rationale and techniques of government intervention in a modern economy.

THE THREE FUNCTIONS OF GOVERNMENT

In discussing government’s role, we generally take for granted that government sets the rules of the road, writing laws and enforcing contracts. But what are government’s economic functions? They are to promote efficiency, equity, and stability. Government actions concerning efficiency are attempts to correct market failures like monopoly. Government programs to promote equity use taxes and spending to redistribute income when society shows its concerns for the poor or for particular groups. Stabilization policy attempts to shave the peaks and troughs of the business cycle, reducing unemployment and inflation, and promoting economic growth. We will examine briefly each function.

Efficiency

As we saw earlier, economies sometimes suffer from market failures. In actual markets, a firm may profit as much by keeping prices high as by keeping production high. In some markets, firms emit pollution into the air or water or dump toxic wastes into the soil. In each of these cases market failure leads to inefficient
production or consumption, and there may be a role for government to cure the disease. But, while evaluating the role of government in curing economic ailments, we must also be alert to "government failures"—situations in which governmental attempts to solve problems may make them worse or cause other problems.

Imperfect Competition One serious deviation from perfect competition comes from imperfect competition or monopoly elements.

Recall how strict is the economist's definition of a "perfect competitor." The mere presence of a few rivals is not enough for perfect competition. Rather, perfect competition in a market arises when there is a sufficient number of firms or degree of rivalry such that no one firm can affect the price of that good. An imperfect competitor is one whose actions can affect a good's price. In reality, then, almost all business owners, except possibly the millions of farmers who individually produce a negligible fraction of the total crop, are imperfect competitors. At the extreme of imperfect competition is the monopolist—a single supplier who determines the price of a particular good by himself.

All economic life is a blend of competitive and monopolistic elements. Imperfect competition, not perfect competition, is the prevailing mode. But to say that a firm can affect the price of its output does not mean it is a dictator. As we shall later see, a business cannot set its prices completely as it pleases and still be profitable. It must take into account the prices of goods that are substitutes for its own. Even if it produces a trademarked heating oil with unique properties, it must reckon with prices charged for other heating oils, as well as for wood, gas, and insulation. Hence, there are always some checks on the economic power of imperfect competitors.

When monopoly power—the ability of a large firm to affect the price in a given market—does become economically significant, we see prices that rise above cost and that depress the amount of output that consumers will buy. The pattern of too high price and too low output is the hallmark of the inefficiencies associated with monopoly power. High prices also mean high profits, which may be turned to misleading advertising, or even to buying influence from legislatures.

The government does not accept as inevitable all exercise of monopoly power. Since the 1890s, the federal government has imposed both antitrust laws and economic regulation in the name of improving the workings of our imperfectly competitive market system—as Chapters 11 and 12 will discuss.

Externalities A second way in which an unregulated market mechanism may lead to an inefficient outcome arises when there are spillovers or externalities. Look back for a moment to the circular-flow diagram in Figure 3-1. Note that all the transactions between households and businesses take place in voluntary exchange through markets. When a firm uses a scarce resource like land, it buys this from the owner in the land market; when a firm produces valuable goods like oil, it receives full value from the buyer in the oil market.

But many interactions in fact take place outside markets. Firm A uses scarce resources like clean air or water without paying those whose air or water is fouled. Firm B, by contrast, decides to provide its employees free vaccinations against a communicable disease; once immunity is achieved, people outside the firm benefit from the reduced dangers of contracting the disease as well. In these cases, an economic good and an economic bad have been transferred outside of market transactions.

Externalities (or spillover effects) occur when firms or people impose costs or benefits on others without those others receiving the proper payment or paying the proper costs.

(You can illustrate a spillover in Figure 3-1 by drawing a direct line from a business to a household. This is an externality because the transaction takes place involuntarily, outside markets.)

As our society has become more densely populated, as production is increasingly based on processes involving harmful substances, negative spillover effects have grown from little nuisances to major threats. Government regulations operate with varying degrees of effectiveness to control externalities like air and water pollution, strip mining, hazardous wastes, unsafe drugs and foods, and radioactive materials.
Critics of regulation complain that government economic activity is unnecessarily coercive. Governments are like parents, always saying no: Thou shalt not employ child labor. Thou shalt not pour out smoke from thy factory chimney. Thou shalt not sell dangerous drugs. And so forth.

Many government edicts are in fact controversial: Do we really need to tell firms about how clean they should keep the air inside factories? Do people need to be forced to wear seatbelts?

While the optimal scope of government intervention will never be resolved, most people will agree that government is needed to prevent some of the worst spillovers created by the market mechanism.

Public Goods It is possible to prevent firms from dumping wastes by imposing regulations; it is much more difficult for governments to encourage the production of public goods. These are the economic activities—conveying large or small benefits to the community—that cannot efficiently be left to private enterprise. Important examples of production of public goods are the maintenance of national defense and of internal law and order, the building of a highway network, and the support of pure science and public health. Private provision of these public goods will not occur because the benefits of the goods are so widely dispersed across the population that no single firm or consumer has an economic incentive to provide them. *

Because private provision of public goods will generally be insufficient, government must step in to provide public goods. In buying public goods like national defense or lighthouses, government is behaving exactly like any other large spender. By casting sufficient dollar votes in certain directions, it causes resources to flow there. The price system then takes over and ensures that the government-purchased lighthouses or fighter aircraft get produced.

*Here is a typical example of a public good provided by government lighthouses. These save lives and cargos. But lighthouse keepers cannot reach out to collect fees from ships; nor, if they could, would it serve an efficient social purpose for them to exact an economic penalty on ships who use their services. The light can be most efficiently provided free of charge, for it costs no more to warn 100 ships than to warn a single ship of the nearby rocks. We have here a positive externality, a divergence between private and social advantage. Philosophers and political leaders have always recognized the necessary role of government as provider of such public goods.

Taxes Government must find the revenues to pay for its public goods and for income-redistribution programs. Such revenues come from taxes levied on incomes, wages, consumer sales, and similar items. Moreover, taxes are raised at all levels of government—city, state, and federal.

Taxes differ from other uses of our incomes in one important respect: Everyone is subject to the tax laws; we are all forced to contribute our share of payments to the government. It is true that the citizenry as a whole imposes that tax burden on itself, and surely we would agree that each citizen has the right to his or her share of the public goods produced by government. However, the close connection between spending and consumption that we see for private goods does not hold for taxes and public goods. I buy a hamburger or a wool sweater only if I want one, but I must pay my share of the taxes used to finance defense, space research, and public education even if I don’t care a bit for these activities.

This brief discussion of how government intervenes in markets to improve their efficiency indicates that such actions are firmly grounded in economic logic. Government sets the rules of the road, levies taxes and tolls to pay for collective activities, and buys public goods such as highways, thereby facilitating the smooth driving of private enterprise, preventing abuses when firms become monopolistic road hogs, and curbing firms’ activities when their exhaust fumes threaten lives and property.

Equity

Up to now we have focused on defects in the guiding role of the invisible hand—imperfections that perhaps could be corrected by judicious intervention. But as—
sume for the moment that the economy functioned with complete efficiency—always on the production-possibility frontier and never inside it, always choosing the right amount of public versus private goods, and so forth. Even if the market system worked as perfectly as just described, many would not consider it ideal. Why not?

In the first place, goods follow dollar votes and not the greatest need. A rich person’s cat may receive the milk that a poor child needs to remain healthy. Does this happen because the market is failing? Not at all, for the market mechanism is doing its job—putting goods in the hands of those who can pay the most, of those who have the most money votes. Simply put, even the most efficient market system may generate great inequality.\(^2\) If a country spends more on pet food than on paying for college education for the poor, that is a defect of income distribution, not of the market.

Income inequalities may be politically or ethically unacceptable. A nation does not need to accept the outcome of competitive markets as predetermined and immutable; people may examine the distribution of income and decide it is unfair. If a democratic society does not like the distribution of dollar votes under a laissez-faire market system, it can take steps to change the distribution of income.

Often the income distribution in a market system appears to be the result of accidents of technology or birth. Suppose the invention of robots should cause the competitive price of labor to fall greatly, thereby reducing incomes of the poor and turning 95 percent of national income over to robots and their owners. Would everyone regard that as necessarily right or ideal? Probably not. Yet that could be the way the cookie crumbles under the market system. Does someone who inherited 500 square miles of range-land, for which oil companies offer $50 million per year, necessarily deserve so large an income? People are deeply divided on whether such high incomes should be heavily taxed.

Let’s say that voters decide to reduce income in-

\(^2\)One of the most dramatic instances of how markets can produce inequality occurred in 1848–1849, when Queen Victoria’s laissez-faire government let millions of Irish children, women, and men starve in the great famine when a fungus suddenly destroyed the potato crop.

equality. What tools could Congress use? First, it could engage in progressive taxation, taxing a larger fraction of incomes of rich than of poor. The federal income and inheritance taxes are examples of such redistributive progressive taxation.

Second, because low tax rates cannot help those who have no incomes at all, governments have in recent decades built up a system of transfer payments, or payments to people for which no services are received. Such transfers include aid for the elderly, blind, disabled, and for those with dependent children, as well as unemployment insurance for the jobless. This system of transfer payments provides a “safety net” to protect the unfortunate from economic destruction. And, finally, governments sometimes subsidize consumption of low-income groups by providing food stamps, subsidized medical care, and low-cost housing.

Through the process of economic growth and welfare programs that established minimum standards of living, much of the great and visible destitution of nineteenth-century capitalism has been erased in the twentieth century. But relative poverty and deprivation have proven difficult to eradicate.

What can economics contribute to debates about equality? Economics as a science cannot answer such normative questions as how much of the competitively determined incomes—if any—should be transferred to poor families. But it can analyze the economic costs or benefits of different redistributive systems. Economists have devoted much time to analyzing whether different income-redistribution devices (such as taxes and food stamps) lead to social waste (such as people working less or buying less nutritious food). They have studied whether giving poor people cash rather than goods is likely to be a more or less efficient use of society’s resources. Economics is like a good travel agent. You, the traveler, must decide whether you want sun or snow. But once you choose, the agent can help you get to your destination quickly and cheaply.

Stability

In addition to its role as promoter of efficiency and equity, government also engages in the macroeconomic function of promoting economic stability.
Since its origins, capitalism has been plagued by periodic bouts of inflation (rising prices) and depression (very high unemployment). Sometimes these episodes were so violent, as in the German hyperinflation during the 1920s, that social turmoil, revolution, and war followed in their wake.

At times, as during the Great Depression in America in the 1930s, hardship persisted for a decade because political leaders had insufficient economic understanding to take steps for economic revival. More recently, in the early 1980s, governments here and abroad took steps to reduce high rates of inflation; these measures led to high unemployment and declining inflation.

Today, thanks to the intellectual contribution of John Maynard Keynes, his followers, and also his critics, we have a better understanding of how to control the ups and downs of the business cycle. We now understand that, by careful use of the government’s monetary and fiscal powers, the levels of output, employment, and inflation can be influenced. The fiscal powers of government are those just discussed—the power to tax and to spend. The monetary powers involve regulating banks and the financial system with an eye toward determining the supply of money, interest rates, and credit conditions. Through these two central tools of macroeconomic policy, governments can influence the rate of growth and level of output, the level of employment, and the price level of an economy.

Governments in advanced industrial countries successfully applied the lessons of the Keynesian revolution over the last half-century. Spurred on by expansionary monetary and fiscal policies, the market economies of the world witnessed a period of unprecedented economic growth from World War II until the early 1970s. In the 1970s, however, the advanced economies encountered foul economic weather: two major oil-price increases, harvest failures, commodity shortages, a breakdown in the international financial system, and an increasingly heavy burden of government regulatory and redistributive programs. As

<table>
<thead>
<tr>
<th>FAILURE OF INVISIBLE HAND</th>
<th>GOVERNMENT INTERVENTION</th>
<th>CURRENT EXAMPLES OF GOVERNMENT POLICY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Efficiency</td>
<td>Intervene in markets</td>
<td>Antitrust laws</td>
</tr>
<tr>
<td>Monopoly</td>
<td>Intervene in markets</td>
<td>Antipollution regulations, speed</td>
</tr>
<tr>
<td>Externalities</td>
<td>Subsidize worthwhile</td>
<td>National defense, lighthouses</td>
</tr>
<tr>
<td>Public goods</td>
<td>activities</td>
<td></td>
</tr>
<tr>
<td>Efficiency</td>
<td>Redistribute incomes</td>
<td>Progressive taxation</td>
</tr>
<tr>
<td>Inequality</td>
<td></td>
<td>of income and wealth</td>
</tr>
<tr>
<td>Unacceptable inequalities</td>
<td></td>
<td>Income-support programs</td>
</tr>
<tr>
<td>of income and wealth</td>
<td></td>
<td>(e.g., food stamps)</td>
</tr>
<tr>
<td>Instability</td>
<td>Stabilize through</td>
<td>Monetary policies</td>
</tr>
<tr>
<td>Inflation,</td>
<td>macroeconomic policies</td>
<td>(e.g., changes in money supply and</td>
</tr>
<tr>
<td>unemployment, low</td>
<td></td>
<td>interest rates)</td>
</tr>
<tr>
<td>growth</td>
<td></td>
<td>Fiscal policies</td>
</tr>
</tbody>
</table>

| (e.g., taxes and spending programs) |

Table 3-1 Government can sometimes remedy shortcomings of the market
economic growth slackened and inflation soared, people became skeptical about the ability of monetary and fiscal policies to attain the goals of macroeconomic stabilization.

Today, policymakers are realizing that a modern economy faces a fundamental macroeconomic dilemma: *No country has for long periods of time succeeded in having free enterprise, low inflation, and full employment.* Just as today’s market economy cannot have both guns and butter, so a market economy cannot simultaneously attain full employment and stable prices.

C. SPECIALIZATION, MONEY, AND CAPITAL

The first two sections of this chapter described the two major systems of economic organization—by market direction and by government command. But no matter what mechanism is used to organize economic activity, we will always find three distinguishing features in an advanced industrial economy: specialization, money, and capital.

- The present-day economy is characterized by an elaborate degree of *specialization* and an intricate *division of labor*.

- The economy today makes extensive use of *money*. The flow of money is the lifeblood of our system. Money provides the yardstick for measuring the economic value of things. But improper management of money by the central bank can cause inflation or depression.

- Modern industrial technologies rest upon the use of vast amounts of *capital*: precision machinery, large-scale factories, and stocks of inventories. The ability to rely on such capital goods leverages human labor power into a much more productive factor of production and allows productivity many times greater than in an earlier age.

We will now turn to describe each of these three features of a modern economy. But in analyzing them, we will also see that they are all closely interrelated. Specialization makes possible great efficiencies and increased production. Use of money allows trade to take place quickly and with minimal time and energy. Without the great facility for trade and exchange that money provides, an elaborate division of labor would not be possible. Money and capital are related because the funds for buying capital goods are funnelled through money markets, where people’s savings can be transformed into other people’s capital. And the relationship between the price mechanism and trade is intrinsic: the complex, many-sided exchange that takes place in markets could not occur without money to function as a unit of account and a medium of exchange.

SPECIALIZATION AND DIVISION OF LABOR

One of the major differences between a modern economy and that of frontier days is found in the extensive division of labor and specialization of the modern work force. Our standards of living today are vastly higher than those of an earlier age because of the economies of mass production, which is in turn made possible by specialization.

Specialization occurs when people concentrate their efforts on a particular, sometimes narrow, set of tasks—it permits each person and region to use to best advantage any peculiar differences in skill and resources. Even in a primitive economy people learn that, rather than have everyone do everything in a mediocre way, it is better to establish a *division of
labor—a breaking up of production into a number of small specialized steps or tasks. A division of labor permits slow people to fish and swift people to hunt, all exchanging what they make for what they need.

To illustrate the increased productivity of specialization, Adam Smith provided the classical example of pinmaking. One worker could at best make a few dozen imperfect pins per day. But when a small group of workers is subdivided with respect to function so that each performs simple repetitive operations, they can turn out hundreds of thousands of perfect pins per day.

Perhaps the epitome of specialization is the modern automobile assembly line, where cars move down a conveyor belt and workers, or even robots, perform highly specialized functions. A worker might spend years just putting left tires on Chevrolets. The result of such specialization is the enormous increase in labor productivity in many manufacturing industries.3

The Perils of Overspecialization

Like too much sun or wine, too much specialization can be unhealthy. Despite its efficiency, specialization may also have the effect of making work tedious and without purpose. Extreme specialization means that a worker does but one single thing. Charlie Chaplin’s classic movie Modern Times, in which the worker spends his whole lifetime accomplishing nothing more than the turning of bolt 999 on the remorseless assembly line, highlights the hazards of overspecialization.

Specialization may stunt personal development. Someone who spends all day mopping floors or digging holes or cutting buttonholes finds little stimulation on the job and earns little job satisfaction. Who can wonder that, as people’s incomes rise, men and women complain that their specialized occupations are “alienating.” As a result, many enlightened companies today encourage greater flexibility, job rotation, and worker participation in production.

Specialization and division of labor produce a further serious problem—interdependence. In medieval times, the artisan made one type of article and exchanged it for many others. Today, very few of us produce a single final good; we make but the tiniest fraction of what we consume. We might teach a small part of a college curriculum, or produce part of an article of clothing, or assemble part of an automobile or computer. In exchange for this specialized labor, we will receive an income adequate to buy goods from all over the world.

But note how our specialization makes us dependent on everyone else. If we produce only one of a thousand different items, we depend on other people to produce the other 999 items. When the great chain of production and distribution is broken, problems follow. For example, when a transformer failed in upper New York in 1965, the entire northeast of the United States plunged into darkness. The fall of the Shah of Iran in 1979 triggered rising oil prices, global recession, and a debt crisis for Mexico. A disruption of transportation systems and the economic fabric of trade reveals how dangerously modern economic life depends upon specialized exchange.

Is our affluence worth the perils of alienation and fragility? Should we turn back the clock to a simpler and poorer life? Should we sacrifice the last few percent of our income to attain a more secure but still specialized existence? These are valid questions asked today by thoughtful people. However we answer these questions, we should recognize one crucial fact: Our present high standard of living rests in good measure on an economic order that promotes a great specialization and division of labor. Turning back the clock to an earlier, less specialized way of life would inevitably reduce our real incomes.

MONEY: THE LUBRICANT OF EXCHANGE

If specialization permits people to concentrate on particular tasks, money then allows people to trade their
specialized outputs for the vast array of goods produced by others.

To be sure, we could imagine a state of barter, where one kind of merchandise is traded directly for another. In less advanced cultures, it is not uncommon for food to be traded for weapons, or for aid in the building of a house to be exchanged for help in clearing a field.

But exchange today in all economies—capitalist or communist—takes place through the medium of money. What is money? Money is the means of payment or the medium of exchange; in our economy, money consists of currency and checking accounts with which households and businesses pay for things. When you buy gum with a quarter, lunch with a $10 bill, or a stereo set with a check, in each case you are employing money.

Money is a lubricant that facilitates exchange. But like other lubricants, it can get gummed up. Under barter, if I am hungry and you are naked, I can always sew your clothes while you bake my bread. But after 1929, in the richest capitalist country in all history, the banks failed, money was hoarded, some people went hungry and other people went in rags. Poverty can prevail amid plenty when money is not properly managed by the central bank.

The problems of macroeconomics, problems rooted in society’s dependence on a money economy are covered in the separate Macroeconomics volume.

CAPITAL

The economy rests on three major factors of production: labor, capital, and land. Land and labor are often called primary factors of production. A primary factor of production is one that is produced or given outside the economy (by sociological forces in the case of labor or geological history in the case of land) rather than produced by the economic system.

Capital is a different kind of productive factor. Capital is a produced factor of production, a long-lived input which is itself an output of the economy. For example, we build a textile factory, then use the factory to produce shirts; we assemble a computer, then employ the computer in educating students; and so forth.

Capital goods are durable goods, produced by the economy for further use in the production process. By contrast, labor and land are primary factors, given from outside the economy and not produced by the economy.¹

Capital, Time, and Interest

Capital has a special relationship to time. Why so? We will see that capital inherently involves time-consuming, indirect, roundabout methods of production. Indeed, one of the paradoxes of capital is that by using indirect or roundabout methods the economy becomes enormously more productive.

If farmers had to work with their hands, without any capital such as tractors or shovels, productivity and consumption would be very low indeed. This fact is reflected in a strange tale. When an anthropologist asked of mourning tribe members, “Who died?” they replied, “Death, what is that? We have lost the needle that helped us sew our clothing”.

People learned long ago that direct methods of production are less efficient than indirect or roundabout techniques. A direct method for catching fish would be to wade into the stream and catch fish with your hands, but this direct technique will produce few fish. Instead, people learned to build nets or fishing rods or fishing boats (all these being capital equipment). After we make the effort to construct the fishing capital, fishing time becomes vastly more productive in terms of fish caught per day.

Other examples of indirect or roundabout techniques that lead to greater efficiency are the following: A farmer spends time in clearing fields or digging ditches, so that the wheat yield will improve. A steelworker makes sheet steel, which will be used to manufacture a tractor, which will clear a field. A biologist injects DNA into a cell to produce a new and hardy seed. All these are roundabout ways of increasing the amount of wheat our economy can produce.

While we who toil inside the economy hardly stop

¹Some qualifications are evident. Land can sometimes be made by drainage of swamps or filling in lakes, as can be seen on Chicago’s lakefront or in almost one-third of the Netherlands. And labor supply does respond to economic incentives, as higher wages may increase the number of teenagers in the labor force.
to wonder about its roundaboutness, a moment’s reflection will present us with the fact that almost no one in our system seems to be producing final consumer goods. Everyone is doing work of a preparatory nature, with the final consumption a distant future goal.

Growth from the Sacrifice of Current Consumption The fact that it takes time and resources to get things started and synchronized is important. It explains why society does not automatically replace all direct processes by more productive, roundabout ones, and all roundabout processes by still more roundabout processes.

The advantage in using roundabout processes is offset by the initial disadvantage of **having to forgo present consumption goods** by diverting resources from current consumption to uses that will bear fruit only after some time. We could invest time and resources in making our highways even wider and our railroad beds even flatter than they are, thereby reducing fuel and repair costs and driving time. Why don’t we engage in even more roundabout production than we do? Because that would cause too great a reduction in today’s consumption.

To the extent that people are willing to save—to abstain from present consumption and wait for future consumption—to that extent, society can devote resources to new capital formation. New capital formation helps the economy to grow by pushing out the PPF; the higher is investment, the more rapid is the outward shift in the PPF. (Turn back to Figure 2-5 to see how forgoing current consumption in favor of capital formation adds to future production possibilities.)

We summarize as follows:

Much of economic activity is forward-looking. Every time we build a new factory or road, add to the stock of trucks or computers, increase the years or quality of education, increase the intensity of our research and development—we are enhancing the future productivity of our economy. By the same token, much of our current high living standard is the consequence of past investments.

In short, growing economies devote a significant share of their current output to net capital formation to bolster future economic output.

Interest Rates Factors of production, like other commodities, have prices—wages are the price of labor while rents are the prices of land. What is the price of capital? Its price is called the **interest rate**. Because capital involves increasing future consumption at the expense of current consumption, the interest rate is measured as a gain in dollars per dollar per unit of time.

Let’s say that by forgoing $100 worth of consumption today—building a factory or computer or satellite—we gain $10 of consumption for every year in the future. This return of 10 percent per year is capital’s yield. The market interest rate will be determined as firms, desiring funds for the factory or other projects, bid for funds in money markets. Firms will borrow funds as long as the cost of funds is less than the return on capital; the ruling interest rate then stands as the price that rations society’s scarce supply of capital goods.

Capital and Private Property Physical capital goods are important in any economy because they help to increase productivity. This is as true of socialism as it is of capitalism. But there is one important difference. By and large, it is private firms and individuals who own the tools of production in our market economy.

What is the exception in our system—government ownership of the means of production—is the rule in a communist state, where productive property is collectively owned. The return on capital goods accrues to the state, not to individuals, in a communist state; the government then decides how capital income should be distributed.

In a market economy, capital is generally privately owned, and capital income goes to individuals. Every patch of land has a deed, or title of ownership; almost every machine and building belongs to an individual or corporation. **Property rights** bestow on their owners the ability to use, exchange, paint, dig, drill, or exploit their capital goods. These capital goods also

5 We must carefully distinguish physical capital from financial capital. Physical capital takes the form of factories, equipment, houses, and inventories; physical capital is an input or factor of production. Financial capital is “paper” assets or claims, like bonds, common stocks, checking and savings accounts, or home mortgages; financial capital is often the claims to physical capital, but they are never inputs into the productive process.
have market values, and people can buy and sell the capital goods for whatever price they will fetch. The ability of individuals to own and profit from capital is what gives capitalism its name.

But while our society is one built on private property, property rights are limited. Society determines how much of "your" property you may bequeath to your heirs and how much must go in inheritance and estate taxes to the government. Society determines how much the owners of public-utility companies—such as electric and gas firms—can earn and how much pollution your car can emit. Even your home is not your castle. You must obey zoning laws and, if necessary, make way for a road.

Interestingly enough, the most valuable economic resource, labor, cannot be turned into a commodity that is bought and sold as private property. Since the abolition of slavery, it is against the law to treat human earning power like other capital assets. You are not free to sell yourself; you must rent yourself at a wage.

* * *

We have now completed our overview of the functioning of a market economy. In the next chapter we describe in detail how supply and demand interact to determine the prices and quantities of goods and see how this basic analytical approach can be used to analyze a wide variety of economic problems.

SUMMARY

A. How Markets Solve the Basic Economic Problems

1. In an economy like the United States, most economic decisions flow through markets, which are arrangements by which buyers and sellers set quantities and prices for commodities. Adam Smith proclaimed that the invisible hand of markets would lead to the optimal economic outcome as individuals pursue their own self-interest. And while markets are far from perfect, they have the virtue of solving the problems of how, what, and for whom.

2. The market mechanism works as follows: The dollar votes of people affect prices of goods; these prices serve as guides for the amounts of the different goods to be produced. When people demand more of a good, a competitive business can make a profit by expanding production of that good. Under perfect competition, a business must find the cheapest method of production, efficiently using labor, land, and other factors; otherwise, it will incur losses and be eliminated from the market.

 At the same time that the what and how problems are being resolved by prices, so is the problem of for whom. The distribution of income is determined by the ownership of factors of production (land, labor, and capital) and by their prices—wages of each kind of labor, rents of land, royalties of books, and various returns to capital. People possessing fertile land or the ability to hit home runs will earn many dollar votes to buy consumer goods. Those without property or education and with skills, color, and sex that the market does not value will receive low incomes.

B. The Economic Role of Government

3. Although the market mechanism is an admirable way of producing and allocating goods, sometimes market failures lead to deficiencies in the economic outcomes. To
correct these failures, the government may step in to ensure efficiency, equity, and stability.

4. The market fails to provide an efficient allocation of goods when there are imperfections of competition or externalities. Imperfect competition, such as monopoly, often leads to regulation or even government ownership of production. Externalities arise when firms impose costs or bestow benefits on others outside of markets—such as when a steel mill pumps out smoke and soils the neighborhood without paying for the damages. When externalities occur, government may decide to step in and regulate these spillovers (as it does with air pollution), or engage in public-good provision itself (as in the case of national defense).

5. A second governmental function arises when citizens choose to alter the pattern of incomes (the for whom) generated by market wages, rents, interest, and dividends. Modern governments use progressive taxation to raise revenues for transfers or income-support programs that place a financial safety net under the poor.

6. Since the development of macroeconomic theory and policy in the 1930s, government has undertaken a third role: using fiscal powers (of taxing and spending) and monetary policy (affecting the supply of money, credit conditions, and interest rates) to curb inflation and unemployment and to increase economic growth.

C. Specialization, Money, and Capital

7. As economies develop, they become more specialized. Division of labor allows a task to be broken into smaller pieces that can be mastered and performed more quickly by a single worker. Specialization arises in part from innate or acquired skills of workers, but even more from the increasing tendency to use roundabout methods of production that require many specialized skills.

8. Elaborate systems of exchange of specialized goods and services today rely on money to lubricate the wheels of trade. Money is the universally acceptable medium of exchange—currency and checks—used to pay for everything from apples to zebra skins. By accepting money, people and nations can specialize in producing a few goods and exchange them for others; without money, we would waste much time constantly bartering one good for another.

9. Capital goods—produced inputs such as machinery, housing, and inventories of goods in process—permit roundabout methods of production that add much to a nation’s output. These roundabout, time-consuming methods take time and resources to get started; hence, adding to the stock of capital goods requires a temporary sacrifice of present consumption. In a well-functioning market system, the interest rate serves to ration out capital to the most worthwhile investments.

10. Under a mixed economy, capital goods are largely owned as private property; the incomes they produce go to their owners and to the government as taxes. Under communism, the state owns capital goods. In no system are private-property rights unlimited.
CONCEPTS FOR REVIEW

market mechanism
markets for goods and for factors of production
perfect and imperfect competition
roundabout or indirect production
efficiency, equity, stability
specialization, division of labor, interdependence

money
factors of production (labor, land, capital)
market
invisible-hand doctrine
interest rate
public goods, externalities

QUESTIONS FOR DISCUSSION

1. Consider an economy where the only activity is farming and where land and labor produce a single output, corn. Briefly describe the solution to what, how, and for whom in this rural country. Draw a circular flow like Figure 3-1 for this economy.

2. Consider the following cases of government intervention in the economy: pollution limitations; "Star Wars" defense purchase; the food-stamp program; price regulation of AT&T; a monetary-policy step to curb inflation. What role of government is being pursued in each case?

3. Give some examples you know of specialization and division of labor. Can you think of cases where overspecialization has occurred?

4. If it cannot borrow abroad, what must a poor country do if it wishes to become an efficient, industrialized nation in the next few generations?

5. "Lincoln freed the slaves. With one pen stroke he destroyed much of the capital the South had been able to accumulate over the years." Comment.

6. In what sense does a market mechanism "ration" scarce goods and services?

7. The circular flow of goods and inputs in Figure 3-1 has a corresponding flow of money. Draw a circular flow for the monetary side of the economy, and compare it with the circular flow of goods and inputs.

8. In addition to writing the opening quotation of this chapter, Adam Smith wrote, "I have never known much good done by those who affected to trade for the public good." Explain the logic behind this statement and relate it to the invisible-hand doctrine.

9. This chapter discusses many "market failures," areas in which the invisible hand guides poorly, and describes the role of government. Is it possible that there are, as well, "government failures," government attempts to curb market failures that are worse than the original market failures? Think of some examples of government failures. Can you imagine a case where government failures are so bad that it is better to live with the market failures than to try to correct them?
You can make even a parrot into a learned economist, all it must learn are the two words "supply" and "demand."

Anonymous

Up to now we have seen that every economy must somehow solve three fundamental problems, how, what, and/or whom. These are solved sometimes by custom and sometimes by government command. However, the American economy, along with most other advanced industrial countries, relies on a system of markets and prices to guide most economic decisions. In a market system, you will recall, consumers are like voters, using their money votes to buy what they want most. Your votes compete with my votes, and the people with the most dollar votes exercise the most influence over what gets produced and to whom goods flow.

Our task is now to understand exactly how this spending of dollar votes operates in a market system. Why are diamonds useless but expensive, while water is vital but cheap? Why does land in Manhattan command astronomical prices, while desert land in Arizona goes for a song? Why did few people own personal computers yesterday, while many own them today?

The answers to these and a thousand other questions can be found in the theory of supply and demand. This theory shows how consumer preferences determine consumer demand for commodities, while
business costs underpin the supply of commodities. And finally we will see how supply and demand are brought into balance by the movement of prices, by the price mechanism.

THE MARKET MECHANISM

Suppose you wake up one morning with an urge for a new stereo set. How could you get one? Surely you wouldn't say, "I'll head down to the voting booth and vote for the president or senator most likely to give me a new stereo. Of course, I mean one with twin 100-watt channels, Dolby, and a built-in compact disk player."

Or to take an actual historical case, suppose that people decide that they want to travel in automobiles rather than on horseback. How does this desire get translated into action? Do politicians tell workers and firms to move to Detroit to make cars? Would the Senate tell horse breeders to slow down horse production? How would government get producers to make cotton for car seats rather than hay for horses?

Of course, the transition did not occur under government direction. Rather, consumers bought more cars and fewer horses. With higher profits in car production, automobile production geared up, new firms like Cadillac and Ford sprouted all over Detroit, and workers hungry for good jobs moved there. As horses languished in the pastures, horse prices fell and horse breeders turned to other fields. As less hay was needed for horses, the price of hay fell and other crops were planted instead. At the same time, the demand for automotive components, such as steel, cotton, and rubber, increased, and the prices of these goods rose, attracting manufacturers into the production of automotive-based commodities.

Through just such forces, we have witnessed a veritable revolution in American transportation during this century, with the horse population falling by 90 percent while the car population grew from nothing to 140 million vehicles.

What brought about this revolution? It occurred as changes in taste and technology operated through the forces of supply and demand.

Similar revolutions are taking place in the economic marketplace all the time. As people's tastes change, as the stocks of factors of production change, or as methods of production evolve, the marketplace registers these changes in the prices and quantities of inputs and outputs. By using prices, sales, and profits as signals to producers and consumers, the price mechanism acts to ration our the available resources among the competing uses.

ANALYSIS OF SUPPLY AND DEMAND

The purpose of this chapter is to show how supply and demand work themselves out in the competitive market for individual commodities. We shall define a demand curve and then a supply curve. Using these basic tools, we shall see how the market price is determined (or reaches its competitive equilibrium) where these two curves intersect—where the forces of demand and supply are just in balance.

The Demand Schedule

Let us start with demand. It is commonly observed that the quantity of a good that people will buy at any one time depends on its price. The higher the price charged for an article, the less of it people will be willing to buy. And, other things being equal, the lower its market price, the more units of it will be demanded.

Thus there exists at any one time a definite relationship between the market price of a good and the quantity demanded of that good. This relationship between price and quantity bought is called the demand schedule, or the demand curve.

Table 4-1 presents a hypothetical demand schedule. At any price (P), such as $5 per bushel, a definite quantity of corn will be demanded by all the consumers in the market—in this case 9 million bushels per year.

At a lower price, such as $4, the quantity bought is even greater, 10 million units. At lower P of $3, the quantity demanded (Q) is greater still—namely, 12 million. By lowering P enough, we could coax out sales of more than 20 million units. From Table 4-1 we can determine the quantity demanded at any price by comparing column (2) with column (1).
THE ELEMENTS OF SUPPLY AND DEMAND / 4

DEMAND SCHEDULE FOR CORN

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRICE ($ per bu)</td>
<td>QUANTITY DEMANDED (million bu per year)</td>
</tr>
<tr>
<td>P</td>
<td>Q</td>
</tr>
<tr>
<td>-----</td>
<td>-----</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
</tr>
</tbody>
</table>

Table 4-1 The demand schedule relates quantity demanded to price
At each market price, consumers will want to buy a definite quantity of corn. At each lower price of corn, the quantity of corn demanded will rise.

The Demand Curve

The numerical data can also be given a graphic interpretation in Figure 4-1, showing the quantity of corn demanded at each level of the price of corn. This graphical depiction of the demand schedule is called the *demand curve*. Note that quantity and price are inversely related, Q going up when P goes down. The curve slopes downward, going from northwest to southeast. This important property is given a name: the *law of downward-sloping demand*. This law has strong intuitive appeal and has been known in a general way since the time of the Greeks; it has been empirically tested and verified for practically all commodities—corn, gasoline, cars, and theater tickets being a few examples.

The law of downward-sloping demand: When the price of a commodity is raised (and other things are held constant), buyers tend to buy less of the commodity. Similarly, when the price is lowered, other things equal, quantity demanded increases.

What is the rationale for the law of downward-sloping demand? Quantity demanded for a good tends to rise as price falls because consumers will generally substitute the now less expensive good for other goods.

The reasons behind the law are easily illustrated for the case of personal computers (PCs). When the price of PCs was sky-high, only the richest people could afford them. Everybody did calculations by hand and used typewriters or pens to write papers. Even today, in poor countries like India, only the richest businesses and banks own PCs.

As the price of PCs began to fall, more and more people found them worthwhile—for work, for school, or for fun. Hence one reason for the law of downward-sloping demand comes from the fact that lower prices coax in new buyers.

Figure 4-1 A downward-sloping demand curve relates quantity demanded to price
In the demand curve for corn, prices are measured on the vertical axis while quantity demanded is measured on the horizontal axis. Each pair of (P,Q) numbers from Table 4-1 is plotted as a point and then a smooth curve is passed through the points to give us a demand curve. The negative slope of the demand curve illustrates the law of downward-sloping demand.
In addition, a price reduction will induce some extra purchases by a good’s existing consumers. For example, when water is very dear, we demand only enough of it to drink. Then when its price drops, we buy some to wash with. At still lower prices, we resort to still other uses. Finally, when it is really very cheap, we water flowers and use it lavishly for any possible purpose. Conversely, a rise in the price of a good will cause some of us to buy less.

Why does quantity demanded tend to fall as price rises? For two main reasons. First is the substitution effect. When the price of a good rises, I naturally try to substitute other similar goods for it (for example, chicken for beef or synthetic shirts for cotton shirts). A second factor, known as the income effect, comes into play because when a price goes up, I find myself somewhat poorer than I was before. If gasoline prices double, I have in effect less income, so I will naturally curb my consumption of gasoline and other goods.

Our discussion of demand has referred to “the” demand curve. But whose demand is it? Mine? Yours? Everybody’s? In general, we can determine each person’s demand for corn or other products. When we analyze the price and quantity for a market, however, we will refer to the market demand, which represents the sum total of all individual demands. As we will see in Chapter 6, the market demand curve is found by adding together the amounts demanded by all individuals at each price. In this chapter, we will always be speaking of the market demand.

Behind the Demand Curve

What determines the market demand for corn or cars or computers? We have up to now mentioned only a commodity’s own price as a factor. But other factors weigh importantly: average levels of income, the size of the population, the prices and availability of related goods, individual tastes, and other special factors.

The average income of consumers is a key determinant of demand. As people’s incomes rise, they tend to buy more of almost everything—apples, boats, cars, etc.

Second, the size of the market—measured say by the population—clearly affects the amount demanded at each price. California’s 30 million people tend to buy 30 times more apples and cars than do Rhode Island’s 1 million people.

Third, the price and availability of related goods will influence the demand for a commodity. A particularly important relationship exists among substitute goods—ones that tend to perform the same function, such as pens and pencils, cotton and wool, or oil and natural gas. Demand for good A tends to be low if the price of substitute product B is low. (For example, if the price of natural gas is high in Boston, will the demand for oil tend to be low or high?)

Fourth, in addition to these objective factors we must add a set of subjective factors called tastes and preferences. Tastes represent a variety of social and historical factors. They may reflect genuine psychological or physiological needs (for liquids, salt, warmth, or love). They may include artificially contrived cravings (for cigarettes, drugs, or fancy sports cars). They may contain a large element of tradition or religion (so that eating beef is popular in America but taboo in India, while curried jellyfish is a delicacy in Japan).

Finally, individual goods will generally have particular factors behind their demand—rainfall for umbrellas, snow depth for skis, and ocean temperature for surfboards.

Much of our analysis will focus on price as a factor tending to balance supply and demand, but we must never lose sight of these other factors that ultimately determine the strength of demand. The different factors behind the demand for a typical good like automobiles are sketched in Table 4-2.

A Change in Demand Demand for different goods changes over time. Demand curves won’t sit still except in a textbook.

Why does the demand curve shift? Because factors other than the price of the commodity change. As an example, what were some possible reasons for the increase in the American demand for cars from 1950 to 1988? First, the average real income of Americans almost doubled, so higher incomes induced higher demand for cars. Second, the number of adults rose by more than half, increasing the number of potential drivers. Third, there was a general decline in the
The Elements of Supply and Demand / 4

<table>
<thead>
<tr>
<th>FACTORS AFFECTING DEMAND</th>
<th>EXAMPLE FOR AUTOMOBILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Own price</td>
<td>Higher own price reduces quantity demanded</td>
</tr>
<tr>
<td>2. Average income</td>
<td>As incomes rise, people increase car purchases</td>
</tr>
<tr>
<td>3. Population</td>
<td>Higher population increases car purchases</td>
</tr>
<tr>
<td>4. Prices of related goods</td>
<td>Lower gasoline prices raise the demand for cars</td>
</tr>
<tr>
<td>5. Tastes</td>
<td>Americans buy more cars than Europeans, other things equal</td>
</tr>
<tr>
<td>6. Particular factors</td>
<td>Special factors include availability of subways, TV viewing, dating patterns, etc.</td>
</tr>
</tbody>
</table>

Table 4-2 Many factors, price and non-price, affect demand

availability of alternative forms of transportation (bus, trolley, and rail). As for tastes, who can say?

The final result of all these changes in factors other than own price was to shift the demand curve for cars far to the right.

A shift in the demand for automobiles is illustrated in Figure 4-2. As a result of the change in the non-own-price factors just discussed, we say there is an increase in demand. This leads to the rightward shift in the demand curve as shown in Figure 4-2. Note that the shift means that more cars will be bought at every price.

You can test yourself by answering the following: Will a warm winter shift the demand curve for heating oil leftward or rightward? Why? What would happen to the demand for ski-lift tickets if snowfall were especially light? What about the effect of a large oil-price increase on the demand for coal?

Supply Schedule and Supply Curve

Let us now turn from demand to supply. By supply we mean the quantity of a good that businesses willingly produce and sell. More precisely, we relate the quantity supplied of a good to its market price, holding equal other things, such as costs of production, the prices of substitute goods, and the organization of the market.

The supply schedule (and supply curve) of a commodity means the relationship between its market price and the amount of that commodity that producers are willing to produce and sell.

Table 4-3 shows a hypothetical supply schedule for corn. Figure 4-3 plots the same data as the supply curve for corn. What do these data show? At low corn prices, farmers will shut down the farm or devote cornland to the production of substitute products like wheat or soybeans. According to the table, at a corn price of $1 per bushel, no corn at all will be produced. As the corn price rises (holding constant things like the price of wheat), land will be shifted from wheat production to corn production. At ever-higher corn prices, each farmer will find it profitable to add even

![Demand Shift Diagram](image)

Figure 4-2 Increase in demand for automobiles

As factors other than own price change, the demand for automobiles is affected. Here we see the effect of factors like rising average income, increased population, lower gasoline prices, and a shift of tastes toward cars.
more land, labor, tractors, irrigation, and fertilizer. All these tend to increase the output of corn at the higher market prices.

Note that the supply curve slopes upward and to the right, rising from southwest to northeast. By contrast, the demand curve sloped downward. What explains the upward slope of the supply curve for the output of an individual commodity? One important reason is found in the law of diminishing returns. If society wants more wine, then more and more labor will have to be added to the same limited hill sites suitable for producing wine grapes. Each new worker will—according to the law of diminishing returns—be adding less and less extra product; hence, the price needed to coax out additional product will have to rise. By raising the price of wine, society can persuade grape farmers and wine merchants to produce and sell more wine, and the supply curve for wine therefore is upward-sloping.

Behind the Supply Curve Just as we looked behind demand to uncover its fundamental determinants, we now examine the forces operating on supply. A detailed study of the conditions of cost and supply will occupy much of Part Two of this text, so we will treat the subject briefly at this point.

The fundamental point to grasp about businesses’ supply behavior is that firms supply commodities for profit, not for fun or charity. As a result, a competitive farmer will supply more corn when prices are higher because it is more profitable to do so; conversely, when the corn price falls below the cost of production, as it did in the mid-1980s, farmers plant other crops, let the fields go to seed, or even sell the farm or go into bankruptcy.

We see then that a key dominant factor lying behind supply decisions is the costs of production. When the costs of production of a particular good are low relative to the market price, then it will be profitable for producers to produce a great deal. When production costs are very high relative to price, producers will produce little or may quit producing.

Among the forces affecting production costs are technology and input costs. Technological advance will certainly affect costs. A better computer program for crop rotation, genetically engineered seeds,
<table>
<thead>
<tr>
<th>FACTORS DETERMINING SUPPLY</th>
<th>EXAMPLE FOR AUTOMOBILES</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Own price</td>
<td>Higher own price increases most profitable production level</td>
</tr>
<tr>
<td>2. Production costs</td>
<td>Robots lower production cost and increase supply</td>
</tr>
<tr>
<td>a. Technology</td>
<td>Autoworkers’ wage cuts lower costs and increase supply</td>
</tr>
<tr>
<td>b. Input prices</td>
<td>If bus and truck prices fall, supply of cars increases</td>
</tr>
<tr>
<td>3. Prices of production substitute</td>
<td>Removal of quota on Japanese car imports increases supply</td>
</tr>
<tr>
<td>4. Market organization</td>
<td>If government lowers standards on auto-safety equipment, supply may increase</td>
</tr>
<tr>
<td>5. Particular factors</td>
<td></td>
</tr>
</tbody>
</table>

Table 4-4 Supply is affected by price, production costs, and other factors

and new drip irrigation systems—all these would lower a farmer’s production costs and increase his supply.

Similarly, if technology did not change, but the prices of inputs changed, this would change the costs of production and thereby affect supply. For example, when fuel prices fell in 1986, this lowered production costs and increased supply of all foodstuffs.

A second major factor affecting supply stems from the prices of production substitutes; these goods are ones that can be readily substituted for one another in the production process. If the price of one production substitute rises, this will decrease the supply of the other substitute. Farmers can produce wheat as well as corn; McDonald’s can sell McChicken as well as McHamburgers; an oil refinery can produce diesel fuel as well as gasoline. For each pair, as the price of one (e.g., diesel fuel) rises, this will tend to decrease the supply of the other (e.g., gasoline).

A third factor affecting supply is the market organization. If a market becomes monopolized, this would tend to raise the price at each level of output. When some producers are excluded—as was the case in recent years for foreign sugar producers or Japanese cars—then prices of the remaining goods tend to rise at each output level. Generally, for given input prices and technology, a perfectly competitive market will produce the highest possible level of output at each price level.

Finally, idiosyncratic factors enter supply. The weather exerts an important influence on farming and on the ski industry. The computer industry has been marked by a keen spirit of innovation as well as by imitation, which has led to rapid change in the availability of new products. In some industries, like telecommunications and airlines, government regulation has shunted supply decisions off their competitive track.

Table 4-4 highlights the important determinants of supply using the case of automobiles as an illustration.

Shifts in Supply Supply behavior is constantly changing. What then leads to such changes? Recall that our supply schedule in Table 4-3 or supply curve in Figure 4-3 relates quantity supplied to the market price. These schedules shift, and supply is said to change, when any factors other than the commodity’s own price change. In terms of a supply curve, supply is said to increase when the amount supplied increases at each market price.

To consider a shift in supply, take the automobile market. Supply might increase because introduction of cost-saving robots cut down the labor required to produce cars, or because autoworkers took a pay cut, or because bus and truck prices fell, or because the Japanese were allowed to export more cars to the United States, or because government removed some of the regulatory burden on the industry. Each of these factors would tend to increase the supply of automobiles in the United States. Figure 4-4 illustrates an increase in supply for automobiles.

To test your understanding of supply shifts, think about the following: What would happen to the supply of oil if a new invention made oil exploration easier? What happens to the supply curve for corn in Figure 4-3 after a disastrous drought? What does a Florida freeze do to the supply of orange juice?
EQUILIBRIUM OF SUPPLY AND DEMAND

We have seen how consumers demand different amounts of corn, cars, and computers as a function of these goods' prices. Similarly, producers willingly supply different amounts of these and other goods depending on their prices. What happens when suppliers and demanders meet?

The answer is that the supply and demand forces in the marketplace will produce an equilibrium price and equilibrium quantity, or a market equilibrium. The market equilibrium comes at that price and quantity where the supply and demand forces are in balance. At such a price and quantity, the amount that buyers wish to buy is just equal to the amount that sellers wish to sell. At that equilibrium, price and quantity tend to stay the same, as long as other things remain equal, until something operates to change supply and demand.

Let us work through the corn example in Table 4-5 to see how supply and demand determine a market equilibrium; the numbers from this table come from the data shown in Tables 4-1 and 4-3. Recall that up to now we have been considering in the demand schedule what people would buy at different prices, while the supply schedule shows what firms want to sell at different prices. We have said, "If price is A, quantity demanded will be X; if price is B, quantity sold will be Y; and so forth." But now we want to know the exact level that price and quantity will settle on. Neither the supply schedule nor the demand schedule alone can tell us the answer. Rather the answer will depend on the interaction of supply and demand.

To find the right level of price and quantity, proceed the way a middleman or broker might—by trying to find a price at which the desired amounts to be bought and sold just match. Could a price of $5 per bushel prevail for long? Clearly not, as row A in Table 4-5 shows: at $5 producers will be supplying 18 units (million bushels per year) while demanders will be buying only 9 units per year. The amount supplied at $5 will exceed the amount demanded, and stocks of corn will pile up in the granary. Because too much corn is chasing too few consumers, the price of corn will tend to fall, as shown in column (5) of Table 4-5.

Say our broker tries $2 instead. Does that price clear the market? A quick look at row D shows that at $2, consumption exceeds production. The storehouses of corn begin to empty at that price. Indeed, as people scramble around to find their desired quantity of corn, they will tend to bid up the price of corn, as is shown in column (5) of Table 4-5.

We could try other prices, but by now the answer is clearly $3, or row C in Table 4-5. Only at $3 will the amount demanded by consumers exactly equal the amount willingly supplied by producers—in each case 12 units. At $3, price is at equilibrium because there is no tendency for price to rise or fall, and no stocks of corn are piling up or dwindling down. We also say that $3 is the market-clearing price, by which we mean that we have cleared the books of the supply and demand orders; there are no extra supply
COMBINING DEMAND AND SUPPLY FOR CORN

<table>
<thead>
<tr>
<th>(1) POSSIBLE PRICES ($ per bu)</th>
<th>(2) QUANTITY DEMANDED (million bu per year)</th>
<th>(3) QUANTITY SUPPLIED (million bu per year)</th>
<th>(4) STATE OF MARKET</th>
<th>(5) PRESSURE ON PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>5</td>
<td>9</td>
<td>18</td>
<td>Surplus</td>
</tr>
<tr>
<td>B</td>
<td>4</td>
<td>10</td>
<td>16</td>
<td>Surplus</td>
</tr>
<tr>
<td>C</td>
<td>3</td>
<td>12</td>
<td>12</td>
<td>Equilibrium</td>
</tr>
<tr>
<td>D</td>
<td>2</td>
<td>15</td>
<td>7</td>
<td>Shortage</td>
</tr>
<tr>
<td>E</td>
<td>1</td>
<td>20</td>
<td>0</td>
<td>Shortage</td>
</tr>
</tbody>
</table>

Table 4-5 Equilibrium price comes where quantity demanded equals quantity supplied.

Only at the equilibrium price of $3 per bushel does amount supplied equal amount demanded. At too low a price there is a shortage and price tends to rise. Too high a price produces a surplus which will depress price.

or demand orders left over after we have found the market-clearing or equilibrium price. Everybody is satisfied—demanders, suppliers, and our broker.

Equilibrium with Supply and Demand Curves The same story is told in Figure 4-5. Here we have placed the supply curve from Figure 4-3 right on top of the demand curve from Figure 4-1. This was possible because they were drawn with exactly the same units on each axis. The supply and demand curves cross or intersect at only one point, C. We will see that the equilibrium price and quantity come at just this intersection point.

We can now repeat our earlier experiment that attempted to find the equilibrium price. Start with the initial high price of $5 per bushel, shown at the top part of Figure 4-5. At that price, suppliers want to sell more than demanders want to buy; the result is a surplus or excess of quantity supplied over quantity demanded, shown by the labelled black line in the figure. The arrows show the direction that price tends to move when a market is in surplus.

When we examine a price of $2 per bushel, the market shows a shortage or excess of quantity demanded over quantity supplied, again shown by a labelled black line. Under conditions of shortage, the competition among buyers for limited goods causes price to rise, as shown by rising arrows in the figure.

We now see that the balance of forces or equilibrium comes at point C, where the supply and demand curves intersect. At point C, with a price of $3 per bushel and a quantity of 12 units, the quantities demanded and supplied are equal; there are no shortages or surpluses; there is no tendency for price to rise or fall. At point C and only at point C, the forces of supply and demand are in balance and the price has settled at a sustainable level.

The equilibrium price and quantity come at that level where the amount willingly supplied equals the amount willingly demanded. In a competitive market, this equilibrium is found at the intersection of the supply and demand curves. No shortages or surpluses are found at the equilibrium price.

Effect of a Shift in Supply or Demand Curves

Our supply-and-demand apparatus can do much more than tell us about the equilibrium price and quantity—
A Shift in Supply Gregory King, an English writer of the seventeenth century, noticed that when the harvest was bad, food prices rose. When food was plentiful, farmers got a lower price. Why was this so?

A spell of bad growing weather reduces the amount that farmers will supply at each and every market price; it thereby shifts the supply curve to the left. This is illustrated in Figure 4-6(a), where the supply curve has shifted from SS to SS'. But the demand curve has not shifted; I am as hungry when it rains in Iowa as when it is dry.

What happens in the corn market? The new supply curve SS' intersects the original demand curve at E', to the left of the old equilibrium at E. At the old price there was too little corn to satisfy consumer demand. So price rose, raising quantity supplied and lowering quantity demanded; finally, at the new equilibrium price, the amounts demanded and supplied are once again equal.

Thus a bad harvest (or any leftward shift of the SS curve) raises prices and, by the law of downward-sloping demand, lowers quantity demanded.

Suppose, instead, that because of good weather or cheap fertilizers or a new miracle seed, the supply increased. Draw in a new SS'' curve, along with the new equilibrium E'' and the lower price and higher quantity of corn.

A Shift in Demand We can also use our apparatus to examine the effect of forces that change demand. Suppose that there is a sharp increase in family incomes, so that everyone wants more corn. This is represented in Figure 4-6(b) as a "demand shift." In this case, at every price, consumers demand a higher quantity of corn. The demand curve thus shifts rightward from DD to $D'D'$.

The demand shift produces a shortage of corn at the old price. The equilibrium price and quantity thus move upward from E to E' in panel (b). Why? Because, after the demand curve shifts, at the old price consumers demand more than suppliers produce. Shortages arise. A scramble for corn ensues. Prices are bid upward until at E'' supply and demand come back into balance.

So forces that affect consumer demand—incomes, population, the prices of substitute goods, tastes—
will shift the demand curve and affect the equilibrium price and quantity.

Three Hurdles

We pause to consider three hurdles that must be overcome before the tools of supply and demand can be usefully employed. The first point deals with our insistence, when we draw up a demand or supply schedule, that other things remain equal. The second concerns the difference between shifts of curves and movements along curves. The third deals with the exact meaning of an equilibrium of supply and demand.

"Other Things Equal" In drawing up a demand schedule for corn, we vary its price and observe what would happen to the quantity bought, always assuming that no other factors change to cloud our experiment.

Specifically, this means that, as we change the price of corn, we must not at the same time change family income, or the price of wheat, or do anything else that would shift the demand schedule for corn. Like any scientist who wants to isolate the effects of one causal factor, we must vary only that one factor.

What happens when we fail to hold other things equal as we define a demand curve? As Figure 4-7 will illustrate, failure to hold other things equal can lead us into erroneous reasoning.

Let's say you are interested in the market for pizzas. You observe that the demand curve is DD in Figure 4-7 when jobs are plentiful and people have the incomes to go out to pizza parlors. However, when business activity is depressed and many people are out of work, incomes are low and the demand for pizzas is also low.

In boom times, you would record the equilibrium point shown at point E in Figure 4-7, while in bad times you would observe the equilibrium point E'. Suppose you take a ruler and join points E and E'. You pronounce, "I have disproved the law of downward-sloping demand, for note that when P was high, so too was Q—as shown by E. And when P was lowered, instead of that change increasing Q, it actually lowered Q—as shown by E'. My straight line joining E and E' represents an upward-sloping, not a downward-sloping, demand curve. So I have refuted a basic economic law."

Alas, you would be crestfallen to discover that you had broken one of the cardinal rules of economics: You did not hold other things equal. Like the person who pronounces the retirement paradise of Florida an
problem is being discussed not to confuse an increase in demand (by which is meant a shift of the whole demand curve to the right) with an increase in the quantity demanded (as a result of moving to a lower price on the same demand curve). Recall that a demand or supply curve represents the pairs of possible prices and quantities that satisfy either buyers or sellers. A single point on a demand curve represents the "quantity bought" or the "quantity demanded" at a particular price.

Hence an increase in supply (or, equivalently, a rightward shift in the supply curve) will lead to an increase in the quantity demanded, not to an increase in demand, as a result of the price decrease. This represents a movement down the demand curve, not a shift in the demand curve. A similar distinction applies to shifts in supply vs. changes in quantity supplied.

Figure 4-8 illustrates this key distinction. A demand increase denotes a shift of the demand curve or schedule. Such a shift occurs when factors behind demand change (say income increases). As a result of the demand shift illustrated in Figure 4-8(a), the equilibrium quantity increases from 10 to 15 units.

The case of a movement along the demand curve is shown in Figure 4-8(b). In this case, the quantity demanded changes because of a shift in supply, rather than a shift in demand. A supply shift changed the market equilibrium from point E to point E', and the quantity demanded changed from 10 to 15 units. But demand did not change in this case; rather quantity demanded changed and there was a movement along the demand curve from E to E'.

Let's put this distinction to work by analyzing the following incorrect argument: "A bad harvest does not always raise price. The price might rise at first. But a higher price will diminish the demand. And a reduced demand will send the price down again. Therefore, it is not certain, after all, that the bad harvest will really raise the price of corn!"

What is wrong with this statement? It errs because "demand" is used incorrectly in the third sentence; it uses the word "demand" in the sense of "quantity demanded," thus confusing a movement along a curve with a shift of the demand curve. The correct statement would run as follows:
"A bad harvest will raise price as the leftward shift in the supply curve raises the equilibrium price of corn. The higher equilibrium price will reduce the quantity demanded, as consumers move up the downward-sloping demand curve. But since no shift in the demand curve occurred, there is no reason to expect that price will fall as a result of a decrease in the quantity demanded."

Meaning of Equilibrium The last hurdle is a more subtle one, less likely to arise but more difficult to surmount. It is seen in the following statement by a skeptic: "How can you say that supply and demand determine a particular equilibrium quantity? After all, the amount one person sells is precisely what another person buys. The quantity bought must always equal the quantity sold, no matter what the price, whether or not the market is in equilibrium."

The economist might reply as follows: You are quite right that measured quantity bought and measured quantity sold must be identical. But the important question is this: At which price is the amount that consumers willingly buy just matched by the amount that producers willingly sell? Only at such a price—where there is equality between the amounts that demanders and suppliers willingly plan to go on buying and selling—will there be no tendency for price to rise or for price to fall.

At any other price, such as where price is above the intersection of supply and demand, obviously the measured amounts bought and sold are equal. But at too high a price there is a surplus of goods, with producers eagerly trying to sell more goods than demanders will buy. Moreover, this excess of desired supply over desired demand will put downward pressure on price until price has finally reached that equilibrium level where the two curves intersect. And where price is below its equilibrium, many buyers will be unhappy as the too low price produces a shortage of the good.

At the equilibrium intersection of supply and demand, and there alone, will everybody be happy; the suppliers, the demanders, and the economist who is seeking the price at which there is neither surplus nor shortage.

Rationing by Prices

Having seen how supply and demand operate, let us take stock of what the market mechanism accom-
plished. Once the equilibrium prices and quantities of all inputs and outputs have been determined, the market has allocated or rationed out the scarce goods of the society among the possible uses. Who did the rationing, a planning board or a legislature or some central authority? No. The marketplace, through the interaction of supply and demand, did the rationing. It was rationing by the purse.

What goods were being produced? This was answered by the signals of the market prices. High coal prices coaxed out more coal as low corn prices drove resources out of agriculture. Those who had more dollar votes had the greatest influence on what goods were produced.

For whom were goods delivered? The power of the purse dictated who got the largest quantity of goods. If you have a high income, you will end up with a larger house, more clothing, and longer vacations. When backed up by cash, the most urgently felt needs got fulfilled through the operation of the demand curve.

Even the how question was being decided by supply and demand. With corn prices low, farmers could no longer afford expensive tractors and fertilizers, and only the best land was cultivated. With high coal prices, coal companies bought fancy new machines that could mine many tons an hour.

A market economy solves the basic economic problems through the operation of supply and demand.

The Role of Perfect Competition

Strictly speaking, our supply-and-demand analysis applies only to perfectly competitive markets—ones in which neither sellers nor buyers are large enough to affect the market price. In fact such markets are rare and can be found mainly in organized commodity markets, like Chicago’s Board of Trade which sells corn, wheat, and metals. Securities markets like the New York Stock Exchange, which trades ownership rights to America’s largest companies, are also perfectly competitive. Such institutions are also called “auction markets”; prices clear the auction markets virtually every minute of the working day.

Most other markets, however, show some traces of imperfect competition, for there are usually a few buyers or sellers who have at least a tiny effect on the market price. Hence for near-competitive markets, the assumptions of the competitive market do not literally apply.

Nonetheless, the tools of supply and demand do summarize in an idealized way the behavior of many markets. For this analysis to apply, several elements must be present: There must be numerous buyers and sellers; they must be well informed about quality and about prices; and the actions of individual buyers and sellers must not have an appreciable effect on the prevailing market price. So long as all this is true, price and quantity will behave much as is predicted by our supply-and-demand analysis.

Three Markets

We will rely on the supply-and-demand analysis throughout this textbook. Before we conclude this introduction, however, we examine in Figure 4-9 three cases where such analysis gives a good approximation of how prices and quantities are determined. Panel (a) pictures a competitive market for used cars. What would happen to used-car prices in an economic boom when family incomes are high? Panel (b) shows how a high oil price was produced when OPEC (the Organization of Petroleum Exporting Countries) organized a price-fixing group (called a cartel). What happened to the quantity of oil demanded after OPEC collapsed and oil prices fell sharply? The third case shows the supply and demand for land in Manhattan. Note how little the supply of land responds to higher prices. Can you see why increased demand for land raises prices a great deal and affects land quantity only a little?

Having concluded our introductory discussion of supply-and-demand analysis, we will explore in later chapters the forces lying behind supply and demand and show how this analysis can be applied to yet further examples. In addition, we will incorporate monopoly elements, or imperfect competition, into the analysis. After all these further refinements are included, we will see that competitive supply-and-demand analysis is an indispensable tool for interpreting the economic world in which we live.
Figure 4-9 Supply and demand applies to used cars, oil, and land. Economists use supply and demand to analyze many different markets. Can you interpret these three examples?

SUMMARY

1. Supply-and-demand analysis shows how a market mechanism grapples with the triad of economic problems, what, how, and for whom. It shows how dollar votes decide the prices and quantities of different goods.
2. A demand schedule represents the relationship between the quantity of a good that people want to buy and the price of that good. Such a demand schedule, represented graphically as a demand curve, always holds equal other things like family incomes, tastes, etc. Almost all commodities obey the “law of downward-sloping demand,” which holds that quantity demanded falls as a good’s price rises. This law is represented as a downward-sloping demand curve.
3. Many factors lie behind the demand relationship for an entire market: average family incomes, population, the prices of related goods, tastes, and peculiar factors. When these factors change, the demand curve will shift.
4. The supply schedule (or supply curve) gives the relationship between the quantity that producers will be willing to sell—other things equal—and that good’s price. Generally quantity supplied responds positively to price, so that the supply curve rises upward and to the right.
5. Factors other than the good’s price affect its supply, the most important being the cost of production of the good, determined by the state of technology and by input prices. Other factors in supply include the prices of substitute goods, the market organization, and particular factors.
6. The equilibrium of supply and demand in a competitive market takes place at a price where forces of supply and demand are in balance. This occurs at the price where the quantity demanded just equals the quantity supplied, or graphically at the intersection of the supply and demand curves. At a price above the equilibrium, the amount that producers want to supply will exceed the amount that consumers want to buy, produc-
ing a surplus of goods and exerting downward pressure on prices. Similarly, a price lower than the equilibrium price will generate shortages, and buyers will therefore tend to bid prices upward to the equilibrium.

7. Competitively determined prices ration out the limited supply of goods to those with the desires and the necessary dollar votes.

8. To avoid pitfalls in the use of supply-and-demand analysis, we must observe certain strictures: (a) Hold other things equal, which requires distinguishing the effect of changing a commodity's own price from the effect of changes in other factors; (b) distinguish a change in demand or supply (which produces a shift in a curve) from a change in the quantity demanded or supplied (which represents a movement along a curve); (c) recognize a supply-and-demand equilibrium, which is where buyers and sellers willingly engage in trades.

CONCEPTS FOR REVIEW

- demand schedule or curve, \(DD \)
- law of downward-sloping demand
- supply schedule or curve, \(SS \)
- forces behind supply curves and demand curves
- shifts of curve versus movements along curve
- other things equal
- competitive equilibrium
- auction market
- surplus, shortage
- rationing by prices
- equilibrium

QUESTIONS FOR DISCUSSION

1. Explain why each of the following is false:
 - (a) Failure of Brazil's coffee crop will lower the \(P \) of coffee.
 - (b) Fad for short skirts will raise wool \(P \).
 - (c) A new yen for meat will lower the \(P \) of grains and raise the \(P \) of hide and horn.
 - (d) Development of the sugar beet raised rents on tropical sugar cane lands.

2. Define carefully what is meant by a demand schedule or curve. State the law of downward-sloping demand. Illustrate the law of downward-sloping demand with two cases from your own experience.

3. Define the concept of a supply schedule or curve. Show that an increase in supply means a rightward and downward shift of the supply curve. Contrast this with the rightward and upward shift in the demand curve implied by an increase in demand. Why the difference?

4. What factors might increase the demand for corn? The supply? What would cheap oil do to the supply of gasoline? To coal miners' wages?

5. Spell out arguments to show that competitive price settles down at the equilibrium intersection of supply and demand. Trace through what happens if the market price started out too high or too low.
6. "An increase (or decrease) in supply will lower (or raise) price." Verify. Now interpret: "An increase (decrease) in demand will generally raise (lower) price."

7. Identify whether each of the following involves a shift in the demand curve or a change in the quantity demanded: (1) Auto sales rise as consumer incomes rise; (2) fish prices fall after the Pope allows Catholics to eat meat on Friday; (3) a gasoline tax lowers the consumption of gasoline; (4) after a disastrous wheat blight, bread sales go down; (5) after a disastrous wheat blight, peanut butter and jelly sales go down; (6) after the Black Death struck Europe in the fourteenth century, wages rose.

8. "A simultaneous increase of demand and decrease of supply is statistically and logically impossible. Demand and supply are the same thing." Comment in terms of the section "Three Hurdles."

9. From the following data, plot the supply and demand curves and determine the equilibrium price and quantity.

<table>
<thead>
<tr>
<th>PRICE ($ per pizza)</th>
<th>QUANTITY DEMANDED (pizzas per semester)</th>
<th>QUANTITY SUPPLIED (pizzas per semester)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>30</td>
</tr>
<tr>
<td>6</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>4</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>2</td>
<td>40</td>
<td>0</td>
</tr>
<tr>
<td>0</td>
<td>125</td>
<td>0</td>
</tr>
</tbody>
</table>

What would happen if the demand for pizzas tripled at each price? What would occur if the price were initially set at $4 per pizza?

10. Under political pressure from the steel industry, the federal government has undertaken the following measures to bolster the sagging production and employment of that industry. For each, discuss the impact upon supply, demand, output, and price of steel in the United States.

(a) On three occasions in the last two decades, the government has put limitations on foreign supply of steel into the United States.

(b) In the 1970s, the government reduced the tax burden on the steel industry by lowering the effective amount of taxes paid by steel companies on their profits.

(c) In the 1970s, the government undertook to increase the purchases of steel by the Department of Defense.

(d) In the 1970s and 1980s, the government reduced the regulatory burden on steel companies by relieving them of the need to comply with certain air-pollution rules.

(e) During periods of wage and price guidelines, the government put pressure on the coal industry to settle for lower wage increases.
PART TWO
MICROECONOMICS:
SUPPLY, DEMAND,
AND PRODUCT MARKETS
CHAPTER 5
SUPPLY
AND DEMAND
IN INDIVIDUAL
MARKETS

The end is easily foretold,
When every blessed thing you hold
Is made of silver, or of gold,
You long for simple pewter.

When you have nothing else to wear
But cloth of gold and satins rare.
For cloth of gold you cease to care
Up goes the price of shoddy.

Gilbert and Sullivan
The Gondoliers

In the chapters that follow, we develop the foundations for microeconomics—the study of individual consumers, firms, and markets. Chapters 5 through 12 analyze the workings of product markets—supplies and demands for final goods like food, clothing, and recreation. The subsequent chapters analyze the functioning of factor markets—wages of labor, interest on capital, and rent of land.

Preview

This chapter begins with a review of the tools of supply and demand presented in Chapter 4, presents the important economic concept of elasticity, then ends with some applications of supply and demand.

Among the pertinent questions that supply-and-demand analysis can help answer are: Do consumers or producers end up paying a gasoline tax? Why is good weather bad for farmers? What is the effect of a quota or tariff on Japanese automobiles on the price and quantity of automobiles purchased in the United States?
After the analysis of product markets in the next several chapters, Part Three follows with a closely related analysis of the determinants of incomes and the prices of factors of production. These chapters examine such issues as: Why have real wages grown 700 percent over the last hundred years? Why do doctors of medicine earn five times more than doctors of divinity? Why does the average woman earn only 65 percent of the average man’s wages? Why do the forces determining the salary of a baseball star like Darryl Strawberry parallel those determining the price of a choice plot of Fifth Avenue real estate?

Such questions about the distribution of income require a mastery of the principles of supply and demand as developed in this chapter and beyond. Indeed, understanding virtually all the major microeconomic questions—whether about equity and efficiency, government’s economic role, economic growth, or international trade—requires the vital tools we now survey.

Are you concerned about the rising toll of poverty on children and minority groups? If so, you must first study carefully the economic basis of income inequality before you can hope to design lasting and efficient programs for raising the incomes of the poor.

Perhaps you have heard that the low energy prices of the mid-1980s will eventually lead to dangerous levels of dependence on insecure foreign sources of oil. How can we reduce our energy dependence? A thorough study of the supply and demand for oil, as well as of the economics of quotas and tariffs, will clarify the costs and benefits of energy independence.

Figure 5-1 Road map to the microeconomic chapters

This flow chart shows the road we will follow in our study of the microeconomics of product markets. We begin with an analysis of the elements of supply and demand and then probe in detail the building blocks of the demand curve. Chapter 7 then surveys the essentials of business organization and accounting.

The next topic involves production and cost analysis, which describes the factors entering production and the way cost is measured. The final three chapters of this Part analyze perfect and imperfect competition along with the fundamentals of regulatory and antitrust policy.
A. ELASTICITY OF DEMAND AND SUPPLY

Review

The chapters of Part One discussed the general principles behind the determination of prices and quantities by markets. What are the key elements of that analysis? Glance back to the supply-and-demand diagram, Figure 4-5. Recall that the demand curve represents the different quantities that consumers are willing to buy at each price, while the supply curve shows the different quantities that firms are willing to sell at each price. The intersection of the two curves represents the competitive equilibrium—the price and quantity at which buyers willingly buy exactly the amount that sellers willingly sell.

If price lay above the competitive price, this would create an oversupply, with firms wishing to produce and sell more than consumers were willing to purchase. In a competitive market, such a glut would lead to a fall in price back toward equilibrium. Similarly, if price stood below the equilibrium price, the eager buyers would want to buy more than sellers were producing, and price would be driven up by the spirited bidding of buyers, until finally price arrived back at its equilibrium.

Turn also to Figure 4-6(a), which illustrates a shift in supply. This decrease in supply might occur because of unfavorable weather or a rise in costs of production. Recall that in this case demand was unchanged, so that the shift in supply caused a rise in price which in turn induced a decrease in quantity demanded. Remember not to confuse this sequence with a decrease in demand; restoring equilibrium required a movement along the demand curve, not a shift of the demand curve. After the supply shift and the response of quantity demanded, a new equilibrium was reached at E'.

As an exercise, describe the movement from one equilibrium to another in the case of the demand shift displayed in Figure 4-6(b).

In addition to these examples, refresh your memory about important concepts such as the assumption that other things are held equal; the diverse forces that lie behind the supply and demand curves; and the nature of equilibrium. Recall as well the law of downward-sloping demand, which states that the demand curve slopes down and to the right, reflecting the observation that quantity demanded tends to increase as the price of a commodity falls.

We now leave our review and proceed to break new ground.

Price and Revenues

Our supply-and-demand analysis shows clearly that an increase in supply, say arising because of an abundant harvest, will tend to depress price. So it is no surprise that early economists like Gregory King should have remarked on this fact. But King also observed a less obvious point. His statistical studies convinced him that farmers as a whole receive less total revenue when the harvest is good than when it is bad. Paradoxically, then, good weather is bad for farmers as a whole.

This fact, that large harvests (high Q) tend to be associated with low revenue (equal to $P \times Q$), has dogged every American president who has reckoned with low incomes of farmers. The relationship between price and revenue introduces a new and impor-
tart economic concept, price elasticity of demand. Any business firm tempted to cut its price in order to sell more and increase its profits must consider its price elasticity of demand.

PRICE ELASTICITY OF DEMAND

We know that, according to the law of downward-sloping demand, quantity demanded tends to vary inversely with price: quantity demanded falls when price rises, and quantity demanded rises when price falls. We here consider how much quantity demanded will change in response to a change in price.

The *price elasticity of demand* (or the "elasticity of demand" for short) is a concept that measures how much the quantity demanded of a good changes when its price changes. Elasticity is analogous to responsiveness; a good is "elastic" when its quantity demanded responds greatly to price changes. Demands for goods differ in their elasticities: Demand for food generally responds little to price changes and is inelastic, while airline travel is highly price sensitive and is therefore elastic.

The concept of price elasticity allows us to attach a precise number to the degree of price responsiveness of the demand for different goods. Price elasticities are classified in three categories depending upon the response of quantity demanded to price change.

1. When a 1 percent rise in price calls forth more than a 1 percent decline in quantity demanded, this is *price elastic demand*.
2. When a percentage rise in price results in an exactly compensating decline in quantity demanded (so that total revenue remains unchanged), this is *unit-elastic demand*.
3. When a 1 percent rise in price evokes less than a 1 percent fall in quantity demanded, this is *price inelastic demand*.

These definitions refer to rising prices and declining quantities. They could just as well refer to falling prices and rising quantities. Moreover, as we shall see, we can calculate elasticities for price changes other than 1 percent.

Price Elasticity in Diagrams

Figure 5-2 illustrates the three cases of elasticities. In each, price is cut in half as we move from point A to point B. The easiest to begin with is the borderline case of unitary elasticity of demand shown in Figure 5-2(b). In this example, the doubling of quantity demanded exactly matches the halving of price, so revenue received remains unchanged.

In Figure 5-2(a), a halving of price has produced a tripling of quantity demanded, so demand is price elastic. In Figure 5-2(c), the halving of price led to only a 50 percent increase in quantity demanded, so this is the case of price inelastic demand.

Measurement of Elasticity

The actual numerical definition of price elasticity of demand follows naturally from its definition. The coefficient of demand elasticity, E_D, between two different points on a demand curve is:

$$\text{Price elasticity of demand} = E_D = \frac{\text{percent increase in } Q}{\text{percent decrease in } P}$$

Note that P and Q move in opposite directions because of the law of downward-sloping demand. Also, the use of percentages brings in the property that the units of goods or of prices — bushels or tons, dollars per bushel or francs per ton — do not affect elasticity.\(^1\) Note also that we follow the convention of measuring demand elasticity as a positive number simply for convenience.

Numerical Measurement We pause to examine the details of numerical measurement of E_D. You may have noticed that there is always a slight ambiguity

\(^1\) Before moving on, note that the units or scale will affect the slope of the demand diagram, and we can make a curve look steep or flat by changing the scale of one of the axes (see the appendix to Chapter 1 for a discussion of this point). Further, it is important not to confuse slope and elasticity. As Fig. 5-2(b)'s curve with $E_D = 1$ shows, a curve of constant elasticity is not a straight line with constant slope, but rather one whose slope varies in order to keep the percentage changes of price and quantity in the same ratio. So the purpose of a later section is to help you avoid confusing slope and elasticity.
about percentage changes. This ambiguity concerns whether the change is measured against the initial or the final quantity. Suppose a record shop buys a record for $6 and sells it for $9. Is this $3 markup a 50 percent change, $3 being 50 percent of the lower base of $6? Or is it a $3 $\frac{1}{3}\frac{1}{3}$ percent change, $3 being one-third of the larger $9 base? Both these approaches to calculating percentage changes are correct.

Fortunately, when it comes to very small percentage changes, as from 100 to 99, the difference between $\frac{1}{99}$ and $\frac{1}{99}$ becomes hardly worth talking about. But for larger ones, it may make quite a difference, and the chosen method must be used consistently.

To resolve this ambiguity, we choose a third option for calculating percentage change: we relate the price change to neither the higher nor the lower of the two Ps, but to their average. The same averaging method will be used here for Q. Hence, we say that a cut from 101 to 99 is a change of $\frac{1}{99}$, because the average of 99 and 101 is 100. This is the method we will use in calculating demand elasticity. It is shown in the formula:

$$E_D = \frac{Q_2 - Q_1}{(Q_1 + Q_2)/2} \cdot \frac{P_2 - P_1}{(P_1 + P_2)/2}$$

where P_1 and Q_1 represent the original price and quantity and where P_2 and Q_2 stand for the new price and quantity.

Table 5-1 at the top of the next page is self-explanatory: it shows how to calculate E_D for three movements along a straight-line DD curve. We shall see that such DD curves start out elastic at high P and end up inelastic at low P, passing through unitary elasticity at an intermediate position where total revenue $P \times Q$ is at its maximum.

Elasticity and Revenue

An understanding of price elasticity is crucial for many business and economic decisions because elasticity determines the effect of price changes on the total revenue gained from a commodity’s sale. Let us look at the relationship between price elasticity of demand and total revenue.

Total revenue is by definition equal to price times quantity (or $P \times Q$). If consumers buy 5 units at $3 each, total revenue is $15.

The three cases of elasticity correspond to three different relationships between total revenue and price changes. If a price decrease leads to a decrease in total revenue, this is a case of inelastic demand; if a price decrease leads to an increase in total revenue, this is the case of elastic demand; and if a price de-
increase leads to no change in total revenue, this is the borderline case of unit-elastic demand.

We can return to Figure 5-2 to illustrate the three cases. Recall that in each case price was cut in half as we moved from point A to point B. In the borderline case in (b), the quantity reduction just matched the price increase, with total revenue unchanged at $1000 million. So we know that this is the unit-elastic case.

Is it possible to read off the revenue response in the diagram itself? Yes, as long as we recall that total revenue is the arithmetic product of price times quantity, $P \times Q$. Further, the area of a rectangle is always equal to the product of its base times its height. Total revenue at any point on a demand curve can thus be found by examining the area of the rectangle formed by the P and Q at that point. You can check that the shaded rectangle at A in Figure 5-2(b) does have a base equal to Q and a height equal to P. Hence, if we watch how the area of each point's rectangle changes as we cut price and move down the demand curve, we can determine whether demand is elastic, inelastic, or unit-elastic.

Clearly, in the middle diagram of Figure 5-2, the shaded areas are remaining the same because of offsetting changes in the Q base and the P height. This is what we would expect for the borderline case of unitary price elasticity of demand.

We can also see that Figure 5-2(a) corresponds to elastic demand. In this figure, the revenue rectangle expands from 1000 million to 1500 million as price is halved from 1000. Here, total revenue goes up when P is cut, so demand is elastic.

Figure 5-2(c) corresponds to the case of inelastic demand. In this case, the revenue rectangle falls from 40 million to 30 million when price is halved, so demand is inelastic.

Which diagram represents Gregory King's finding that a bumper harvest means lower total revenues for farmers? Clearly Figure 5-2(c). Which represents MCI Communications' belief that a reduction in its long-distance telephone rates would induce such a large volume of calls as to increase its total sales? Surely Figure 5-2(a).

An Example Suppose you are a firm operating a baseball franchise. Your team, the Albuquerque Dukes, usually operates with a half-empty stadium. Your business manager comes in and says, "We would like to increase ticket revenues for the Dukes' games as much as possible, and I estimate that the price elasticity for our tickets is: 0.5 between 5 and 10 a ticket, 1.2 between 10 and 12 a ticket, and 2 between 12 and 15 a ticket. Our current price is 10 a ticket. What should we do?"
By application of the elasticity formula, you see that if price is lowered below $10 a ticket, total revenues will go down because demand is price inelastic. If price is raised above $10, total revenues will fall because demand is price elastic in that range. Therefore, the ticket price of $10 will bring in the maximal revenues of the four ticket prices under consideration.

Graphical Measurement of Price Elasticity

Beware a very common mistake. Often the slope of a curve is confused with its elasticity. You might think a steep slope for DD must mean inelastic demand, and a flat slope must mean elastic demand. This is not quite true. Why not? Because the slope of DD depends upon the *absolute* change in P and Q, whereas the elasticity depends upon the *percentage* changes.

The straight line DD in Figure 5-3(a) illustrates the pitfall of confusing slope and elasticity. A straight line has the same slope everywhere. But at the top of the line, near A, the change in P is divided by a large P and the change in Q is divided by a small Q. Elasticity at that point is a very large percentage change in Q divided by a very small change in P and is hence almost infinitely large. So our numerical formula for E_D gives a very large E_D when you are high on the DD curve.

Further, above the midpoint M of any straight line, demand is elastic, with $E_D > 1$. At the midpoint, demand is of unitary elasticity, with $E_D = 1$. Below the midpoint, demand is inelastic, with $E_D < 1$.

When many students make the same mistake, there is usually a reason. The limiting cases of completely vertical and completely horizontal demand curves, shown in Figure 5-3(b) and (c), do validly portray the limiting cases of completely inelastic demand (0 elasticity) and infinitely elastic demand (∞ elasticity).

But do not think that the in-between cases, where

Figure 5-3 Slope and elasticity are not the same thing

All points on DD's straight-line demand in (a) have the same absolute slope. But above the midpoint, price, demand is elastic below it, demand is inelastic; at the midpoint, demand is unitary elastic. Only in the case of perfectly vertical or perfectly horizontal curves as in (b) and (c) can you infer inelasticity and elasticity from slope alone.
most of reality falls, can have their elasticities depicted by slope alone.*

Reasons for Elasticity Differences

Our analysis has concentrated solely on the measurement of elasticity. But why are the demands for some goods elastic while other demands seem quite unresponsive to price? A fuller discussion will be postponed to next chapter's analysis of the foundations of demand, but let us take a first look at the answer.

For necessities like food, fuel, and shelter, demand tends to be relatively unresponsive to price changes. Such items are the staff of life and cannot easily be forgone when their prices rise. By contrast, you can perhaps abstain from luxuries like vacations, 17-year-old Scotch whiskey, and designer clothing in response to rising prices without a major decline in satisfactions.

In addition, those goods that have ready substitutes tend to have higher price elasticities than those that have no substitutes. If the price of gasoline rose 20 percent tomorrow, most workers and shoppers could hardly ride horses for their transportation needs, so the demand for gasoline would tend to be quite inelastic in the short run. On the other hand, if hoof-and-mouth disease decimates cattle herds and drives up beef prices, people can turn to lamb or poultry for their meat needs, so beef shows a high price elasticity.

Other factors also affect the size of price elasticities. Those goods that consume a large fraction of income tend to be more responsive to price than those that are a trivial part of spending. Compare the effect of a doubling of automobile prices to a doubling of shoelace prices: you might not even notice a shoelace price inflation, so the demand for shoelaces will be price inelastic. Similarly, as we discuss later in this section, the response of demand to price depends upon the length of time since the price change. Studies have shown that the doubling of gasoline prices in the 1970s had little effect on demand for a year or so. But as people began to replace their gas-guzzling behemoths with efficient Japanese subcompacts, the demand for gasoline declined sharply relative to earlier trends.

This brief survey of the determinants of the price elasticity of demand reveals that important economic factors lie beneath the price elasticities for individual goods.

Other Demand Elasticities

Elasticities turn up in many other areas and indeed are among the concepts essential for mastery of elementary economics. The next section extends price elasticity to the supply side of the market, but first we mention two other types of elasticities that relate to the demand for a commodity.

The first is the income elasticity of demand for a good. We saw in Chapter 4 that one of the important determinants of a person's or country's demand for a good is the level of income of the person or country. For normal goods, demand responds positively as income rises. The responsiveness of demand to income

* A simple device will allow us to calculate E_p at any point on a straight line. This device will provide the same number for elasticity as the formula given above: $E_p = -\frac{\text{length of the line segment below the point}}{\text{length of the line segment above it}}$. Since M in Fig. 5-3(a) is halfway, the formula given gives $E_p = 1$, unitary elasticity. At F, it gives $3M = 3.0$, so $E_p = 1.5 = 0.33$.

Knowing how to calculate E_p for a straight line enables you to calculate it for any point along a curved DD. (1) Draw the straight line tangent to the curve at your point (e.g., at B in Fig. 5-4); (2) calculate the E_p for the straight line at that point (e.g., E_p at F = 3); (3) identify your resulting ratio as the convex elasticity for the DD curve at your chosen point. Question 12 at the end of this chapter shows how to prove this rule for calculating the elasticity of a straight line.
is the income elasticity, which measures the percentage response in demand for every 1 percent increase in income. High income elasticities, such as are found for airline travel or VCRs, indicate that the demand for these goods rises rapidly as income increases. Low income elasticities, such as for food or shoes, denote a weak response of demand as income rises. We present a fuller discussion of income elasticities in the next chapter.

Another type of elasticity arises when we want to determine the effects of the price of one good on the demand for other goods. Say that the prices of oil and oil products rise sharply. What will happen to the consumption of oil? From the law of downward-sloping demand, we know that the demand for oil-based products like gasoline or heating oil will decline. But what of goods like natural gas and automobiles? People will probably substitute other fuels like natural gas for oil, so that the cross effect of oil price on natural gas demand will be positive. Moreover, studies have found that as the prices of oil and gasoline rise, consumers drive fewer miles and the demand for cars falls, so the cross effect of oil prices on car demand is negative. These cross effects are technically called cross elasticities of demand and measure the percentage increase or decrease in the demand for a good in response to changes in the prices of other goods. Chapter 6 will explore the different kinds of cross elasticities.

PRICE ELASTICITY OF SUPPLY

What we did for demand, we can also do for supply. Economists introduce the concept of price elasticity of supply to measure the responsiveness of the quantity supplied of a good to its market price. More precisely, the price elasticity of supply measures the percentage change in quantity supplied in response to a 1 percent change in the good’s price.

Suppose the amount supplied is perfectly fixed, as in the case of perishable fish brought to today’s market for sale at whatever price it will fetch. Then we face the limiting case of perfectly inelastic supply or a vertical supply curve.

Now, suppose instead that we have a horizontal supply curve. Here a tiny cut in P will cause Q to become zero and the slightest rise in P will coax out an indefinitely large supply. Put differently, the ratio of the percentage change in quantity supplied to percentage change in price is extraordinarily large. Thus for the horizontal supply curve, we find ourselves at the extreme of infinitely elastic supply.

Between such extremes, we call supply elastic or inelastic depending upon whether the percentage rise in Q is respectively greater than or less than the percentage rise in P that brought it about. And the borderline unit-elastic case, where price elasticity of supply equals 1, indicates that the percentage increase of quantity supplied is exactly equal to the percentage increase in price.

Define the numerical coefficient of supply elasticity, E_S, as follows:

$$E_S = \frac{\text{percentage rise in quantity supplied}}{\text{percentage rise in price}}$$

Figure 5-5 draws three important cases—the vertical supply curve showing perfectly inelastic supply; the
horizontal supply curve displaying perfectly elastic supply; and an intermediate case of a straight line, going through the origin, illustrating the borderline case of unitary elasticity.

What determines supply elasticity? One of the key factors is the time period under consideration: A given change in price tends to have greater and greater effects on amount supplied as the time for suppliers to respond increases. A point we explore further in the next section. The other factor influencing supply elasticity is the extent to which production in the industry can be increased. If, as in the case of textiles, looms, textile labor, fibers, and factories are plentiful at the going prices, then output can be sharply increased without a major increase in price. On the other hand, if, as in the case of South African gold, the mining capacity and ore deposits are severely limited, then even sharp increases in the price of gold will call forth but a small response in production of South African gold.

MOMENTARY, SHORT-RUN, AND LONG-RUN EQUILIBRIUM

We can advance our understanding of supply behavior by analyzing the time element in supply as it applies to the microeconomics of competitive equilibrium. At the turn of the century Cambridge University's great economist Alfred Marshall helped forge the supply-and-demand tools we use today. In addition, Marshall distinguished three time periods for supply:

- **Momentary equilibrium.** When supply is fixed.
- **Short-run equilibrium.** When firms can increase their output even though plant and equipment are fixed.
- **Long-run equilibrium.** When firms can abandon old plants or build new ones and when new firms can enter the industry or old ones leave it.

Consider the demand for a perishable good, such as fish that cannot be preserved. Let demand increase from DD to DD'. With the amount of fish supplied unchanged, the stronger demand sharply bids up the momentary price of fish. This is shown in Figure 5-6(a), where the vertical supply curve S_mS_m runs up to the new demand curve DD' to determine the new, sharply higher momentary equilibrium price shown at E'. The price has had to rise greatly in order to ration the fixed supply of fish among the now more eager demanders.

But with so high a price prevailing in the market, skippers of the fishing boats will soon be motivated to hustle around to increase their catch. They do not, in the short run, have the time to get new boats built, but they can hire more hands and work longer hours. They will in the short run begin to bring to the market a greater quantity of fish than they did at the old momentary equilibrium. Figure 5-6(b) shows the new S_Ss_S short-run supply schedule. It intersects the new demand curve at E'', the point of short-run equilibrium. Note that this equilibrium price is lower than the momentary E' price in Figure 5-6(a). Why? Because of the extra quantity of fish induced in the short run by more intensive use of the same number of boats.

Figure 5-6(c) shows the final long-run equilibrium price. The higher prices that long prevailed have coaxed out more shipbuilding and attracted more sailors into the industry. Seeing the high price of fish and the potential for high profits, new firms entered the industry. Where the long-run supply curve S_Ls_L intersects the demand curve DD' at E''' is the final equilibrium reached after **all** economic conditions (including the number of ships and shipyards) have adjusted to the new level of demand.

Note that the long-run equilibrium price is lower than the short-run equilibrium price, and much lower than the momentary equilibrium price. Yet it is still a little bit higher than the price that prevailed previously when demand was lower. We call this case, where the long-run supply curve is upward-sloping, an “increasing-cost industry.” Marshall regarded this as the usual one in most large competitive industries.

Why usual? Because when a large industry such as fishing expands, it must coax workers, ships, ice, and other productive inputs away from other industries. It
does so by bidding up their prices, which increases its costs of producing output. Therefore, the long-run supply curve for a competitive industry will usually slope gently upward, as it does in Figure 5-6(c). Only when the industry is small, and it employs but a tiny fraction of the specialized inputs like sailors or ice, will the long-run supply curve be horizontal, as in the perfectly elastic supply curve in Figure 5-5. Such an industry is said to experience "constant cost."

Test your understanding of this discussion by now assuming a downward shift in the demand curve back to DD. Show what happens in the new momentary run, in the short run, and in the long run.

Time Element in Demand

Demand will show a time-varying pattern of response as well. A good example is that of gasoline. Let's say you are on a long trip when the price of gasoline suddenly shoots up. You are unlikely to sell your car or abandon your vacation; thus in the momentary case, the elasticity of demand may be near zero.

In the short run, with no change in the stock of cars, you may have somewhat more flexibility. You can ride your bike, take the train, or carpool with other people. This increased flexibility in the short run will produce some noticeable demand elasticity over a year or so. Studies indicate that the demand elasticity for gasoline for a short period might be 0.1 or so.

In the very long run, contrary to what many people believe, the price elasticity for gasoline is quite large, perhaps as large as 1. Why? Primarily because when they are faced with much higher gasoline prices, people buy smaller cars that have much better fuel economy. By replacing their gas guzzlers that get 10 miles per gallon with sleek front-wheel-drive subcompacts getting 30 mpg, people can reduce their demand for gasoline, other things equal, by two-thirds.

When we consider how the time element affects both supply and demand, we often find that in the very short run, prices move violently and quantities move modestly. In the very long run, however, prices move little and quantities move substantially. This
pattern can be seen as a result of the phenomenon of small supply and demand elasticities in the short run and larger ones in the long run.

We now end our analysis of the technical aspects of elasticity and return to the mainstream of supply and demand.

B. APPLICATIONS OF SUPPLY AND DEMAND

Supply-and-demand analysis is one of the most useful tools that economics has to offer. Like a Swiss Army knife, it can perform many simple tasks. But, as with any tool, proper employment of supply and demand curves requires a great deal of practice—being mindful to keep other things equal and to distinguish shifting curves from movements along curves—lest you stumble into one of the common pitfalls of economic analysis.

We now move on to some important applications of supply and demand. Supply and demand help us understand the plight of farmers and analyze the kind of measures that the government can take to boost farm incomes. We then examine the incidence of a tax, review how governments intervene in markets, and finish with an investigation of the efficiency of market equilibrium.

THE ECONOMICS OF AGRICULTURE

Supply and demand apply strictly speaking only to perfectly competitive markets—where a homogeneous product is auctioned off in markets served by large numbers of buyers and sellers. Although perfect competition does not accurately describe most of American life, it does apply closely to the agricultural sector. Farming is also a valuable area to examine because it dominates the politics of many states, and its products are a vital export resource.

Long-Run Relative Decline of Farming

Farming was once our largest single industry, and it remains so in most developing countries. A hundred years ago, half the American population lived and worked on farms, while today only 3 percent of our work force tend crops. What lies behind this relative shift away from agriculture? In part, people sought the higher incomes and more active social life of cities, and in part many black families left the south in search of what they thought to be greater opportunity in the large northern cities.

In addition, technological progress has enormously reduced the number of farmers needed to feed the population. Mechanization with tractor, combine, cotton picker; fertilization and irrigation; selective breeding and miracle hybrid seeds—all these innovations vastly increased the productivity of agricultural inputs.

Finally, as we saw earlier, the demand for food tends to grow relatively slowly as incomes expand. The low income elasticity for food products, revealed by almost every statistical study of food demand, means that the demand for food has grown more slowly than has national income.

Decline of the Farm: Graphical Analysis

A single diagram can explain the sagging trend in farm prices better than libraries of books and editorials. Figure 5-7 shows an initial equilibrium with high prices at point E. Observe what happens to agriculture as the years go by. We know that demand shifts to the right with the increase in the American population. But because foods are necessities with low income elasticities, the demand shift is small over time in response to growing average incomes.

What about supply? Although many people mistakenly think that farming is a backward business, statistical studies show that productivity (output per unit of input) has grown more rapidly in agriculture than in most other industries. So as new machinery, technologies, and seeds have been introduced, the supply curve has shifted a great deal to the right, as shown from S5 to S5' in Figure 5-7.

What must happen at the new competitive equilibrium at point E'? Sharp increases in supply outstrip modest increases in demand to produce a downward
One of the most common government farm programs requires farmers to restrict the planted acreage. Figure 5-8 shows the economics of this policy. If the Department of Agriculture requires every farmer to "set aside" 20 percent of the last year's planted area of corn, this has the effect of shifting the supply curve of corn up and to the left. Because the demands for corn and most other agricultural products are inelastic, such crop restrictions not only raise the price of corn and other crops; they also tend to raise the total revenues earned by farmers and total farm incomes.

Of course, consumers are hurt by the crop restrictions and higher prices—just as they would be if a flood or drought created a scarcity of foodstuffs. But this is the price society must pay when it chooses artificially to idle productive farm resources.

Crop Restrictions Farmers have not taken their plight fatalistically. In response to falling incomes, they invaded Washington and surrounded the White House with a brigade of tractors. Governments over the ages have taken many steps here and abroad to help farmers: they have raised prices through price supports; they have curbed imports through tariffs and quotas; in the 1980s the Treasury simply mailed a subsidy payment to farmers for every bushel of wheat or corn harvested.

Figure 5-7 Agricultural distress results from expanding supply and price inelastic demand

Start at initial equilibrium at E. The increase in demand for farm products tends to be far less than the vast increase in supply generated by technological progress. Hence competitive farm prices tend to fall. Moreover, with price inelastic demand, farm incomes are reduced with increases in supply.

trend in farm prices. And this is precisely what has happened in recent decades: from 1951 to 1986, the prices of crops have fallen 62 percent relative to the overall price level. And with demand being inelastic, as prices fell, what happened to farm incomes? They tended to decline as well.

Figure 5-8 Crop restriction programs raise both price and farm income

Before the government program, the competitive market produces an equilibrium with low price at E. When farmers persuade the government to restrict production, the supply curve is shifted leftward to $S'S'$, moving equilibrium to E'. With inelastic demand, confirm that new revenue rectangle $OBE'S'$ is larger than original revenue rectangle OAE.
European countries set gasoline taxes at $1 or $2 per gallon, while in America the federal tax is but a few pennies per gallon. Advocates of higher gasoline taxes point out that the country would benefit twice from a tax of as high as $1 per gallon: The tax would not only bring in precious revenues to reduce our budget deficit, but it would also curb our growing oil consumption and reduce our dependence on insecure foreign sources of supply.

Let us use supply and demand to analyze the incidence of a $1 tax on gasoline. By "incidence" we mean the ultimate economic impact of a tax. Is its burden shifted back completely onto the oil industry? Or will it be shifted forward in part to the consumers? The answer can be determined only from supply and demand curves. Figure 5-9 shows the original equilibrium to be at E, the intersection of the SS and DD curves, with gasoline price of $1 a gallon and total consumption of 100 billion gallons per year.

We represent the imposition of a $1 tax as an upward shift of the supply curve with the demand curve remaining unchanged. To understand this approach, consider first the demand curve. There is no reason for a $1-per-gallon tax to have shifted the demand curve. Holding other things like income and automobile prices equal, consumers will still be willing to buy the same amounts of gasoline at the prices given by the original demand curve. Consumers may not even know whether the price they pay goes to the government, the oil companies, or Saudi Arabia.

But the whole supply curve is shifted upward and leftward: leftward, because at each market price the producers will now supply less as a result of the tax; upward, because to get the producers to bring any given quantity to market (say, 100 billion gallons), we must give them a higher market price than before—$2 rather than $1, which is higher by the exact amount of the $1 tax the producers must pay.

To reinforce your understanding, first construct a table that shows the original supply curve in Figure 5-9 (similar to that in Figure 4-3, page 60). Then put in a second column the new supply curve after the $1 tax has been imposed.

To repeat, in Figure 5-9 the demand curve DD is unchanged, but the SS supply curve has been shifted up everywhere by $1 to a new parallel supply curve S'S'.

FURTHER EXAMPLES OF SUPPLY-AND-DEMAND ANALYSIS

How does supply and demand apply outside of agriculture? We begin with an important example that concerns the effect of a tax on price and quantity. After reviewing a common fallacy, we then examine briefly four applications of supply and demand from different areas of economics.

Incidence of a Tax

Governments levy taxes on a wide variety of commodities—on cigarettes and alcohol, on payrolls and profits. Can we use our analysis to examine the microeconomic impact of a tax—its incidence on a particular industry?

Yes. An important case is the gasoline tax. Most
Where will the new equilibrium price be? The answer is found at the intersection of the new supply and demand curves, or at E', where $S'S'$ and DD meet. Because supply has decreased, the price is higher. Also, the quantity bought and sold is reduced. If we read the graph carefully, we find that the new equilibrium price has risen from $1 to about $1.90. The new equilibrium output, at which purchases and sales are in equilibrium, has fallen from 100 billion to about 77 billion gallons.

Who ultimately pays the tax? What is its incidence? Clearly the oil industry pays a small fraction, for it receives only 90 cents ($1.90 = $1 tax) rather than $1. But the consumer bears most of the burden, with the retail price rising 90 cents. The incidence lies most heavily on the consumer because supply is relatively price elastic while demand is quite price inelastic.

More generally, the incidence of a tax will fall most heavily on consumers or on producers depending upon the relative elasticities of demand and supply. A tax is shifted forward onto consumers if the demand is inelastic relative to supply; a tax is shifted backward to producers if supply is relatively more inelastic than demand. (To test your understanding of these points, work through the alternative assumptions in the legend to Figure 5-9.)

The supply-and-demand analysis of taxes can apply to many other kinds of taxes as well. Using this apparatus we can understand how cigarette taxes affect both the prices and consumption of cigarettes; how taxes or tariffs on imports affect foreign trade; and how taxes on inputs like labor, capital, and land will affect wages, interest rates, and land rents.

A Common Fallacy

By now you have mastered supply and demand. Or have you? You know that a tax will have the effect of raising the price that the consumer will have to pay. Or do you? Consider the following argument often seen in the press and heard from the political platform:

The effect of a tax on a commodity might seem at first sight to be an advance in price to the consumer. But an advance in price will diminish the demand. And a reduced demand will send the price down again. Therefore it is not certain, after all, that the tax will really raise the price.

Will the tax raise the price or not? According to the paper's editorial and the senator's oratory, the answer is, No.

We have once again encountered the confusion of movements along curves versus shifts of curves. (Recall a similar example given in Chapter 4, page 66.) The second sentence in the quotation is incorrect: the speaker has confused a downward shift with a movement along the demand curve. Since the demand curve remains unchanged after the tax increase, there cannot be any shift in demand. Generally, then, the tax really will raise the price.

Four Examples of Supply and Demand at Work

Everyday life offers countless problems and issues that can be completely understood only by a careful analysis of supply and demand. Here are four:

- **Deregulation and airfares.** Until the late 1970s, the federal Civil Aeronautics Board limited competition among airlines by restricting the entry of both new and established airlines into most cities. Ticket prices were high and many flights were virtually empty. Criticisms led to a complete deregulation by 1980, and the industry saw the growth of many upstart airlines like Continental Airlines and Texas Air along with the bankruptcy of poorly managed airlines.

 Figure 5-10(a) illustrates the effect of deregulation on airfares: the entry of new airlines and the expansion of established carriers increased supply, shifted out the supply curve, drove down the average price of air travel, and greatly increased the volume of air travel. Those who benefited most were people who bought discount fares and people living in hub cities, such as New York and Chicago, where intense competition drove prices in the late 1980s well below those of the 1970s.

- **Restriction of the supply of doctors.** The number of candidates for medical school is many times greater than is the number of places. For every medical school slot, two people take the required entrance
examination. This limitation is enforced by stringent certification of medical schools imposed by the American Medical Association.

The restriction effectively decreases the supply of doctors, shifting the supply curve of physicians to the left in Figure 5-10(b). Proponents of this and similar certification procedures defend them as necessary to maintain high standards of quality.

Because the demand for medical care is inelastic, this restriction raises the price of medical care and the incomes of doctors. The higher quality comes at the expense of more costly medical care.

A tariff on automobiles. From the era of Henry Ford until the 1950s, the United States dominated the world automobile market. Then, with the rapid growth and technological sophistication of Europe and Japan, imports made large inroads in American markets, attaining a 25 percent market share by the 1980s. Automobile companies and unions, hard hit by excess capacity and unemployment, lobbied for restrictions on foreign-made cars.

One proposed solution was to put a tariff on autos. A $2000 tariff would reduce supply of imported autos, shifting the supply curve to the left. The price...
of imports would rise, and the quantity demanded would fall. See Figure 5-10(c).

Also, the demand for domestic autos would shift to the right and upward. Why? The demand for domestic autos would increase because the price of a close substitute for domestic autos (i.e., the price of imported autos) was higher after the tariff. Thus both the price and quantity of domestic autos would rise, as the demand curve moves northeast along a given supply curve for domestic autos.

* Technological advance. One of the recurring dilemmas of labor is how to react in the face of technological change. Should laborers welcome innovation, as did the United Mine Workers under John L. Lewis? Or should they attempt to sabotage new machinery, as did the Luddites in nineteenth-century England, and as some labor unions today might desire?

This is a somewhat involved question, but it can be simplified as follows: Assume that a commodity (say, coal or haircuts) is competitively produced at constant costs by labor alone. Thus the supply curve for coal or haircuts is horizontal at a price given by the average labor cost per unit of output. A technological improvement that doubles labor productivity will halve costs and price. What will happen to the demand for labor? It depends simply on the demand elasticity for the industry’s product. Since all revenues go to pay wages, total wages will rise or decline as demand is elastic or inelastic. If demand elasticity is 2, then Figure 5-10(d) shows how the technical advance will raise total revenues. It will also double total wages, and will therefore shift the demand curve for labor to the right.

By using supply and demand, we can predict that workers in an industry might be hostile to technological advance in industries where demand is inelastic.

GOVERNMENT INTERVENTION IN MARKETS

Is the Law of Supply and Demand Immutable?

The applications above show how supply and demand work to determine the competitive price and quantity of different goods. But do not costs or tastes or incomes also affect price? Surely we have overlooked the role of government taxes and spending along with the impact of foreign trade.

Actually, price does depend on these and other factors. But they do not add to the forces of supply and demand; rather, they are among the numerous forces that act through supply and demand. Hence if government spends more money on road-building or mine sweepers, this will shift out the demand for different products and raise their prices. But competitive price is still determined by supply and demand. In sum, supply and demand are not the ultimate explanations of price. They are merely useful catchall categories for analyzing and describing the multitude of forces, causes, and factors impinging on price. Rather than final answers, supply and demand represent the beginning of economic understanding.

Once we understand that important forces lie behind supply and demand, we can recognize the confusion of novices who utter, "You can't repeal the law of supply and demand. King Canute knew he could not command the ocean tide to retreat from his throne on the seashore. Likewise, any wise government knows it cannot evade, or interfere with, the workings of supply and demand."

It would be better not to have learned any economics than to be left with this opinion. Of course the government can affect price. Governments affect price by influencing supply or demand, or both.

Indeed, governments over the ages have used cartels to fix prices or restrict outputs. The Organization of Petroleum Exporting Countries (OPEC) limited production in the 1970s and again in 1986, thereby raising prices manyfold. Brazil has burned coffee to raise its price. Countries limit sugar production to keep prices high. And so forth.

These governments have not violated the law of supply and demand. They have worked through the law of supply and demand. The state has no secret economic weapons. What is true for the state is also true for individuals. Anyone can affect the price of wheat who has either sufficient money to throw on the market or wheat to hold off the market.

Prices Fixed by Law

There is one genuine government interference with supply and demand whose effects we must analyze.
The government sometimes legislates maximum or minimum prices. Thus, in 1988, a floor of $3.35 in the form of a minimum hourly wage applies to most workers. In war or in peace, wage and price controls may be enacted by the government—the last example of wage and price controls in the United States coming under President Nixon in the early 1970s.

These interferences with the laws of supply and demand are genuinely different from governments acting through supply and demand. Let's see why.

Price Ceilings Consider market gasoline, which has ordinary curves of supply and demand such as we have repeatedly met in this chapter. Let’s say we start out in a situation where the price of gasoline is $1 a gallon. Then, because of a war or revolution, a drastic cut in oil supply occurs—that is, the supply curve of oil shifts far to the left. Imported gasoline rises to $2 a gallon, and prices of domestic oil start to climb.

Senators rise to denounce the situation. Oil companies are called “profiteers.” The poor are subject to a heavy “tax” from offshore and domestic gougers. And the rising prices surely threaten to add to an inflationary spiral in the cost of living. So goes the argument of price controllers (as the United States saw in the 1970s).

As a result, the government might choose to control prices (as it did in 1973–1981 for oil and still does for natural gas). It passes a law putting a maximum price on gasoline at the old level of $1 a gallon. The ceiling-price line CJ in Figure 5-11 represents the legal ceiling price. Now what will happen?

At the legal ceiling price, supply and demand do not match. Consumers want billions of gallons of gasoline in excess of what producers are willing to supply. This is shown by the gap between J and K. This gap is so large that before long there will not be enough fuel in dealers’ pumps or storage tanks to make up the difference. Somebody will have to go without. If it were not for the maximum-price law, this somebody would gladly bid the price up to $2 or more, rather than do without gas.

But it is against the law for the producer to accept a higher price. There follows a period of frustration and shortage—a game of musical cars in which somebody is left without gasoline when the pump runs dry. The inadequate supply of gasoline must somehow be rationed. At first, this may be done by “first come, first served,” with or without limited sales to each customer. Lines form, and much time has to be spent foraging for fuel.

Rationing Eventually, some kind of non-price rationing mechanism evolves. In the case of gasoline, it is often rationed by making people wait in line.

Nobody is happy, least of all the harassed dealer. Were it not for the community’s elementary sense of fair play the situation might soon become intolerable. It is no wonder that black markets (or illegal sales) occasionally develop; the real surprise is that they do not occur sooner.

If for political or social reasons market price is not to be permitted to rise high enough to bring quantity demanded down to the level of quantity supplied, ultimately some kind of non-price rationing develops. Governments generally turn to formal allocation or coupon rationing during periods of extreme shortages.
Under coupon rationing, each customer must have a coupon as well as money to buy the goods—there are two kinds of money. Once rationing is adopted and tickets are handed out according to family size, occupational need, or other criteria, many people have a sigh of relief, because now sellers need not turn people away and now buyers can count upon getting their fair quota of the limited supplies.

Just how do ration coupons work out in terms of supply and demand? Clearly, one must try to issue just enough of them to lower the demand curve to \(D'D' \) in Figure 5-11, where supply and the new demand balance at the ceiling price. If too many coupons are issued, demand is still too far to the right and we encounter the old difficulties, but to a lesser degree. If too few coupons are issued, stocks of fuel will pile up and \(P \) will fall below the ceiling price. This is the signal for liberalizing the gasoline ration.

Coupon rationing has fallen out of favor in most market economies. But the lessons of the history of rationing and price controls extend far beyond the problems of war or energy crises for, like the breakdown of price mechanisms in hyperinflation, such abnormalities illuminate the function of prices in normal times.

The point to recall is that goods are always scarce; society can never fulfill everyone’s wishes. In normal times, price itself rations out the scarce supplies—rising to choke off excessive consumption and to encourage production; falling to encourage consumption, discourage production, and work off excessive inventories. When governments step in to interfere with supply and demand, something besides money fills the role of rationer, and studies indicate that serious waste and inefficiency are a certain companion of these interferences.

Minimum Floors and Maximum Ceilings

When there arises any kind of emergency or state of general shortage and inflation, political pressures develop for wage and price controls. Experience has taught that such extreme measures may work in short emergencies. But detailed sector-by-sector price and wage controls tend to create greater and greater distortions and inefficiencies the longer they are in effect. Economists therefore generally recommend that such blanket controls be reserved for emergency periods.

Nevertheless, as Adam Smith well knew when he protested against the devices of the mercantilist advisers to the earlier kings, most economic systems are plagued by inefficiencies stemming from well-meaning but inexpert interferences with the mechanisms of supply and demand. We can analyze three kinds of government intervention as a way of understanding the impact of keeping price from equating supply and demand. The examples shown in Figure 5-12—the minimum wage, rent controls on housing, and interest-rate ceilings—illustrate how surprising side effects often arise when governments attempt to interfere with market determination of price and quantity.

- **Minimum wage rates.** Governments sometimes legislate a minimum wage rate that sets a floor for most jobs, this rate having been frozen at \$3.35 per hour since 1981 under federal law. Although almost everyone would agree that a living wage requires even higher pay, studies show that a high minimum wage often hurts those it is designed to help. What does it profit an unskilled youth to know that a job will pay \$3.35 an hour if no jobs are available?

- **Rent controls.** No one likes to pay rent. Moreover, houses and apartments look so durable that people sometimes forget that they must be built and maintained. It is quite natural, therefore, that governments sometimes impose rent controls as a way of keeping rents down.

The supply-and-demand analysis shown in Figure 5-12 shows the effects of rent controls. At the controlled rental price, there is a large group of buyers who cannot find an apartment. People hang on to too large apartments because they are cheap. Non-price rationing occurs, as people have to bribe landlords or pay enormous security deposits to obtain a rental apartment. New building—along with maintenance and upgrading of existing rent-controlled dwellings—suffers.

Historical experience in New York, Berkeley, Paris, and other cities shows that just such problems have arisen when effective rent-control measures were adopted. New York has seen tens of thousands
of buildings abandoned because the controlled rents were too low to cover expenses and taxes. In the wry words of one European critic, "Nothing is as efficient at destroying a city as rent controls—except for bombing."

* Interest-rate ceilings. Interest rates are the price paid when people borrow money. That is, when you borrow $5000 to buy a car or to finance your education, you might have to pay 10 percent (or in this case, $500) per year as interest on the borrowed funds.

Since biblical times, the charging of interest has been an object of suspicion, for people wonder why a borrower need pay a lender anything for the use of funds when the lender performs no visible service. In earlier times, lending at interest was a crime, and even today some states place a legal maximum on interest rates.

Unfortunately, the ceiling is sometimes far below the interest rate that would be determined by supply and demand. While 18 percent per year might seem high for a credit-card or a car loan, this high rate might barely cover administrative costs and the risk of default. What is the result of too low a ceiling on interest rates? Funds dry up. Banks or other financial institutions refuse to make unprofitable loans at the legal rate. Those who are the intended beneficiaries find that they cannot get loans from anyone but a loan shark, and the interest rate might be as high as 50 or 75 or 100 percent per year. The inexpensive loan you cannot get does you no good.

EFFICIENCY AND EQUITY OF SUPPLY-DEMAND PRICING

We do not study supply and demand for the beauty of the subject. We study it for the light it throws on the organization of an economy's resources. The pathologies that arise when markets break down help to emphasize the remarkable efficiencies produced by perfect competition—when it is able to operate.

Why, then, do politicians and the populace keep interfering with the mechanism? Primarily, because people cannot live on efficiency alone. We must ask the questions: Efficiency for what? And for whom?
Most interferences in supply and demand are attempts to promote equity or to protect particular groups against the impersonal forces of supply and demand. Those helped are sometimes poor, sometimes affluent. The minimum wage probably raises the income of some low-wage workers at the expense of others who cannot find work or of consumers who must pay higher prices. Agricultural programs, such as those helping sugar farmers, aid some who are among the richest Americans. In each case, the legislature was persuaded to pay the costs of the market interference in order to protect a group of workers, firms, or consumers.

Evaluation of Government Intervention

Can we render final judgment on government interventions? Are all such interferences with the price system to be condemned?

Probably not. Careful analysis will find a role for government in markets. As noted in Chapter 3, markets sometimes fail to perform properly. Spillovers sometimes cause harm or good that is not included in the calculations of free and unregulated markets. Monopolies may take over industries. And the income distribution churned out by the invisible hand may be socially unacceptable. In each case, governments may guide the economy toward outcomes that society prefers.

Some market interventions by government are designed to override consumer preference. Is it possible that Congress knows better than consumers what is really good and evil? Take heroin as an example. Governments do not treat consumers as sovereigns who can decide how much heroin they will spend their dollar votes on. Where heroin is concerned, the state adorns a paternalistic attitude, treating consumers like children. Society also controls people’s behavior regarding cigarettes and other cancer-causing substances.

But where computer games and designer jeans are concerned, consumers are allowed to spend their dollars in their own ways. Perhaps advertising has given us one set of tastes, which may not be intrinsically better than another set. But in the interests of freedom, the consumer is treated as sovereign in most areas.

The rationale for government interference is particularly complicated when the sellers or the buyers in a market happen to be especially rich, especially poor, especially "deserving," or especially "undeserving." For example, suppose that 100 very wealthy oil drillers sold oil in competitive markets to 10 million very poor people. Would you be tempted to say, "Let’s control oil prices, not allowing the producers to get rich at the expense of the poor"? When oil prices were raised by OPEC in 1973, Congress took this view, and domestic oil prices were put under price controls. The result, as would be predicted by supply-and-demand analysis, was that oil imports grew rapidly. By 1979, a consensus developed that the equity gains from oil-price controls were not worth the efficiency losses, and domestic oil prices were gradually decontrolled.

Equity through Taxes; Efficiency through Markets

These and many other lessons lead many economists to take the following cautious approach toward government intervention:

Interfering with the competitive supply-and-demand mechanism is often an inefficient way of correcting the income distribution. Whatever distribution you want to end up with can often be more efficiently attained by using the tax system to redistribute income than by using narrow interferences in a single market.

Having put forth this cautious statement, we must emphasize that such a view is highly controversial. There is no unassailable answer as to how much government interference is right. And partisan politics intrudes to muddy the analysis. In fact you can see that some forms of government intervention occur in virtually all societies. Doctors often charge rich patients more than poor ones, subsidizing the latter from revenues of the former. Milk and other basic foods are subsidized in almost all countries. Basic education is universally available at highly subsidized prices. Do you see any pattern here?

* * *

This concludes our detailed introduction of supply-and-demand analysis. In the next few chapters we
will be looking carefully behind supply and demand curves to see why some cost curves are flat and some steep, why vital necessities like water are cheap, while luxuries like diamonds are expensive, and why competitive markets lead to an efficient (although possibly inequitable) allocation of resources.

Summary

A. Elasticity of Demand and Supply

1. Microeconomics deals with the detailed working of the market mechanism. It grapples with how the economy solves what, how, and for whom in each market. The supply and demand curves in Chapter 4 explain what goes on in each competitive market.

2. Price elasticity of demand determines what happens to total revenue as price is cut. Demand is elastic, inelastic, or unitary elastic, according to whether a reduction in price increases, decreases, or does not change total revenue. The numerical coefficient of price elasticity of demand is defined as "the percentage increase in quantity demanded divided by the percentage cut in price." Depending upon whether the percentage rise in Q exceeds or falls short of the percentage fall in P, we have $E_D > 1$ or $E_D < 1$, with $E_D = 1$ in between. Price elasticity is a pure number, involving percentages; it is not to be confused with absolute slope, as numerical tables and graphs can show.

3. Price elasticity of demand tends to be low for necessities like food and shelter and high for luxuries like snowmobiles and air travel. Other factors affecting price elasticity are the extent to which a good has ready substitutes and the length of time that consumers have to adjust to price changes. Additional elasticities relating to demand are: income elasticities, which indicate the response of demand to changes in consumer incomes; and cross elasticities of demand, which relate the quantity response of one good to the price change of another good.

4. Elasticity of supply measures percentage responsiveness of output supplied by producers when market P is raised by a given percentage.

5. Marshall stressed the time element in the supply curve: (a) momentary equilibrium of fixed supply; (b) short-run equilibrium with output varying within fixed plants and firms; (c) long-run equilibrium, when numbers of firms and plants, and all other conditions, adjust completely to the new demand conditions.

B. Applications of Supply and Demand

6. The apparatus of supply and demand enables us to analyze the effects of shifts in either curve, or in both simultaneously. In using this apparatus, we should avoid the pitfall of confusing the expression "an increase in demand" (i.e., an outward shift of the whole demand curve) with "an increase in quantity demanded" (i.e., a movement along an unchanged demand curve because price has changed). Similar cautions apply to increases in supply and increases in quantity supplied.

7. One of the most useful arenas for application of supply and demand lies in agriculture. Improvements in agricultural technology mean that supply increases greatly,
while demand for food rises less than proportionately with income. Hence free-market prices for foodstuffs tend to fall. No wonder that government has adopted a variety of programs, like crop restrictions, to maintain farm incomes.

8. A tax of so many dollars per unit of a good will shift the supply-and-demand equilibrium. The tax’s burden will be shifted forward to consumers rather than backward to the producers to the degree that the demand is inelastic relative to supply.

9. A thousand forces affect price. But in a freely competitive market, they do so only by acting through supply and demand. Governments usually affect price and quantity in individual markets by operating through supply and demand, but on occasion government affects price and quantity by setting maximum ceilings or minimum floors that interfere with the workings of competitive markets. Then quantity supplied need no longer equal quantity demanded. And some producers or consumers may wish to sell or buy more than they are able to at the legal price. Distortions and inefficiencies result. Unless the discrepancies between supply and demand are removed by legislation (rationing, etc.), disorder and black markets may result.

10. Interferences with supply and demand will often lead to inefficient pricing and allocations. Thus when the government interferes with supply and demand for the purpose of protecting one group or redistributing income, hidden costs may crop up because the protective or redistributive devices are inherently so inefficient. Often the same goal could be better accomplished by the simultaneous use of the tax system to promote equity and market pricing to preserve efficiency.

CONCEPTS FOR REVIEW

price elasticity of demand, supply total revenue, \(P \times Q \)
elastic, inelastic, unitary elastic
\(E_D = \frac{\% \text{ rise}}{\% \text{ cut}} \)
\(E_S = \frac{\% \text{ rise}}{\% \text{ rise}} \)
demand versus quantity demanded
income elasticity
momentary, short-run, long-run
equilibrium
shift of vs. movement along a curve
rationing required by price ceilings
time element in supply, demand
incidence of a tax: forward-shifting
onto consumers, backward-shifting
onto producers
efficiency vs. equity

QUESTIONS FOR DISCUSSION

1. List a number of factors that would increase the demand for concerts. Make another list of those factors increasing the supply of concerts.

2. For each pair of commodities, state which you think is the more price elastic and give your reasons: perfume and salt; penicillin and ice cream; cigarettes and books; ice cream and chocolate ice cream.

3. What will a rise in price do to total revenue when demand is elastic, inelastic, or unit-elastic? What will higher quantity do in the three cases?

4. "\(P \) drops by 1 percent, causing \(Q \) to rise by 2 percent. Demand is therefore elastic."
with \(E_D > 1 \).” If you change 2 to \(\frac{1}{2} \) in this sentence, what two other changes will be required?

5. Consider a competitive market for apartments. What would be the effect on the equilibrium output and price after the following changes (other things held equal)? In each case, explain your answer using supply and demand curves.
 (a) A rise in the income of consumers.
 (b) A $10-per-month tax on apartment rentals.
 (c) A government edict saying apartments could not rent for more than $200 per month.
 (d) A new construction technique allowing apartments to be built at half the cost.
 (e) A 20 percent increase in construction workers’ wages.

6. A recent study concluded, “It is one of the ironies of the apartment market in New York that, although there are three times more rent-regulated apartments than free-market apartments, yet it is much easier to find a vacant, unregulated apartment.” Using supply-and-demand analysis, explain this apparent paradox.

7. “A good harvest will generally lower the income of farmers.” Illustrate this proposition using a supply-and-demand diagram.

8. After studying the economics of gasoline taxation similar to that shown in Figure 5-9, the city of Washington, D.C., decided to pass a high gasoline tax. The city was surprised to find that the demand for gasoline sold within its city limits was highly elastic, as people simply went to the suburbs to buy gasoline, so that revenue collections were far under forecasts. Explain this situation verbally and graphically.

9. In response to low farm prices, governments have often purchased grains and other foods for government stockpiles. Explain the impact of this step on food prices and on farm incomes.

10. Elasticity problems:
 (a) Consider the baseball-ticket price example given on page 80. Assuming you sell 15,000 tickets at a ticket price of $10, calculate the revenues collected for ticket prices of $5, $10, $12, and $15.
 (b) Demand studies find that the price elasticity of demand for heroin is 0.1. Say that half the heroin users in New York City support their habit by criminal activities. Using supply-and-demand analysis, show the impact on crime in New York City of a tough law-enforcement program that cuts off the supply of heroin into the New York market by 50 percent. What would be the effect on criminal activities and on drug use of legalizing heroin (as was done in the late nineteenth century) if that lowered the price of heroin products by 90 percent?
 (c) The short-run demand for oil is estimated to have a price elasticity of 0.05. If the initial price of oil were $3 per barrel, what would be the effect on oil price and quantity of an embargo that curbed world oil supply by 5 percent?
 (d) To show that elasticities are independent of units, refer back to Table 5-1. Change the price units from dollars to pennies; change the quantity units from bushels to tons, using the conversion of 30 bushels equals 1 ton. Then calculate the first two elasticity rows.

11. Examine the diagram below, which shows demand and supply curves for wheat for different years. Identify historical intersection points. Fill in columns at right showing the \(P \) and \(Q \) of wheat for each of the 4 years. Use this example to explain why it may be
difficult to estimate or "identify" the supply and demand curves from time-series data on P and Q alone. Are there circumstances where the data do indeed trace out SS or DD curves?

<table>
<thead>
<tr>
<th>Year</th>
<th>Price</th>
<th>Quantity</th>
</tr>
</thead>
<tbody>
<tr>
<td>1985</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1990</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1995</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12. Advanced problem for those who like simple geometry and algebra: Justify the E_D rule given in the footnote on page 82 for a straight line. In the triangle below, the DD has the equation $Q = b - (b/a)P$, where b is the Q intercept and a the P intercept. The absolute inverted slope of DD is $-(dQ/dP) = -(\Delta Q/\Delta P) = b/a$. Now apply the formula $E_D = -(dQ/dP)(P/Q)$ to get $E_D = (b/a)[P/(b - (b/a)P)] = P/(a - P)$—the ratio of the lower vertical bracket to the upper. Can you show, by the property of similar triangles, that $E_D = P/(a - P) = bC/aC$ equals "the length of the straight line below the point divided by its length above the point," as stated in the footnote on page 82?
CHAPTER 6
DEMAND
UTILITY,
AND CONSUMER
BEHAVIOR

What is a cynic? A man who knows the price of everything and the value of nothing.

Oscar Wilde

Each of us makes dozens, even hundreds, of choices every day: Should we eat breakfast or sleep late? Drink coffee, tea, or milk? Buy a new shirt, a secondhand coat, or a fancy hat? Spend our time studying economics or talking to friends? Buy a new car or fix our old one? These kinds of decisions, which form consumption choices or consumer behavior, are the stuff of our daily existence.

One of the major tasks of economics is to help us understand the principles of consumer behavior. We have encountered the law of demand and know that people tend to buy more of a good when it is inexpensive than when it is costly. And in the preceding pages we learned that necessities have low price elasticities while luxuries are often price elastic. This chapter examines the reasons underlying such observations. We shall see that the economic principles of total utility and marginal utility can help explain consumer behavior and market demands.

The theory of utility and consumer behavior will help unravel certain mysteries. People sometimes wonder why the source of all life, water, is so cheap while useless frivolities like furs are so expensive.
The concept known as consumer surplus will help explain this paradox. The appendix presents an alternative approach to the theory of consumer behavior called indifference curves.

CHOICE AND UTILITY THEORY

In explaining the behavior of consumers, we rely on the fundamental premise that people tend to choose those goods and services they value most highly. To describe this, economists a century ago developed the notion of utility, and with the help of this concept, they were first able to derive the demand curve and explain its properties.

What do we mean by utility? In a word, utility denotes satisfaction. More precisely, it refers to the subjective pleasure or usefulness that a person derives from consuming a good or service. We should not identify utility with any precise neural action that psychologists can measure. Rather, utility is a scientific construct that economists use to understand how rational consumers divide their limited resources among the commodities that provide them satisfaction.

Marginal Utility and the Law of Diminishing Marginal Utility

How does utility apply to the theory of demand? Say that consuming the first unit of a good (ice cream, concerts, or movies) provides you a certain level of utility. Now imagine consuming a second unit. Your total utility goes up because the second unit of the good gives you some additional or marginal utility. What about adding a third and fourth unit of the same good?

The effect of adding units of consumption involves the notion of marginal utility. What do we mean by "marginal"? Marginal is used in the sense of "additional" or "extra." Thus when you eat an additional ice cream cone, you receive a certain increment to your psychic utility, and that increment is called marginal utility. We will encounter the term "marginal" many times in the chapters that follow, and it is always used in the sense of extra.

A century ago economists formulated an important relationship quite analogous to the law of diminishing returns. Recall that the law of diminishing returns says that the extra output declines as a firm adds extra doses of inputs (see Table 2-2).

When economists thought about utility, they established the law of diminishing marginal utility. This law postulates that the amount of extra or marginal utility declines as a person consumes more and more of a good.

Utility tends to increase as you consume more of a good. However, according to the law of diminishing marginal utility, as you consume more and more, your total utility will grow at a slower and slower rate. Growth in total utility slows because your marginal utility (the extra utility added by the last unit consumed of a good) diminishes as more of the good is consumed. The diminishing marginal utility results from the fact that your appreciation or taste for a good drops off as more of the good is consumed.

The law of diminishing marginal utility states that, as the amount of a good consumed increases, the marginal utility of that good tends to diminish.

A Numerical Example

Column (2) of the table with Figure 6-1 shows that total utility enjoyed increases as consumption \(Q \) grows, but at a decreasing rate. Column (3) measures marginal utility as the increment of total utility when one more unit of the good is added.

The fact that marginal utilities in the table are declining exemplifies the law of diminishing marginal utility.

Figure 6-1(a) pictures how total utility increases, but at a decreasing rate. Figure 6-1(b) depicts marginal utilities—increments of utility (not the total of utility itself). Whether we work with sizable units of the good and measure utilities by blocks and steps, or whether we smooth the drawings by use of the black and red curves to reflect continuously divisible units, the law of diminishing marginal utility means that the curves in Figure 6-1(b) must slope downward; in other words, the total utility relations in Figure 6-1(a) must look concave (like a dome). The shape of the curves in Figure 6-1(a) and (b) reflects the law of diminishing marginal utility.
Relationship of Total and Marginal Utility

Using Figure 6-1, we can easily see that the total utility of consuming a certain amount is equal to the sum of the marginal utilities up to that point. For example, assume that 3 units are consumed. Column (2) of the table shows that the total utility is 9 units. In column (3) we see that the sum of the marginal utilities of the first 3 units is also $4 + 3 + 2 = 9$ units.

Examining Figure 6-1(b), we see that the total area under the marginal utility curve at a particular level of consumption—as measured either by blocks or by the area under the smooth MU curve—must equal the height of the total utility curve shown for the same number of units in Figure 6-1(a).

Whether we examine this relationship using tables or graphs, we see that total utility is the sum of all the marginal utilities that were added from the beginning.

Figure 6-1 Curves as well as numbers can show law of diminishing marginal utility

Although total utility rises with consumption, the table shows it rises at a decreasing rate. This means that marginal utility—the extra utility added by the last extra unit of the good—will decrease. From this observation, earlier economists prepared their demonstration of the law of downward-sloping demand. (Note the similarity to Chapter 2’s law of diminishing returns.)

The red blocks show the extra utility added by each new unit. The fact that total utility increases at a decreasing rate is shown in (b) by the declining steps of marginal utility. If we make our units smaller, the steps in total utility are smoothed out and total utility becomes the smooth black curve. Moreover, smoothed marginal utility, shown in (b) by the red downward-sloping smooth curve, becomes indistinguishable from the slope of the smooth curve of (a).
Historical Sketch of Utility

Its association with utilitarianism marks utility theory as one of the intellectual landmarks of the last two centuries. The notion of utility arose soon after 1700 among students of mathematical probability. Thus Daniel Bernoulli, a member of the brilliant Swiss family of mathematicians, observed in 1738 that people act as if the dollar they stand to gain in a fair bet is worth less to them than the dollar they stand to lose. This means they are averse to risk and successive new dollars of wealth bring them smaller and smaller increments of true utility.

An early introduction of the utility notion into the social sciences was accomplished by the English philosopher Jeremy Bentham (1748–1831). After studies devoted to legal theory, and under the influence of Adam Smith’s doctrines, Bentham turned to the study of the principles necessary for drawing up social legislation. He proposed that society should be organized on the “principle of utility,” which he defined as the “property in any object . . . to produce pleasure, good or happiness or to prevent . . . pain, evil or unhappiness.” All legislation, according to Bentham, should be designed on utilitarian principles, to promote “the greatest happiness of the greatest number.” Among his other legislative proposals were quite modern-sounding ideas about crime and punishment in which he suggested that raising the “pain” to the criminal by harsh punishments would deter crimes; these ideas have recently been pursued by economists of the Chicago School.

Bentham’s views about utility seem crude to many people today. But 200 years ago they were revolutionary, as they began to focus on the practical results of economic and social policies, whereas earlier justifications were based on tradition or on religious doctrine. Today, many political thinkers defend their legislative proposals on utilitarian notions of what will make the most people better off.

The next step in the development of utility theory came when the neo-classical economists—such as William Stanley Jevons (1835–1882)—extended Bentham’s utility concept to explain consumer behavior. Like Bentham, Jevons thought economic theory was a “calculus of pleasure and pain” and showed how rational people would base their consumption decisions on the extra or marginal utility of each good. Many utilitarians of the nineteenth century believed that utility was a psychic reality—directly and cardinally measurable, like length or temperature. They looked to their own sentiments for affirmation of the law of diminishing marginal utility.

Ordinal Utility Most economists today reject the notion of a cardinal, measurable utility that is attached to consumption of ordinary goods like shoes or coffee. Indeed, it is possible to derive demand curves without being able to measure utility. What counts for modern demand theory is whether a consumer prefers certain bundles of commodities more than others, an approach represented by statements like “A is preferred to B.” No more than this “ordinal utility” statement is required to establish firmly the general properties of market demand curves described in this chapter and in its appendix.

EQUILIBRIUM CONDITION: EQUAL MARGINAL UTILITIES PER DOLLAR FOR EVERY GOOD

What is the condition under which I, as a consumer, am most satisfied with my market basket of consumption goods? We say that a consumer attempts to maximize his or her utility, or the amount of satisfaction or

3A statement that “situation A is preferred to situation B”—which does not require that we know how much A is preferred to B—is called “ordinal,” or dimensionless, meaning that different situations are ranked in order, but there is no measure of the quantitative difference between the situations. We might rank pictures in an exhibition in terms of the order of their beauty, but not have a quantitative measure of beauty.

Some economists rely on “cardinal,” or dimensional, measurement of utility, in which the quantitative differences in preference are measured. An example of a cardinal measure comes when we say that a substance at 100° kelvin is twice as hot as one at 50° kelvin. These economists examine the way people behave in uncertain situations as a way of measuring utilities; the topic of behavior under uncertainty is pursued in the appendix to Chapter 11.
happiness produced by purchases of consumer goods. Can we see what a rule for such an optimal decision would be? Certainly I would not expect that the last egg I am buying brings exactly the same marginal utility as the last record album I am buying, for records cost much more per unit than eggs. On reflection, it would seem more reasonable that I should keep buying a good which costs twice as much per unit as another good until it brings me just twice as much in marginal utility.

In short, if I arrange my consumption so that every single good is bringing me the same marginal utility per dollar of expenditure, then I am assured that I am attaining maximum satisfaction or utility from my purchases. At such a point I am in consumer equilibrium. This fundamental condition can now be stated: A consumer with a fixed income and facing given market prices of goods can come to a point of maximum satisfaction or utility, or be at a consumer equilibrium, when the following condition is satisfied:

The law of equal marginal utilities per dollar states that each good is demanded up to the point where the marginal utility of the last dollar spent on it is exactly the same as the marginal utility of the last dollar spent on any other good.

Why must this law hold? If any one good gave more marginal utility per dollar, I would gain by taking money away from other goods and spending more on that good—up to the point where the law of diminishing marginal utility brought its marginal utility per dollar down to equality with that of other goods. If any good gave less marginal utility per dollar than the common level, I would buy less of it until the marginal utility of the last dollar spent on it had risen back to the common level. The common marginal utility per dollar of all commodities in consumer equilibrium is called the "marginal utility of income," which measures the additional utility that would be gained if the consumer enjoyed the consumption from one additional dollar of income.

This fundamental condition of consumer equilibrium can be written in terms of the marginal utilities (MU) and prices (P) of the different goods in the following compact way:

$$\frac{MU_{Good\ 1}}{P_1} = \frac{MU_{Good\ 2}}{P_2} = \frac{MU_{Good\ 3}}{P_3} = \ldots$$

$$= MU \text{ per } \$ \text{ of income}$$

Why Demand Curves Slope Downward

Using this fundamental rule for consumer behavior, we can easily see why demand curves slope downward. For simplicity, hold the common marginal utility per dollar of income constant. Then increase the price of good 1. With no change in quantity consumed, the first ratio (i.e., $MU_{Good\ 1}/P_1$) will be below the MU per dollar of all other goods. The consumer will therefore have to readjust the consumption of good 1. How? By (a) lowering the consumption of good 1; (b) thereby raising the MU of good 1; until (c) at the new reduced level of consumption of good 1, the new marginal utility per dollar spent on good 1 is again equal to the MU per dollar spent on other goods.

Hence, we see why a higher price for a good reduces the consumer's optimal consumption of that commodity and therefore why demand curves slope downward.

Economizing on the Use of Time

The principles of stretching a budget so as to maximize satisfaction need not apply only to our use of money but, as emphasized by Chicago's Gary Becker, to our use of time as well. Our "time budget" is limited to 24 hours a day whether we are rich or poor in dollars. We can therefore apply the same concepts to time budgets that we applied earlier to dollar budgets.

Suppose that, after satisfying all your obligations,

4 At a few places in economics the indivisibility of units is important and cannot be glossed over. Thus, Cadillacs do not come like juice, and their indivisibility may matter. Suppose I buy one but definitely not two Cadillacs. Then the marginal utility of the first car is enough larger than the marginal utility of the same number of dollars spent elsewhere to induce me to buy this first unit. The marginal utility that the second Cadillac would bring is enough less to ensure I do not buy it. When indivisibility matters, our equality rule for equilibrium can be restated as an inequality rule.
you have 3 hours a day of free time and can devote it to playing cards, listening to music, or reading. What is the best way to allocate your time? Let's ignore the possibility that time spent on some of these activities might be an investment that will enhance your earning abilities in the future. Rather, assume that these are all pure consumption or utility-yielding pursuits. The principles of consumer choice would suggest that you will make the best use of your time when the marginal utilities of the last minute spent on each activity in which you engage are equal.

To take another example, suppose you want to maximize your learning or your grade-point average but you have only a limited amount of time available. Should you study each subject for the same amount of time? Surprisingly, the answer is, Not necessarily. You may find that an equal study time for economics, history, and chemistry will not yield the same amount of learning in the last minute. If the last minute produces a greater marginal grade advantage in chemistry than in history, then you would raise your grade-point average by shifting additional minutes from history to chemistry, and so on until the last minute yields the same incremental learning in each subject.5

The same rule of maximum utility per hour can be applied to many different areas of life. It is not merely a law of economics. It is a law of rational choice.

Are Consumers Wizards?

A word of caution is in order about how we view consumers. We consumers are not expected to be wizards. We may make most of our decisions unconsciously or just out of habit. What is assumed is that consumers are fairly consistent in their tastes and actions; that they do not flail around in unpredictable ways, making themselves miserable by persistent errors of judgment or arithmetic. If enough people act consistently, avoiding erratic changes in buying behavior, our scientific theory will provide a tolerable approximation to the facts.

AN ALTERNATIVE APPROACH: SUBSTITUTION EFFECT AND INCOME EFFECT

The concept of marginal utility has been a valuable way of understanding the fundamental law of downward-sloping demand. But over the last few decades, economists have developed an alternative approach to analysis of demand—one that makes no mention of marginal utility. This alternative approach uses "indifference curves" and is thoroughly explored in the appendix to this chapter. We can easily summarize here the main features of this alternative approach. The alternative approach does lead rigorously and consistently to the desired result, and it does provide an interesting insight into the factors that tend to make the responsiveness of quantity demanded to price—the price elasticity of demand—be very large or very small.

This alternative approach asks: What are the income effect and substitution effect of a change of price? By looking at these, we can see why the quantity demanded of a good declines as its price rises.

Substitution Effect

The first factor explaining diminishing consumption when price rises is an obvious one. If the price of tea goes up while other prices do not, then tea has become relatively more expensive.

When tea becomes a relatively more expensive source of stimulation than before, less tea and more coffee or cocoa will be bought. Similarly, a rise in the price of movies relative to concerts may cause us to seek more of our amusement in the cheaper diversion. More generally, the substitution effect says that it pays to substitute other goods for goods whose prices have risen (like tea) in order to maintain one's standard of living most cheaply.

Consumers are doing here only what businesspeople do when rises in the price of one productive factor cause them to adjust their production methods so as to substitute cheap inputs for the more expensive input.
By this process of substitution, businesses can produce the same output at least total cost. Similarly, when consumers substitute less expensive goods, they are buying satisfaction at least cost.

Income Effect

In the second place, when your money income is fixed, being forced to buy a good at a higher price is just like experiencing a decrease in your real income or purchasing power (particularly if you have been buying a great deal of the commodity). More generally, the income effect says that, when a price rises, your real income falls and you are likely to buy less of almost all goods (including the good whose price has risen). With a lower real income, you will now want to buy less tea. Thus, the income effect will normally reinforce the substitution effect in making the demand curve downward sloping.*

Income and substitution effects combine to determine the major characteristics of different commodities. Under some circumstances the resulting demand curve is very price-elastic, as where the consumer has been spending a good deal on the commodity and where ready substitutes are available. But if a commodity, such as salt, requires only a small fraction of the consumer’s budget, is not easily replaceable by other items, and is needed in small amounts to complement more important items, then demand will tend to be price inelastic.

Estimates of Price and Income Elasticities

The previous chapter discussed the concept of elasticity, while this chapter has so far explored the foundations of demand curves and described income and substitution effects. For many applications, it is essential to have numerical estimates of demand elasticities. For example, when installing costly pollution-control equipment, an automobile manufacturer will want to know the impact on sales of the now-higher car prices; a college needs to know the impact of higher tuition rates on its applications; a publisher will calculate the impact of higher textbook prices on its sales. All these questions require a numerical estimate of price elasticity.

Similar decisions depend on income elasticities. A state planning its road network will estimate the impact of rising incomes on automobile travel; the federal government must calculate the effect of higher incomes on beef consumption in planning quotas on beef imports; in planning the necessary additions to generating capacity, electrical utilities require income elasticities for estimating electricity consumption. In each of these and many other goods and services, knowledge of income elasticities is essential.

Economists have devoted considerable time to estimating price and income elasticities. Estimates are derived from data on quantities demanded, prices, incomes, and other variables. Tables 6-1 and 6-2 provide selected estimates of elasticities.

FROM INDIVIDUAL TO MARKET DEMAND

Up to now we have discussed the principles underlying a single individual’s demand for tea or coffee or concerts. How can we pass from the individual to the entire market? The demand curve for a good is obtained for the whole market by summing up the individual income effect applicable to a peculiar inferior good, such as the potato, whose consumption tends to decrease in the poor person’s budget when incomes rise.

This curiosity is attributed to Sir Robert Giffen, a Victorian economist. Note that in the case of inferior goods on which we spend little money, the perverse income effects will not outweigh the substitution effects to produce the odd Giffen case.
We sum individual demands at each price to end up with the market demand curve. Figure 6-2 adds individual dd demand curves horizontally to get the market DD demand curve.

Demand Shifts

Factors other than changes in the price of tea can change the quantity of tea demanded. We know this from budget studies, from historical experience, and from examining our own behavior. We discussed briefly in Chapter 5 some of the important nonprice determinants of demand. We now review the earlier analysis using our principles of consumer behavior.

An increase in income is a factor normally tending to increase the amount we are willing to buy of any good. Goods that are necessities tend to be less responsive to income changes. Goods that are luxuries tend to be more responsive. Indeed, as we saw in the footnote on page 106, for a few abnormal goods, known as inferior goods, purchases may shrink as

<table>
<thead>
<tr>
<th>COMMODITY</th>
<th>PRICE ELASTICITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tomatoes</td>
<td>4.6</td>
</tr>
<tr>
<td>Green peas</td>
<td>2.8</td>
</tr>
<tr>
<td>Legal gambling</td>
<td>1.9</td>
</tr>
<tr>
<td>Marijuana</td>
<td>1.5</td>
</tr>
<tr>
<td>Taxi service</td>
<td>1.2</td>
</tr>
<tr>
<td>Furniture</td>
<td>1.0</td>
</tr>
<tr>
<td>Movies</td>
<td>0.87</td>
</tr>
<tr>
<td>Shoes</td>
<td>0.70</td>
</tr>
<tr>
<td>Legal services</td>
<td>0.61</td>
</tr>
<tr>
<td>Cigarettes</td>
<td>0.51</td>
</tr>
<tr>
<td>Medical insurance</td>
<td>0.31</td>
</tr>
<tr>
<td>Bus travel</td>
<td>0.20</td>
</tr>
<tr>
<td>Electricity, residential</td>
<td>0.13</td>
</tr>
</tbody>
</table>

Table 6-1 Selected estimates of price elasticities of demand

Estimates of price elasticities of demand show a wide range of variation. High elasticities are generally found for goods like tomatoes or peas where ready substitutes are available. Low price elasticities exist for those goods like electricity which are essential to daily life and which have no easy substitutes. [Source: Heinz Kohler, *Intermediate Microeconomics: Theory and Applications*, 2d ed. (Scott Foresman, New York, 1986).]

amounts of the good that will be demanded by each consumer. Each consumer has a demand curve along which the quantity demanded can be plotted against the price. It generally slopes downward and to the right. If all consumers were exactly alike in their demands and if there were 1 million consumers, then we could think of the market demand curve as a millionfold enlargement of each consumer's demand curve.

But people are not all exactly alike. Some have high incomes, some low. Some greatly desire tea; others prefer coffee. What must we do to the demand schedules or curves of each consumer to arrive at the total market curve?

All we have to do is calculate the sum total of what all the different consumers will consume at any given price; we then plot that total amount as a point on the market demand curve. Or if we like, we may set the total down in a demand table like that first seen in Chapter 4.

<table>
<thead>
<tr>
<th>COMMODITY</th>
<th>INCOME ELASTICITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Automobiles</td>
<td>2.5</td>
</tr>
<tr>
<td>Housing, owner-occupied</td>
<td>1.5</td>
</tr>
<tr>
<td>Furniture</td>
<td>1.5</td>
</tr>
<tr>
<td>Books</td>
<td>1.4</td>
</tr>
<tr>
<td>Restaurant meals</td>
<td>1.4</td>
</tr>
<tr>
<td>Clothing</td>
<td>1.0</td>
</tr>
<tr>
<td>Physicians' services</td>
<td>0.75</td>
</tr>
<tr>
<td>Tobacco</td>
<td>0.64</td>
</tr>
<tr>
<td>Eggs</td>
<td>0.37</td>
</tr>
<tr>
<td>Margarine</td>
<td>-0.20</td>
</tr>
<tr>
<td>Pig products</td>
<td>-0.20</td>
</tr>
<tr>
<td>Flour</td>
<td>-0.36</td>
</tr>
</tbody>
</table>

Table 6-2 Income elasticities for selected products

Income elasticities are high for luxuries, whose consumption grows rapidly relative to income. Negative income elasticities are found for "inferior goods," whose demand falls as income rises. Demand for many staple commodities like clothing grows proportionally with income. [Source: Heinz Kohler, *Intermediate Microeconomics: Theory and Applications*, 2d ed. (Scott Foresman, New York, 1986).]
incomes increase because people can afford to replace them with other, more desired goods.

Bologna, soup bones, and potatoes might be examples of inferior goods for many Americans today. Fortunately, the species called inferior goods is so rare that we can usually neglect it in our discussions.

Let us now show what all this means in terms of the demand curve. This curve, you will recall, shows how the quantity of a good demanded responds to a change in its own price.

But quantity bought may change also as a result of changes in the prices of other goods or as a result of a change in the consumer's income. The demand curve was drawn on the assumption that these other things were held constant. But what if they change? Then the whole demand curve will shift to the right or to the left.

Figure 6-3's curves show such changes. Given people's incomes and the prices for other goods, we can draw the demand curve for tea as DD.

First assume that price and quantity are at the point A. Suppose that incomes rise. Even though the price of tea is unchanged, because tea is a normal good, people will increase their purchases of tea. Hence the demand curve for tea will shift to the right, say to $D'D'$, with A' indicating the new quantity demanded of tea. If incomes should fall, then we may expect a reduction in demand and in quantity bought. This downward shift we illustrate by $D'D''$ and by A''.

Income is only one of many factors that affect the position of the demand curve. An increased taste or fashion for tea would also shift the demand to the right. A decreased taste would have the opposite effect, Advertising shifts out the DD curve. Even if each individual consumed the same amount of a

In this and in other chapters, we label individual demand or supply curves in lowercase letters (dd and ss), while uppercase letters (DD and SS) pertain to the market demand and supply curves.
good, a growth in population would have the effect of increasing the total market demand for a product. If people think that an inflation is about to get under way, they may increase their purchases now in order to beat the gun. Still other factors operate all the time to shift demand.

Cross Relations of Demand

Everyone knows that raising the price of tea will decrease the amount of tea demanded. We have seen that it will also affect the amounts demanded of other commodities. For example, a higher price for tea will lower the demand for a commodity such as lemon; i.e., it will shift the whole demand schedule of lemon downward. But it will also increase the demand for coffee. It will probably have little effect on the demand curve for salt.

We say, therefore, that tea and coffee are rival or competing products; they are substitutes because an increase in the price of good A will increase the demand for substitute good B. Tea and lemon, on the other hand, are cooperating or complementary products; they are called complements because an increase in the price of good A causes a decrease in the demand for its complementary good B. In between are independent goods, such as tea and shoes, for which a price change for one has no effect on the demand for the other. You might classify such pairs as turkey and cranberry sauce, automobiles and gasoline, oil and coal, college and textbooks, salt and shoelaces.

Besides showing effects of income changes, Figure 6-3 also illustrates how changes in other goods' prices affect demand. A fall in the price of coffee may well cause consumers to buy less tea; the demand curve shifts to, say, $D'D''$. But what if the price of lemon were to fall? The resulting change on this DD

Figure 6-3 Demand curve shifts with changes in income or in other goods' prices

As incomes increase, consumers want more of a good, thus shifting DD to $D'D'$. (What would be the effect of a large increase in the price of a substitute?}

may not be very large. But if there is any change, it will be in the direction of increased tea purchases—a rightward shift of DD. Why this difference in response? Because coffee is a rival or substitute product for tea; lemon, on the other hand, is a complementary commodity to tea.

THE PARADOX OF VALUE

The principles outlined here can help explain a famous question that troubled Adam Smith. He wondered how it could be that water, which is so useful that life itself is impossible without it, has no value, while diamonds, which are quite unnecessary, command such an exalted price.

Unlike Adam Smith, you can give a correct answer
to the problem, as follows: "The supply and demand curves for water intersect at a very low price, while supply and demand for diamonds are such that the equilibrium price of diamonds is very high."

Adam Smith could not have given it because supply and demand curves as descriptive tools had not yet been invented, and were not to be for 75 years or more. But after he had mastered the new tools, Adam Smith would naturally ask the question, "But why do supply and demand for water intersect at such a low price?"

The answer is that diamonds are very scarce and the cost of getting extra ones is high, while water is relatively abundant, with its cost low in many areas of the world.

This would all have seemed reasonable even to the classical economists of the last century, who would probably have let it go at that. But they would not have known how to reconcile the facts about cost with the equally valid fact that the world’s water is more useful than the world’s supply of diamonds.

Today, we should add to the above cost considerations a second truth: The utility of water as a whole does not determine its price or demand. It is the marginal utility of the last glass of water that determines water’s price. Because there is so much water, its price falls to a very low level. Even though the first few drops are worth life itself, the last few are only needed for watering the lawn, or washing the car. We thus find that an immensely valuable commodity like water sells for next to nothing because its last drop is worth next to nothing.

As one student put the matter: The theory of economic value is easy to understand if you just remember that in economics the tail wags the dog: it is the tail of marginal utility that wags the dog of prices and quantities.

We can resolve the paradox of value as follows: The more there is of a commodity, the less the relative desirability of its last little unit becomes, even though its total usefulness grows as we get more of the commodity. So, it is obvious why a large amount of water has a low price, or why an absolute necessity like air could become a free good. In each case, it is the large quantities that pull the marginal utilities so far down, and thus reduce the prices of these vital commodities.

CONSUMER SURPLUS

The paradox of value emphasizes that the recorded money value of a good (measured by price × quantity) may be very misleading as an indicator of the total economic value of that good. The measured economic value of the air we breathe is zero, yet air’s contribution to welfare is immeasurably large.

The gap between the total utility of a good and its total market value is called consumer surplus. The surplus arises because we "receive more than we pay for"; it is rooted in the law of diminishing marginal utility.

It is easy to see how this consumer surplus arises. We pay the same price for each egg or glass of water. Thus we pay for each unit what the last unit is worth. But by our fundamental law of diminishing marginal utility, the earlier units are worth more to us than the last. Thus, we enjoy a surplus of utility on each of these earlier units.

Figure 6-4 illustrates the concept of consumer surplus for an individual who consumes water. Say that the price of water is $1 per gallon. This is shown by the horizontal black line at $1 in Figure 6-4. The consumer considers how many gallon jugs to buy at that price. The first gallon is highly valuable, slaking extreme thirst, and the consumer is willing to pay $9 for it. But this first gallon costs only $1—the market price—so the consumer has gained a surplus of $8.

Consider the second gallon. This is worth $8 to the consumer, but again only costs $1, so the surplus is $7. And so on down to the ninth gallon, which is worth only 50 cents to the consumer, and so it is not bought. The consumer equilibrium comes at a point E, where 8 gallons of water are bought at a price of $1 each.

But here comes the important finding: Even though the consumer has paid only $8, the total value of the water is $44. This is obtained by adding up each of the marginal utility columns (= $9 + $8 + \cdots + $2). Thus the consumer has gained a surplus of $36 over the amount paid.

In our example of Figure 6-4, we took the case of a single consumer purchasing water. But we can apply the concept of consumer surplus to a market as a whole. The market demand curve in Figure 6-5 is
the horizontal summation of the individual demand curves (of which that shown in Figure 6-4 is but one). The logic of the individual consumer surplus carries over to the market as a whole.

The area of the market demand curve above the price line, shown as NER in Figure 6-5, represents the total consumer surplus. It shows the extra utility that consumers received over what they paid for the commodity.

Applications of Consumer Surplus

The concept of consumer surplus is extremely useful in making many decisions about public goods—it has been employed in decisions about airports, roads, dams, subways, and parks.

Suppose a new highway is being considered. Being free to all, it will bring in no revenues. Any utility to users will be seen only in individual consumer surplus. To avoid difficult issues of interpersonal utility comparisons, assume that there are 10,000 users, all identical in every respect.

By careful experimentation, we determine that each individual's consumer surplus is $350 for the highway. Consumers should vote for the road if its total cost is less than $3.5 million (10,000 x $350). And economists performing "cost-benefit analysis" generally recommend that the road should be built if its total consumer surplus ($3.5 million) exceeds its costs.

Aside from helping societies understand when it pays to build bridges or highways, consumer surplus
explains why people are justifiably suspicious when price is equated with value. We have seen that water or air may have little monetary value (price times quantity) even though their total economic value swamps that of diamonds or furs. The consumer surplus of air and water is huge, while diamonds and furs may have little value over purchase price.

The concept of consumer surplus also points to the enormous privilege enjoyed by citizens of modern societies. It is easy for a consumer to overlook the vast array of enormously valuable goods that can be bought at low prices.

This is a humbling thought. If you know a person who is becoming arrogantly proud of his economic productivity and his level of real earnings, suggest that he pause and reflect. If he were transported with all his skills and energies intact to a desert island, how much would his money earnings buy? Indeed, without capital machinery, without rich resources, without other labor, and above all without the technological knowledge which each generation inherits from society’s past, how much could he produce? It is only too clear that all of us reap the benefits of an economic world we never made. As L. T. Hobhouse said:

The organizer of industry who thinks that he has “made” himself and his business has found a whole social system ready to his hand in skilled workers, machinery, a market, peace and order—a vast apparatus and a pervasive atmosphere, the joint creation of millions of men and scores of generations. Take away the whole social factor and we [are] but savages living on roots, berries, and vermin.

We have now completed our analysis of the forces that lie behind the demand curve. Key to the economic theory of demand is that consumers must stretch their limited incomes to meet many different needs and wants, and that they do so by allocating their incomes so that the utilities of the last dollars spent are equal for all goods. Such an allocation generates the vast array of demand curves for different commodities.

But what of business? What of the production and supply of the goods that consumers demand? The next three chapters turn to this other partner in the dance of supply and demand. We begin in the next chapter with an understanding of different kinds of businesses, from tiny food shops to giant corporations. Chapters 8 and 9 focus more carefully on the analysis of production and costs, concepts which will be shown to determine business supply decisions.

Once our survey of costs and businesses is complete, we can return to analyze supply and demand—but at that point with a fuller understanding of the forces that lie behind each of the two fundamental curves that dance through the pages of textbooks and indeed through economic life itself.

SUMMARY

1. Economists explain consumer demand by the concept of total utility and with the law of diminishing marginal utility. Utility is a concept that represents the amount of usefulness or satisfaction that a consumer obtains from a commodity. The additional satisfaction obtained from consuming an additional unit of a good is given the name marginal utility, where “marginal” means the extra or incremental utility.

 The law of diminishing marginal utility states that as the amount of a commodity consumed increases, the marginal utility of the last unit consumed tends to decrease.

2. Economists assume that consumers allocate their limited incomes so as to obtain the greatest satisfaction or utility. To get maximal utility, a consumer must equate the marginal utilities of the last dollars spent for each and every good. Only when the
marginal utility per dollar is equal for bread and butter and shoes and records and
certs will the consumer attain the greatest satisfaction from the limited dollar in-
comes. (But be careful to note that the marginal utility of a $25-per-ounce bottle of
perfume is not equal to the marginal utility of a 25-cent glass of cola. Rather, their
marginal utilities divided by price per unit—that is, their marginal utilities per last
dollar, MU / P—are all to be equalized in the consumer's optimal allocation.)

This is a fundamental rule of logic that transcends demand theory: If you want to
allocate any limited resource among competing uses, whenever the marginal advantage
in one use happens to be greater than in another, you can benefit by transferring from
the low-marginal-advantage use to the high—until a final equilibrium is reached at
which all marginal advantages have become equal.

3. The market demand curve for all consumers is derived by adding horizontally the
separate demand curves of each consumer. A demand curve can shift for many rea-
sons. For example, a rise in income will normally shift DD rightward, thus increasing
demand; a rise in the price of a substitute good (coffee for tea, and so forth) will also
create a similar upward shift in demand; a rise in the price of a complementary good
(such as lemon in its relation to tea) will represent a cross effect that shifts the DD
curve downward and leftward. Still other factors—changing tastes, population, or
expectations—can increase or decrease demand.

4. Without using the marginal utility concept explicitly, we can gain new insight into
the factors making for downward-sloping demand by dividing the effect of a price rise
into (a) its substitution effect component and (b) its income effect component. When P
for a good rises, you tend to maintain the same level of well-being by substituting other
goods for the good that has just become more expensive. Reinforcing this decrease in
a good’s Q that arises out of substitution is the income effect: since you ordinarily buy
less of the good in question when your family income is lower, the rise in its price—
which has produced a drop in your real income or real purchasing power—thus induces
a further cut in consumption as the result of your now having a lower real income.

5. Adam Smith's paradox of value—that a commodity important for welfare may sell
for less in the market than one less important—is clarified by the distinction between
the concepts of marginal and total utility. The scarcity of a good, as determined by its
cost (i.e., supply conditions), interacts with the market demand for the good as deter-
dined by the usefulness of its marginal unit (not the usefulness of the total stock of the
good). It is not paradoxical that total U is high when marginal U is low.

6. The fact that market price is determined by marginal rather than total utility is
dramatized by the concept of consumer surplus. We pay the same price for each quart
of milk that we buy in the market. Moreover the price is equal to the marginal utility of
the last unit bought. But this means that we reap a surplus of utility over price on all
earlier units, for the marginal utilities of earlier units are greater than that of the last
unit by the law of diminishing marginal utility. This surplus of utility over price is
called consumer surplus. Consumer surplus reflects the benefit we gain from being
able to buy all units at the same low price. In simplified cases, we can measure
consumer surplus as the area between the demand curve and the price line. It is a
concept relevant for many social decisions—such as deciding when the community
should incur the heavy expenses of a road or bridge.
CONCEPTS FOR REVIEW

utility, marginal utility
utilitarianism
law of diminishing marginal utility
equating marginal utility-of last dollar spent on each good: \(\frac{MU_1}{P_1} = \frac{MU_2}{P_2} = \cdots = MU \) per $ of income
market demand versus individual demand
demand shifts from income and other sources
substitutes, complements, independent goods
substitution effect and income effect
paradox of value
consumer surplus

QUESTIONS FOR DISCUSSION

1. Explain the meaning of utility. What is the difference between total utility and marginal utility? Explain the law of diminishing marginal utility and give a numerical example.
2. Each week, Jean Jones buys two hamburgers at $2 each, eight cokes at $0.50 each, and eight slices of pizza at $1 each, but buys no hot dogs at $1.50 each. What can you deduce about Jean's marginal utility for each of the four goods?
3. Which pairs of the following goods would you classify as complementary, substitute, and independent goods: beef, ketchup, lamb, cigarettes, gum, pork, radio, television, air travel, bus travel, taxis, and paperbacks? Illustrate the resulting shift in the demand curve for one good when price of another good goes up. How would a change in income affect the demand curve for air travel? The demand curve for bus travel?
4. Why is it wrong to say, ''In equilibrium, the marginal utilities of all goods must be exactly equal''? Correct the statement and explain.
5. If you wanted to avoid using the marginal utility concept, show that you can still justify the law of downward-sloping demand through reasoning that employs (a) substitution effect and (b) income effect.
6. How much would you be willing to pay rather than give up all movies? How much do you spend on movies? Estimate roughly your consumer surplus.
7. Consider the following table showing the utility of different numbers of days skied each year:

<table>
<thead>
<tr>
<th>NUMBER OF DAYS SKIEd</th>
<th>TOTAL UTILITY (dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>55</td>
</tr>
<tr>
<td>3</td>
<td>73</td>
</tr>
<tr>
<td>4</td>
<td>88</td>
</tr>
<tr>
<td>5</td>
<td>98</td>
</tr>
<tr>
<td>6</td>
<td>103</td>
</tr>
<tr>
<td>7</td>
<td>103</td>
</tr>
<tr>
<td>8</td>
<td>100</td>
</tr>
</tbody>
</table>
Construct a table showing the marginal utility for each day. Assuming that there are 1 million people with preferences shown in the table, what would the market demand for ski-days be? If lift tickets cost $20 per day, what is the equilibrium price and quantity of days skied?

8. For each of the commodities in Table 6-1, calculate the impact of a doubling of price on quantity demanded. Similarly, for goods in Table 6-2, what would be the impact of a 50 percent increase in consumer incomes?

9. As you add together the identical demand curves of more and more people (in a way similar to the procedure in Figure 6-2), the market demand curve becomes flatter and flatter on the same scale. Does this fact indicate that the elasticity of demand is becoming larger and larger? Explain your answer carefully.

10. Suppose that you have 10 hours a week available for recreation. You very much like bowling, dancing, and reading, but dislike golf and rock-climbing. What would the equilibrium condition be for your allocation of time across these five activities (i.e., the marginal utility per hour)?
APPENDIX: 6

Geometrical Analysis of Consumer Equilibrium

The main part of this chapter showed how consumer demand relations could be derived using the concepts of utility and marginal utility. Almost a century ago, the economist Vilfredo Pareto (1848–1923) discovered that all the important elements of demand theory could be analyzed without what he viewed as the dubious utility concept, needing only what are today called indifference curves. This appendix presents the modern theory of indifference analysis, and then proceeds to derive the major results of consumer behavior with that new tool.

THE INDIFFERENCE CURVE

It is instructive to show graphically, and without using the language of numerical utility, exactly what the consumer’s equilibrium position looks like.

We start out by considering you as a consumer who buys only two commodities, say, food and clothing, at definite quoted prices. We suppose you can tell us whether (1) you prefer a given combination or batch of the two goods, say, 3 units of food and 2 of clothing, to some second combination or batch, say, 2 units of food and 3 of clothing, or (2) you are “indifferent” as between the two combinations.

Let us suppose that, actually, these two batches happen to be equally good in the eyes of our consumer—that you are indifferent as to which of them you receive. Let us go on to list in the table for Figure 6A-1 some of the other combinations of goods between which you are likewise indifferent.

Figure 6A-1 shows these combinations diagrammatically. We measure units of clothing upon one axis and units of food upon the other. Each of our four combinations or batches, A, B, C, D, is represented by its point. But these four are by no means the only combinations among which you are indifferent. Another batch, such as 1½ units of food and 4 of clothing, might be ranked as equal to any of A, B, C, or D above, and there are many others not shown.

The curved contour of Figure 6A-1, linking up the four points, is an indifference curve. Every point thereon represents a different combination of the two goods; and the indifference curve is so drawn that you, our consumer, are indifferent between any two points on it. All would be equally desirable to you, and you would be indifferent as to which batch is received.

Law of Substitution

Indifference curves are drawn as convex to the origin, meaning that as we move you downward and to the right along the curve—a movement which implies increasing the quantity of food and reducing that of clothing—the curve becomes more nearly horizontal. The curve is drawn in this way because this illustrates a property that seems most often to hold true in real life and which we may call the “law of substitution”:
The scarcer a good, the greater its relative substitution value; its marginal utility rises relative to the marginal utility of the good that has become plentiful.

Thus, when you are the consumer at A in the table for Figure 6A-1, you would swap 3 of your 6 clothing units in exchange for 1 extra food unit. But when you've moved to B, you would sacrifice only 1 of your remaining clothing supply to obtain a third food unit—a 1-for-1 swap. For a fourth unit of food, you would sacrifice only ½ unit from your dwindling supply of clothing.

If we join the points A and B of Figure 6A-1 or 6A-2, we find that the slope of the resulting line (neglecting its negative sign) has a value of 3. Join B and C, and the slope is 1; join C and D, and the slope is ½. These figures—3, 1, ½—are the “substitution ratios” (sometimes called the “marginal rates of substitution”) between the two goods. Moreover, as the size of the movement along the curve becomes very small, then the closer the substitution ratio comes to the actual slope of the indifference curve.

The slope of the indifference curve is the measure of the goods' relative marginal utilities, or of the substitution terms on which—for very small changes—the consumer would be willing to exchange a little less of one good in return for a little more of the other.

An indifference curve which is convex in the manner of Figure 6A-1 conforms to the law of substitution noted earlier. As the amount of food you consume goes up—and the clothing goes down—food must become relatively cheaper and cheaper in order for you to be persuaded to take a little extra food in exchange for a little sacrifice of clothing. The precise shape and slope of an indifference curve will, of course, vary from one consumer to the next, but the typical shape will take the form shown in Figures 6A-1 and 6A-2.
The Indifference Map

Our previous table is one of an infinite number of possible tables. We could have started with a still higher level of satisfaction or utility and listed some of the different combinations that would bring the consumer this higher level of satisfaction. One such table might have begun with 2 food and 7 clothing; another with 3 food, 8 clothing. Each table could be portrayed graphically; each has its corresponding indifference curve.

Figure 6A-2 shows four such curves; the old curve of Figure 6A-1 is now labelled U_3. This diagram is analogous to a geographical contour map. A person who walks along the path indicated by a particular height contour on such a map is neither climbing nor descending; similarly, the consumer who moves from one position to another along a single indifference curve enjoys neither increasing nor decreasing satisfaction from the change in the flow of goods consumed. Only a few of the possible indifference curves or equal-utility contours are shown in Figure 6A-2.

Note that as we increase both goods and hence move in a northeasterly direction across this "map," we are crossing successive indifference curves; we are reaching higher and higher levels of satisfaction. This assumes that I would be enjoying increasing satisfaction from receiving increased quantities of both goods. Hence, curve U_3 stands for a higher level of satisfaction than U_2; U_4, for a higher level of satisfaction than U_3; and so forth.

BUDGET (OR CONSUMPTION-POSSIBILITY) LINE

Now let us set a particular consumer's indifference map aside for a moment and give him a fixed income. He has, say, $6 per day to spend, and he is confronted with fixed
prices for each food and clothing unit—$1.50 for food, $1 for clothing. It is clear that he could spend his money on any one of a variety of alternative combinations of food and clothing. At one extreme, he could buy 4 food units and no clothing; at the other, 6 clothing units and no food. The table with Figure 6A-3 illustrates some of the possible ways in which his $6 could be allocated.

Figure 6A-3 shows these five possible positions. Each position is marked by a point. Note that they all lie on a straight line, labelled NM. Moreover, any other attainable point, such as 3½ food units and 1 clothing unit, lies on NM. The straight black budget line NM sums up all the possible positions the consumer could occupy in spending $6 of budget income.¹

The slope of NM (neglecting its sign) is $\frac{3}{2}$, which is necessarily the ratio of food price to clothing price, and the common sense of line NM is clear enough. Given these prices, every time our consumer gives up 3 clothing units (thereby dropping down 3 vertical units on the diagram), he can gain 2 units of food (i.e., move right 2 horizontal units).

We call NM the consumer’s “budget” (or “consumption-possibility”) line.

¹This is so because, if we designate quantities of food and clothing bought as F and C, respectively, total expenditure on food must be $1.50F$ and total expenditure on clothing, $1C$. If daily income and expenditure is $6, the following equation must hold: $6 = 1.50F + 1C$. This is a linear equation, the equation of the budget line NM. Note:

Arithmetic slope of $NM = \frac{1.50}{1} = \text{price of food} ÷ \text{price of clothing}
THE EQUILIBRIUM POSITION OF TANGENCY

Now we are ready to put our two parts together. The axes of Figure 6A-3 were the same as those of Figures 6A-1 and 6A-2. We can superimpose the black budget line NM upon this red consumer indifference map, as in Figure 6A-4. The consumer is free to move anywhere along NM. Positions to the right and above NM are barred to him unless he has more than 6 of income to spend; and positions to the left and below NM are unimportant, since we assume that he will want to spend the full 6.

Where will the consumer move? Obviously, to that point which yields the greatest satisfaction; or, in other words, to the highest available indifference curve, which in this case must be at the red point B. At B, the budget line just touches—but does not cross—the indifference curve U_3.

At this point of tangency—of the budget line to an indifference contour—is found the highest utility contour the consumer can reach.\(^2\)

Geometrically, the consumer is thus at equilibrium where the slope of his budget line is exactly equal to the slope of his indifference curve. Moreover, the slope of the budget line is the price ratio of food to clothing.

We may say, then, that equilibrium is attained when the consumer's substitution ratio (or ratio of relative marginal utilities) is just equal to the ratio of food price to clothing price.

Put differently, the substitution ratio, or slope of the indifference curve, is the ratio of the marginal utility of food to the marginal utility of clothing. So our tangency condition is just another way of stating that a good's price and its marginal utility must be proportional in equilibrium—the consumer there getting the same marginal utility

\(^2\)At any point on NM other than B, NM is crossing indifference curves. And as long as the consumer can keep crossing indifference curves, he can keep moving to higher ones.

Figure 6A-4 Consumer's most preferred and feasible consumption bundle is attained at B

Now we combine the budget line and indifference contours on one diagram. At B the consumer reaches highest indifference curve attainable with fixed income. B represents tangency of budget line with highest indifference curve. (Why? If slopes were unequal, NM would intersect a U contour and the consumer could cross over onto higher satisfaction levels.)

At tangency point B, substitution ratio equals price ratio p_F/p_C. This means that all goods' marginal utilities are proportional to their prices, with marginal utility of the last dollar spent on every good being equalized—as demonstrated in the chapter's main text.
from the last penny spent on food as from the last penny spent on clothing. Therefore, we can derive the following equilibrium condition:

\[\frac{P_f}{P_c} = \text{substitution ratio} = \frac{MU_f}{MU_c} \]

This is exactly the same condition as we derived for utility theory in the main part of this chapter.

CHANGES IN INCOME AND PRICE

Our understanding of the process will be furthered by considering the effects of (a) a change in money income and (b) a change in the price of one of the two goods.

Income Change

Assume, first, that the same consumer's daily income is halved, the two prices remaining unchanged. We could prepare another table, similar to the table for Figure 6A-3, showing the consumption possibilities that are now open to him. Plotting these points on a diagram such as Figure 6A-5, we should find that the new budget line occupies the position \(N'M' \) in Figure 6A-5. The line has made a parallel shift inward.\(^3\) The consumer is now free to move only along this new (and tighter) budget line. Again, he will move to the highest attainable indifference curve, or to the point \(B' \). A similar tangency condition for consumer equilibrium again applies. The red curve through \(B''B \) depicts what are called "Engel curves," showing how consumption changes when income changes.

\(^3\)The equation of the new \(N'M' \) budget line is now \(S3 = 51F + 51C \).
Single Price Change

Now return our consumer to his previous daily income of $6, but assume that the price of food rises from $1.50 to $3 while the price of clothing is unchanged. Again we must examine the change in the budget line. This time we find that it has pivoted on the point N and is now $NM", as in Figure 6A-6.

The common sense of such a shift is clear. Since the price of clothing is unchanged, the point N is just as available as it was before. But since the price of food has risen, point M (which meant 4 food units had been purchasable) is no longer attainable. With food costing $3 per unit, only 2 units can now be bought with a daily income of $6. So the new budget line must very definitely still pass through N, but it must pivot around N and pass through $M", which is to the left of $M. (The new line has a slope of $\frac{1}{2}$. Why?)

Equilibrium is now at B'; we have a new tangency situation in that equilibrium. Higher food price has definitely reduced food consumption; higher P_F may change clothing consumption in either direction.

To clinch understanding, you can work out the cases of an increase in income, and of a fall in the price of clothing or food.

DERIVING THE DEMAND CURVE

We are now in a position to show how the demand curve arises. Look carefully at Figure 6A-6. Note that as we increased the price of food from $1.50 per unit to $3 per unit, we kept other things constant—tastes as represented by the indifference curves did not change, while money income and the price of clothing stayed constant. Therefore, we are in the ideal position to trace out the demand curve for food. Thus at a price of $1.50, the consumer buys 2 units of food, shown as equilibrium point B. When price rises to $3 per unit, the food purchased is 1 unit, at equilibrium point B'. If you draw in the budget line corresponding to a price of $6 per unit of food, the equilibrium occurs at point B'', and food purchases are 0.45 unit.

Now plot the price of food against the purchases of food, again holding other things equal (this is taken up in the third question at the end of this appendix). You will have derived a neat downward-sloping demand curve from indifference curves. Note that we have done this without ever needing to mention the term "utility"—basing the derivation solely on measurable indifference curves.

BALANCED PRICE CHANGES AND THE QUANTITY THEORY

Suppose all prices exactly double. It is easy to see that this is exactly like a halving of income. Hence when all prices double, this can be seen as a movement from NM to $N'M'$ in Figure 6A-5. But then double income; this returns the consumer exactly to the original budget line NM. Thus doubling income and all prices leaves the budget line unchanged. And as a result we have:

Changing all prices and income in exactly the same proportion leaves equilibrium quantities demanded completely unchanged.

This provides the theoretical rationale for the quantity theory of money. Why? If all

*The budget equation of $N'M'$ is now $S6 = 3F + 1C$.
prices double and income doubles, then I will buy exactly the same quantities of goods and services. I will need exactly twice the money balances to buy exactly twice the value of transactions. Thus demand for money (M) exactly doubles. The velocity of money is defined as the ratio of the value of purchases \((p_1q_1 + p_2q_2 + \cdots)\) divided by the amount of money \((M)\). In our example, the \(p\)'s all double, the quantity of \(M\) exactly doubles, so velocity is unchanged.

This very important property of demand systems is the core of the quantity theory of money. Because prices and incomes tend to move together during periods of galloping inflation, it is not surprising that the velocity of money is close to constant, so that the aggregate price level moves with the money supply. Such has been the experience of many Latin American countries with inflation rates of 100 or 200 percent per annum.

SUMMARY TO APPENDIX

1. An *indifference curve* or *equal-utility contour* depicts the points of equally desirable consumption. The indifference contour is usually drawn convex (or bowl-shaped) in accordance with the empirical law of diminishing relative marginal utilities (or of substitution ratios).

2. When a certain consumer has a fixed money income, all of which he spends, and is confronted with market prices of two goods, he is constrained to move along a straight line called the *budget* (or *consumption-possibility*) line. The steepness of the line’s slope will depend on the ratio of the two market prices; how far out it lies will depend on the size of his income.

3. The consumer will move along this budget line until reaching the highest attainable...
indifference curve. At this point, the budget line will touch, but not cross, an indifference curve. Hence, equilibrium is at the point of tangency, where the slope of the budget line (the ratio of the prices) exactly equals the slope of the indifference curve (the substitution ratio or relative-marginal-utility ratio of the two goods). This gives additional proof that, in equilibrium, marginal utilities are made to be proportional to prices.

4. A fall in income will move the budget line inward in a parallel fashion, usually causing less of both goods to be bought. A change in the price of one good alone will, other things being equal, cause the budget line to pivot so as to change its slope. In any case, whatever change has occurred, a new equilibrium point of highest satisfaction will be reached. It is at a new point of tangency, where the marginal utility per dollar has become equal in every use. By comparing the new and old equilibrium points, we trace out the usual downward-sloping demand curve.

CONCEPTS FOR REVIEW

indifference curves or equal-utility contours
slope or substitution ratio
budget or consumption-possibility line, \(NM \)
convexity and law of diminishing relative marginal utilities

optimal tangency equilibrium:

\[
P_p/P_C = \frac{MU_p}{MU_C}
\]
parallel and pivoted shifts of \(NM \) to new tangency equilibrium as income changes or price changes

QUESTIONS FOR DISCUSSION

1. Explain why one, and only one, indifference curve will go through any point on an indifference map, i.e., why two such curves never cross.
2. If a consumer is at a point on her budget line where it crosses an indifference curve, explain why she cannot have reached equilibrium. What will she do to attain her equilibrium?
3. Use a table to list the price and quantity combinations that arise from shifting the price of food in Figure 6A-6. Then plot these on a graph. This will be the demand for food. Why does it slope downward? What would happen to the demand curve if the consumer’s income increased?
4. In Figure 6A-4, label the indifference contours with the utility numbers 1, 2, 3, 4. Show that any other four numbers would give the same demand equilibrium, provided only that they are ordinal, or in the same more-or-less relationship. Infer from this that only “ordinal utility” rather than numerically measurable, or “cardinal,” utility is needed for demand economics.
5. Draw the indifference curves for a consumer who consumes each of the following pairs of goods under the listed conditions:
 (a) Pepsi and Coke are always enjoyed equally.
 (b) Pizza is desired, while water is neither desired nor loathed.
 (c) I always need both a left and a right shoe.
 (d) Chocolate is tasty while celery makes me sick.
Most of the economy's goods and services, from automobiles to zithers, are produced in business firms—in tiny proprietorships, in partnerships, or in giant corporations. This and the next five chapters explain how business supply decisions interact with the consumer preferences described in the last chapter to produce the array of goods we enjoy.

But to understand our business civilization, we must first understand the organization and functioning of business enterprise. Using an extended case study, the first part of this chapter describes small business before turning to an analysis of the modern corporation. The second part deals with the financial structure of corporations and mentions some of the current issues surrounding corporate control of the economy.

The appendix presents a brief introduction to the fundamentals of accounting, for a grasp of accounting is essential to an understanding of the economics of enterprise.
A. Big, Small, and Infinitesimal Businesses

There are more than 17 million different businesses in America in the late 1980s. The majority of these are tiny units owned by a single person—the individual proprietorship. Some others are partnerships, owned by two or perhaps two hundred partners. The largest businesses tend to be corporations.

In terms of numbers, the tiny self-owned individual proprietorships are overwhelmingly the dominant business form. But in dollar value, in political and economic power, and in size of payroll and employment, the few hundred largest corporations occupy the strategically dominant position. Figure 7-1 shows how businesses are divided according to size, number, and economic importance.

The Role of the Firm

Before we examine the different kinds of business enterprises, we might well ask, Why do we need large organizations to produce our daily bread rather than producing everything ourselves? Why does business activity generally take place in firms? Why do people need to gather into small or large organizations to produce goods? As we shall see, firms exist for many reasons, but the most important are to exploit economies of scale in production, to raise funds, and to organize the production process.

The most compelling factor leading to the organization of production in firms arises from economies of scale. In production analysis, economies of scale occur when the cost of production declines with larger and larger volumes of output. Studies indicate that efficient production of automobiles requires annual production of at least 300,000 units per year. We could hardly expect that workers would spontaneously gather to perform each task correctly and in the right sequence; rather, workers gather under the coordination of firms to produce cars and most other goods of an industrial economy. To put this differently, if there were no economies of scale and specialization, then we could each produce our own car and digital watch and stereo system and finespun shirt in our backyard. It is obvious that we cannot perform such feats and therefore that we gain enormously because production is organized in large firms.

A related function of firms is to raise the resources for large-scale production. It costs $1 billion to build a new integrated steel mill; the research and development expenses for a new line of aircraft might be even greater. Where are such funds to come from? Perhaps a few large investments could be financed by rich individuals, as when nineteenth-century tycoons built empires in steel or railroads. But the days of such fabulously wealthy captains of industry are past. Today, in a private-enterprise economy, most funds for production must come from company profits or when firms borrow from large numbers of individual savers. Indeed, privately financed production would be virtually unthinkable without the ability of corpo-

![Figure 7-1 The three kinds of business firms](image-url)

This figure shows the major economic organizations in the American economy. The horizontal axis indicates the percent of firms that are corporations, partnerships, or proprietorships. The vertical axis shows the average size (as measured by annual sales in dollars) per firm. The area (number × sales) indicates the share of total economic activity represented by each segment. Note that even though corporations are few, they represent the bulk of economic activity. (Source: U.S. Department of Treasury, Internal Revenue Service.)
rations to raise billions of dollars each year for new projects.

A third reason for firms is the necessity of management. The manager is the person who organizes production, introduces new ideas or products or processes, makes the business decisions, and is held accountable for success or failure. After all, production cannot organize itself. Someone has to decide whether to build a new factory, to redesign a computer program, or to start a new line of business. Someone has to negotiate with labor unions and make commitments about materials and supplies. Someone has to hire baseball players, find a baseball field, hire umpires, and sell tickets. Once all these factors of production are engaged, someone has to monitor their daily activities to ensure that the job is being done effectively and honestly. In today’s economy, with its legal framework, such managerial decisions are made by firms, or more precisely by people on behalf of firms.

Production is organized in firms because efficiency generally requires large-scale production, the raising of significant external resources, and careful management and monitoring of ongoing activities.

Now that we have seen why productive activities are organized in firms, we can proceed to study different varieties of business organizations—from the tiniest individual proprietorships to the giant corporations that dominate the economic life of a capitalist economy.

TINY BUSINESS

Let us glance briefly at the role in our economy of “infinitesimal businesses.” There are 240,000 food-shop owners in the United States, all trying to make a living. There are 135,000 gas stations, 50,000 drugstores, and so on. All told, there are almost 10 million tiny businesses making less than $50,000 per year.

Some of these ventures are highly successful. But it is still true to say that most do not earn for their owners much more than they could get with less effort and lower risk by working for somebody else. The classic small business is the “Mom and Pop” grocery store—doing a few hundred dollars of business per day, having too small a store, and barely earning a minimum wage for its owners’ efforts.

The major obstacle to starting a small business is obtaining the start-up funds for initial capital. Businesses differ greatly in the amount of financial investment required. For example, to build a modern service station costs more than $300,000, but to lease one from an oil company brings the initial investment down to around $20,000.

Aside from the capital necessary to open a business, there is the tremendous amount of personal effort required. Self-employed farmers work from 55 to 60 hours per week during the peak summer months. Still, people will always want to start out on their own. Theirs may be the successful venture, and people are always attracted by the opportunity to make their own plans and undertake the variety of tasks that a small business calls for.

THE SINGLE PROPRIETORSHIP

We gain insight into the principal forms of business organization by following the hypothetical history of one business venture as it grows from a small beginning into a good-sized corporation.

Let us suppose you decide to start a business to make computer software. Perhaps you learned how to program at an early age and have now come up with an exciting video game or a way to write company accounts more easily. To be a single proprietor you need not get anybody’s permission. You merely say, “Today, I am in business.”

You can hire as few or as many people as you wish, and borrow whatever capital you can. At the end of the month, whatever is left over as profits—after all costs have been met—is yours to do with as you like. The losses of the business are all yours, too. If your sales fail to cover the costs you have incurred, your creditors can ask you to dig deeper into your personal assets: your car, the family home, and the rest.

In legal terms, an individual proprietor has unlimited liability for all debts contracted by the business. All your property, with the exception of a small minimum, is legally available to meet those debts.
Business Growth and the Need for Capital

You are pleasantly surprised to find that your software business is a big success as your first device—an accounting package—has been snapped up by a number of small businesses. Although you are making more money than you expected, you find yourself harder pressed for cash than ever before.

Why? Because you are not paid in advance for your sales; you must, however, pay your computer programmers and suppliers promptly on receipt of their services. But developing new software takes time. For the moment, you are putting out money and getting nothing for it—that is, nothing except the likelihood of future payment when your next software package is marketed. You look around for an infusion of funds.

Why can’t the local banker be called upon for a commercial loan at 10, 13, or 16 percent? Ordinarily, a commercial bank will not provide “venture capital” (investment funds available for highly speculative or risky projects). Even an innovative bank would hesitate before providing capital to a business like yours. To the bank you are only one of numerous would-be entrepreneurs. And most, it knows, are destined for failure even in the best of times; certainly many would be wiped out if a serious recession should come along. For banks or investors to be willing to undertake the risk and bother of putting venture capital into your firm, they would need an expected return of 20 or 30 percent per year.

Despite your makeshift attempts to raise capital, the business is still suffering from growing pains. You have exhausted all possibilities of raising further loan capital.

Perhaps the time has come to look for a partner.

THE PARTNERSHIP

Any two or more people can get together and form a partnership. Each agrees to provide some fraction of the work and capital, to share some percentage of the profits, and of course to share the losses or debts. A purely oral agreement will do, but it is more business-like and makes for fewer misunderstandings if you have a lawyer draw up some sort of formal partnership agreement. Partnerships are the least popular of the major business forms. There are 1½ million partnerships, but they account for only 4 percent of all business sales. (See Figure 7-1.)

For your software business, you find that a college friend has an interest in computers and has inherited $80,000. After looking at your disks, he agrees to join fortunes. Your partner contributes $80,000 in return for one-third of the firm’s equity, which represents your partner’s stake or claim on the profits and losses of the business. Like you, he is to work for his fair market wage. You receive two-thirds of all profits or losses, and he gets one-third.

Your partner has put up $80,000 in cash. What have you brought into the venture? Only a few blank floppy disks and an IBM personal computer. This doesn’t seem like much.

Actually, you bring much more to the partnership in the form of what accountants call “goodwill.” This represents intangible but valuable assets such as trade secrets, know-how, skills, trademarks, and reputation. In your case, your goodwill comes in a copyrighted computer-software package and as specialized knowledge about devising business software. More concretely, you have built up a firm with an earnings potential (after all costs) of $30,000 per year. Moreover, for your partner’s investment of $80,000, he is purchasing one-third of the $30,000 annual earning power.

To get this much per year from a common-stock investment would cost him more than $80,000. He would have to buy $100,000 worth of 10 percent government bonds to get such a return. So, aside from the risk element, your partner is getting a fair buy for his $80,000, since he will collect some 12½ percent annually on his investment. Hence your two-thirds share is justified by the goodwill that you supply.

A Small Business Matures

And your business continues to prosper and grow. Each year, both partners agree to take out only their stipulated drawings (which are like wages) and about a fifth of their share of profits, plowing the rest of the profits back into the business. Why do new businesses like yours grow? Here are some reasons:
Sales of your product have risen as a result of your trade name being advertised and becoming better known, and from your hiring more salespeople.

As more units are produced, economies of large-scale production are realized. You are able to cut your price and generate more sales.

A new factor of growth results from "vertical integration": you decide to open a chain of retail outlets, thus operating two stages rather than only one stage of production.

The company also grows by "horizontal integration": you take advantage of a profitable opportunity to buy out a number of competitors who sell popular competing software packages.

New complementary products such as video monitors, printers, and a data service are added. You feel that bringing in these new lines under the same roof will help to spread the overhead expenses, and your salespeople feel that they might just as well get many orders as few when making a call.

You might even become a baby "conglomerate," growing by adding unrelated activities to your business (e.g., machine tools, car repairs, golf balls).

You may grow because your costs are lower. Many of your competitors have been unionized and have high labor costs. You undercut them with a non-union-wage scale that is only two-thirds that of your rivals.

But most likely of all, your business may grow simply because you had a good idea, embodied it in a well-made product, worked hard most weekends, managed your company well, and marketed your product skillfully.

Disadvantages of the Partnership Form

Why not admit more partners? There is no limit to the number you can admit, and partnerships in the brokerage and banking fields often involve more than 100 people. But the partnership poses certain disadvantages that make it impractical for large businesses.

First, most partnerships have unlimited liability. General partners are liable without limit to the full extent of personal fortune for all debts contracted by the partnership. If you own 1 percent of the partnership and the business fails, then you will be called upon to foot 1 percent of the bills and the other partners will be assessed their 99 percent. But suppose they cannot pay any part of their assessment. Then you, as the 1 percent partner, may be called upon to pay for all, even if it means selling off your prize possessions.

This problem with unlimited liability reveals why partnerships tend to be confined to small, personal enterprises like agriculture and retail trade. Partnerships are simply too risky for most situations.

In addition, partnership agreements require complicated legal maneuvering to buy or sell shares. A partnership can be dissolved whenever any party finds the existing arrangement unsatisfactory and wishes to withdraw. The law of partnerships also makes it impossible for old partners to sell their shares to a new party without the consent of all partners. If agreement cannot be secured, the partnership will have to be dissolved. Finally, because of the red tape and unlimited liability, partnerships are incapable of raising capital from large numbers of people. Only through incorporation can our largest enterprises raise sufficient funds for the needs of modern industry.
B. THE CORPORATION

We have up to now traced the birth and infancy of your small computer-software firm, beginning as a single proprietorship and expanding into a partnership. As your firm’s capital needs outgrow its resources, you decide the time has come to form a corporation.

What is a corporation? Some history will illustrate its nature. Centuries ago, corporate charters were awarded on very rare occasions by special acts of the king or legislatures. Parliament or Congress would permit a railroad or canal line or munitions company to organize and perform certain specific functions.

The British East India Company was a privileged corporation and as such it practically ruled India for more than a century. In the nineteenth century, railroads here and abroad often had to spend as much money in getting a charter through the legislature as in preparing their roadbeds. Gradually, over the past century, this procedure began to seem unfair and inefficient, and it became the practice to pass general incorporation laws granting almost anyone the privilege of forming a corporation for almost any purpose, without having to get a special vote of approval from the state legislature or from Congress.

Today, a corporation is a form of business organization, chartered in one of the 50 states and owned by a number of individual stockholders. The corporation has a separate legal identity, and indeed is a legal “person” that may on its own behalf buy, sell, borrow money, produce goods and services, and enter into contracts. In addition, the corporation enjoys the right of limited liability, whereby each owner’s investment in the corporation is strictly limited to a specified amount.

This capsule description of the status of a corporation can be fleshed out by continuing the hypothetical case study of your growing software firm as it becomes a corporation and expands further.

Incorporation

To incorporate, or form a corporation, you begin by hiring a lawyer to draw up the necessary papers. Your state automatically grants the corporate charter for a fee of a few hundred dollars.

Let us see how the incorporating procedure works in the case of your computer company. A central question is, Who will own your corporation? Ownership is determined by who holds the shares or common stock of the company. (More details on stocks and other securities are given later in this chapter.) You and your partner want to retain control of the corporation, so you issue 10,100 shares to yourselves and decide to sell another 10,000 to outside interests.

A careful audit leads you to believe that a fair market value of the 10,000 shares is at least $300,000—so you set the value conservatively at $25 per share. You expect that your firm will be able to pay dividends of $2 per share each year (growing with inflation), so the new co-owners of your company will receive a fair return on their investment.

Who will buy the 10,000 shares? You don’t know enough potential purchasers so you decide to market the 10,000 shares through a local investment banking firm. These firms are merchandisers of securities; like any merchant, they profit from the difference between their buying and selling prices. Because your firm is an unknown and risky enterprise, you agree that they will pay you $20 and resell your company’s shares at $25 per share.

Corporate Structure

The stock offering is a big success as all the shares are sold and you receive $200,000 in cash for them. You need not concern yourself with the people who bought the shares or with the fact that they may resell their shares. The names of the owners of the shares, the new co-owners of the corporation with you, are registered with the company or its bank agent, so that you will know where to send the dividend checks and the announcements of stockholders’ meetings. Shares in the corporate earnings and voting privileges are in direct proportion to the number of shares owned. Those with 1000 shares get 1000 votes and 1000 times higher dividends than those with 1 share.

The outside owners of 10,000 shares have paid in $200,000 cash to the company. What have you and your partner paid in? Obviously not cash, but rather a sizable amount of earning assets: plant, computers,
software, equipment, goods in process, and goodwill.

Does anybody watch over the sale of securities to protect potential investors against fraud and abuse? Back in the old days before 1929, you and your investment bankers might have puffed up the value of stocks with wild claims about fabulous real-estate ventures in Florida or overestimates of future earnings.

Such practices are curbed today. You have to submit any sizable new interstate issue of stocks to the Securities and Exchange Commission (SEC), a regulatory agency set up during the Great Depression in 1934. The SEC would have to satisfy itself that your statements regarding the stock offering were not misleading before it allowed you to sell the new shares. However, it does not pretend to pass judgment on, or attest to, the value of the stock. Caveat emptor—let the buyer beware—still prevails as a doctrine in judging the value of stocks.

ADVANTAGES AND DISADVANTAGES OF THE CORPORATE FORM

Private Advantage

The corporation has solved most of the problems that bothered you about the partnership. To begin with, as we noted above, the corporation is an almost perfect device for raising large sums of capital.

In addition, all corporate stockholders enjoy limited liability, which protects shareholders from incurring the debts or losses of the corporation beyond their initial contribution. In our example, after paying $25 per share, stockholders need never be liable for additional funds or worry about their personal fortunes being in jeopardy. If worse comes to worst and the business goes bankrupt, the most investors can lose is their original payment of $25 per share. They cannot be assessed further.

Of secondary importance is the fact that the corporation is a convenient form for doing business. It is a separate legal entity created by the state. The corporation can be sued in court and can sue in its own name (without needing to gather the agreement of its thousands of owners).

Also, the corporation may have "perpetual succession" or existence, regardless of how many times the shares of stock change hands by sale or bequest and regardless of whether there are 10 or 10,000 different stockholders.

No group of shareholders can force any other group to sell or retain their holdings. Only a majority vote is needed to reach business decisions, which include making investments, setting salaries, buying or selling lines of business, and approving budgets. Normally, the stockholders will be too many to meet for every decision. They will prefer to elect a board of directors consisting of a dozen or so members to represent them between annual meetings, in much the same way that democratic electorates select legislative representatives to act for them. As we shall see, however, the problem of keeping large corporations truly democratic is a hard one to solve.

Corporate Taxes You will, however, face one major disadvantage when you incorporate: an extra tax on corporate profits. For an unincorporated business, any income after expenses would be taxed as ordinary personal income. The corporation is treated differently in that corporate income is doubly taxed, first as corporate profits and then as individual income.

As an example, say that your computer company has net taxable profits (revenue minus costs) of $1 million in 1988. You will pay 34 percent ($340,000) of federal corporate income tax on these profits, and there may be additional state taxes as well, but state taxes will be ignored in this example. Of the $660,000 left over, say the firm distributes to shareholders $500,000 in dividends. The dividends are then taxed at the tax rate of the individual, which would be 28 percent for very wealthy shareholders, for another $140,000 of federal taxes. Hence the total federal tax rate on the income from your computer company might be as high as 48 percent in this simple example. These two layers are sometimes called "double taxation of corporate income."

This taxation of corporate income has been severely criticized in recent years. It is a high price to pay for the privilege of limited liability and the ease of raising capital. One proposal recommends "integration" of corporate and individual income tax—treating corporate income as if it were income from an unincorporated business, allocating all such income
to the owners, and taxing the income only once. Proponents of this approach believe that it would lead to more even-handed taxation of people and of capital income in different sectors of the economy.

Economic Advantages

When British Prime Minister Gladstone was shown electricity on a visit to Michael Faraday’s laboratory, he asked, “What is the use of electricity?” To this Faraday gave the ironic reply, “I suppose some day, Sir, you may come to put a tax on it.” Surely the advantage to society of the corporate form lies not merely in the fact that the state can tax it.

Because many production processes require large-scale enterprises, with millions or billions of dollars of capital, investors need a way to pool their funds. Corporations, with limited liability and a convenient management structure, provide the way to attract large supplies of private capital, produce a variety of related products, pool risks, and utilize the economies of sizable research units and managerial know-how.

This is the economic rationale of the legal entity called the corporation.

HOW A CORPORATION CAN RAISE CAPITAL

We have noted that one major advantage of a large corporation is that it can raise large sums of money to engage in efficient large-scale production. How does it do this? What forms of financing are available? Table 7-1 shows the sources of all funds raised by domestic U.S. corporations during the year 1986. Note that this refers to funds raised for total investment, including replacement of capital. A surprising finding is that most funds raised are internal; that is, they are paid for out of depreciation and retained earnings. Raising these funds simply requires the firm to decide not to pay out all its earnings.

Some funds are raised externally, or from outside the company. These come from bonds and mortgages, from bank debt, and from stocks. These are

<table>
<thead>
<tr>
<th>SOURCE</th>
<th>AMOUNT (billions of dollars)</th>
<th>PERCENT OF TOTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internal:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Depreciation</td>
<td>$321</td>
<td>82%</td>
</tr>
<tr>
<td>Retained earnings</td>
<td>10</td>
<td>3%</td>
</tr>
<tr>
<td></td>
<td></td>
<td>85%</td>
</tr>
<tr>
<td>External:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bonds</td>
<td>$117</td>
<td>30%</td>
</tr>
<tr>
<td>Stocks</td>
<td>−57</td>
<td>−15</td>
</tr>
<tr>
<td>Bank credit and other debt</td>
<td>1</td>
<td>0%</td>
</tr>
<tr>
<td>Total funds for gross investment</td>
<td>$392</td>
<td>15%</td>
</tr>
</tbody>
</table>

Table 7-1 Sources of funds for U.S. corporations, 1986

How do American corporations raise the funds necessary for expansion? The table shows the funds raised to finance gross investment, both new and replacement plant and equipment. The bulk of the funds are internal, from depreciation, which measures the amount of funds set aside to replace capital used up during the year. Securities and mortgages represent most of the external financing. Stocks or equity financing was negative, indicating that firms bought back $57 billion of their own or other companies’ stock. (Source: Data Resources Inc., March 1988.)
different kinds of securities, which are legal forms of indebtedness.

Common Stocks or Equities

We discussed above the nature of common stocks, sometimes called equities. These represent shares of ownership in a corporation and are held by individuals, pension funds, and other companies. For publicly owned corporations, the most important stocks are traded on stock exchanges, such as the New York or American Stock Exchanges.

In principle, the shareholders control the companies they own, and they elect directors and vote on many important issues by mail ballot. In practice, the notion of shareholder control is a fiction, for no single person or organization owns a sufficient number of shares to control behemoths like IBM, GM, or Exxon. A controlling interest might require 20 percent of the stock, yet for the largest corporations this would amount to $5 or $10 billion. It is the managers, not the owners, who directly control large publicly owned corporations today.

Until recently, corporations raised a modest amount of funds, $10 billion to $30 billion each year, from new stock offerings. Then, suddenly in 1984, equity began to disappear, with a $77 billion loss of equity (or stocks) in 1984, $82 billion disappearing in 1985, a $67 billion loss in 1986, and $57 billion evaporating in 1987. Where was the equity going? Some was bought back by companies hoping to boost their share prices; part was absorbed in complicated financial maneuvers like “leveraged buyouts.” Financial analysts are today concerned that corporate America is too leveraged, with too much debt relative to levels of equity: the higher levels of debt might leave some companies in shaky financial condition if a serious economic downturn were to occur.

Bonds

A second important form of security is bonds. These are special kinds of promissory notes, nicely printed on gilt paper, issued in $1000 or other denominations to be readily marketable for resale. A bond promises to pay a certain number of dollars in interest, every 6 months or so, for a number of years until it matures.

At maturity, the borrowing company promises to pay off the principal of the bond at its face value.

Ordinarily, payments for interest and principal must be made on time, regardless of whether the company has been making profits or not. Otherwise the company is in default of its obligations and can be taken to bankruptcy court like any debtor.

Hybrids

In addition, there are numerous hybrid or combination securities, combining the features of bonds and stocks. Thus “preferred stocks” have a fixed yield like a bond, but dividends can go unpaid without triggering bankruptcy.

A major new hybrid that has become very popular in recent years is an option. This represents the right to buy a security or commodity at a specified price within a specified period of time. For example, we might be offered the option of buying 100 shares of IBM stock at $120 each at any time in the next 3 months. If IBM is now selling for $110, would such an option be of value? Indeed it would, for IBM’s price might rise. If you thought that IBM had a 50 percent chance of rising to $130 during the period, then the expected value of the option would be $5 per share \[= \frac{1}{2} \times (130 - 120)\]. You can buy options on many stocks, on Treasury bills and bonds, on foreign currencies, on pork bellies and French francs—enjoying the thrills of Las Vegas from your own home.

Bank Credit

Bank credit has been a traditional source of finance. Unlike stocks and bonds, bank debt is not traded in financial markets. Rather, it is a loan negotiated between a company or a country and banks, usually commercial banks. Moreover, bank debt is usually of a short-term nature, maturing in a few months or sometimes a few years. Often it has a variable interest rate, moving up and down with market interest rates. The major advantage of bank debt is that firms employing it can avoid cumbersome and expensive legal requirements, such as registering with the SEC (see the earlier discussion in this chapter). Bank debt has become less popular in recent years, as investors have
come to prefer liquid marketed securities over illiquid non-marketed loans.

Advantages of Different Securities

Common stocks have been the preferred investment vehicle for many investors in recent decades because of their high yields over the long run. Taking the period from the mid-1920s through 1987, common stocks have yielded an average real return (i.e., the return after correcting for inflation) of around 6 percent per year as opposed to an average real return of 1 percent per year for long-term bonds and around 0 for short-term bonds. These yields are calculated to include both annual return (in interest or dividends) and capital gains. The returns on common stocks were even higher during the mid-1980s, and many young investors became fabulously wealthy on their gains during the great bull market from 1982 to 1987. The euphoric bubble of the gilded 1980s burst on October 19, 1987, however, when stock prices fell by a record 23 percent, wiping out $600 billion of assets in a single day. Some economists believe that common stocks will long be tarnished in the eyes of investors as too risky for their golden nest eggs.

It would be a mistake to think that bonds are perfectly safe investments. As recently as 1983, $2 billion of bonds from the state of Washington defaulted because the nuclear power plant under construction became too costly and were scrapped. In addition, aside from risk that the corporation won’t pay its bond interest and principal, every time general interest rates change, bond prices bob up and down. In the last 15 years of inflation and soaring nominal interest rates, investors have learned that they could lose money and real purchasing power in bonds. Indeed, since 1979, bonds have fluctuated in price almost as violently as common stocks.

In recent years, companies have become much more leveraged. That is, they have developed much higher ratios of bonds to stocks (or debt to equity) than in earlier periods. Why is that? One major factor pushing companies toward debt is that interest payments are tax-deductible, while dividend payments are not. Offsetting this advantage of debt finance is, however, a big risk in moving to a more leveraged position: a business downturn would deplete profits

AMERICA’S LARGEST CORPORATIONS

<table>
<thead>
<tr>
<th>COMPANY</th>
<th>SALES, 1987 (millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. General Motors (automobiles)</td>
<td>$101,782</td>
</tr>
<tr>
<td>2. Exxon (petroleum)</td>
<td>76,416</td>
</tr>
<tr>
<td>3. Ford Motor (automobiles)</td>
<td>73,145</td>
</tr>
<tr>
<td>4. IBM (computers)</td>
<td>54,217</td>
</tr>
<tr>
<td>5. Mobil (petroleum)</td>
<td>51,223</td>
</tr>
<tr>
<td>6. Sears, Roebuck (retailing)</td>
<td>48,440</td>
</tr>
<tr>
<td>7. General Electric (electrical equipment)</td>
<td>39,315</td>
</tr>
<tr>
<td>8. Texaco (petroleum)</td>
<td>34,372</td>
</tr>
<tr>
<td>9. AT&T (telecommunications)</td>
<td>33,598</td>
</tr>
<tr>
<td>10. du Pont (chemicals)</td>
<td>30,224</td>
</tr>
<tr>
<td>11. Citicorp (banking)</td>
<td>27,519</td>
</tr>
<tr>
<td>12. Chrysler (automobiles)</td>
<td>26,277</td>
</tr>
<tr>
<td>13. Chevron (petroleum)</td>
<td>26,015</td>
</tr>
<tr>
<td>14. K-Mart (retailing)</td>
<td>25,864</td>
</tr>
<tr>
<td>15. Philip Morris Cos. (beverages)</td>
<td>22,279</td>
</tr>
<tr>
<td>16. Aetna Life and Casualty (insurance)</td>
<td>22,114</td>
</tr>
<tr>
<td>17. Amoco (petroleum)</td>
<td>20,174</td>
</tr>
<tr>
<td>18. ITT (conglomerate)</td>
<td>19,525</td>
</tr>
<tr>
<td>19. Procter & Gamble (consumer products)</td>
<td>17,892</td>
</tr>
<tr>
<td>20. American Express (finance and services)</td>
<td>17,768</td>
</tr>
</tbody>
</table>

Table 7-2 The largest U.S. corporations dominate economic life

so much that the company could not meet its interest obligations. This is the risk that sent many companies to bankruptcy courts in the early 1980s.

THE GIANT CORPORATION

While one should not infer that all corporations go through these stages, we have now carried our successful computer-software company far enough up the ladder of success. The rest of this chapter will be concerned with the economic position and power of the very large modern corporation and the problems that it creates for the American economy. It is these giant corporations, often multinational, that play the dominant role in today’s economy.

A selection of the largest corporations is shown in Table 7-2. This list reads like an honor roll of Amer-
ican business, with almost every name a household word. The largest companies include not only industrial giants like General Motors, IBM, and Exxon, but also service companies: banks like Citicorp, insurance companies like Aetna, retailers like Sears, and utilities like AT&T.

Large size breeds success, and success breeds further success. But there are also economic and political barriers to largeness. The statistical evidence on profits suggests that the rate of profit increases with size. But the very biggest firms in an industry seem to show a slight dropping off of relative profits compared with the next to the largest.

Moreover, just because large corporations rarely go bankrupt, this does not imply that the corporate pecking order is absolutely fixed. Just as a hotel may always be full—but with different people—so the list of the biggest corporations is a changing one. Thus, if we look at the list of the 10 largest U.S. companies in 1909, not a single one remained in the top 10 by 1988.

Divorce of Ownership and Control in the Large Corporation

Let us examine the internal working of one of these giant corporations. The first point to note about our large corporations is that they are all publicly held. The shares can be bought by anyone, rather than being "privately held," or owned by a family. The most striking feature is the diversification of ownership among thousands and thousands of small stockholders.

Take a company like AT&T. In 1987, more than 2 million people owned its shares, but 92 percent of these people had fewer than 500 shares and no single person owned as much as 1 percent of the total. Such dispersed ownership is typical of our large publicly owned corporations.

In a classic study, Berle and Means pointed out that the wide diversification of stockholding has resulted in a separation of ownership from control. Because ownership is so dispersed, owners have great difficulty affecting the actions of large corporations.

A Managerial Revolution Who makes corporate decisions? Primarily, it is the increasingly important class of professional managers—John Kenneth Galbraith called it the "technostructure." The old-time captain of industry, for all his creativeness and ability to calculate the risks necessary to build up a great enterprise, often had something of the buccaneer in his makeup and the "public-be-damned" attitude. In company after company, the original founders have been replaced by new types of executives. They are less likely to be self-made and more likely to be graduates of the Harvard, Stanford, or other leading business schools. They will probably have acquired special training and management skills. The new professional executive is more adept at public relations and the handling of people—is necessarily more the "bureaucrat," often interested as much in preserving the status quo as in taking risks.

Typically, the dominant person will be the chairperson of the board of directors, often called the "chief executive officer," or CEO, of the corporation. Legally, however, the corporation is run by its board of directors—a group of insiders and knowledgeable outsiders, often with a dash of prestige. On the whole, it would be going too far to say that most boards of directors act simply as rubber stamps to approve the decisions already made by the officers of the company. But it is true that so long as management possesses the confidence of the board, that body will usually not actively intervene to dictate specific policies.

This is the same administrative procedure usually followed by the board of trustees of a private college or university, and it is not too unlike the parliamentary system of ministerial responsibility used in Great Britain and elsewhere.

Conflicts of Interest Generally speaking, there will be no clash of goals between the management and

1. A. A. Berle, Jr. and Gardner C. Means, *The Modern Corporation and Private Property* (Commerce Clearing House, New York, 1932). R. J. Lerner, in a 1966 American Economic Review study, suggested that the Berle-Means thesis on separation of ownership and control has been reinforced since 1929: whereas 6 of the 200 largest corporations were privately owned (80 percent or more of stock) in 1929, in 1963 there were none; 84.5 percent of the largest firms had no group of stockholders owning as much as 10 percent.

2. See Chapter 22 for a more detailed discussion of Galbraith's critique of American capitalism.
stockholders. Both will be interested in maximizing the profits of the firms or in raising the growth in earnings and market price per share. But in two important situations there may be a divergence of interests, often settled in favor of management.

First, insiders may vote themselves and friends or relatives large salaries, expense accounts, bonuses, and fat retirement pensions at the stockholders’ expense.

A second conflict of interest may arise in connection with undistributed profits. Like kings or emperors, the managers of firms have an understandable tendency to try to make firms grow and perpetuate. The psychological reasons are subtle and by no means always selfish. Still, when profits are plowed back into a company, there is sometimes reason to suspect that the same capital could be more profitably invested by the stockholders elsewhere or spent upon consumption. Indeed, a company would often be well advised to wind itself up, pay back its capital, or agree to merge with another corporation. But few are the occasions when management gladly votes itself out of jobs and the firm out of business.

Takeover! Managers are not complete corporate autocrats, however, for this is the age of the takeover battle.

What might be the typical scenario? Let’s say that Lazy-T Oil is sitting on a rich oil deposit, worth millions of dollars. But its management has become fat and happy, so Lazy-T is simply letting the oil field lie fallow.

Another firm, say a tobacco company called Lucky Smoke, feels that its own sector has poor future prospects and is looking for greener fields. It sees a rich prospect in Lazy-T, which is currently selling for $30 per share whereas a careful analysis indicates that Lazy-T’s oil assets would bring $60 per share if the firm were liquidated. Lucky Smoke makes a “tender offer” for, or formal offer to purchase, Lazy-T’s shares at $45 per share, using Lucky Smoke’s cash or credit. The shareholders of Lazy-T hungrily accept, and Lucky Smoke purchases the assets and liabilities of Lazy-T. After taking control, the new owners might begin an intensive drilling program to gain a handsome return on their investment.

Another technique that became popular in the late 1980s is the “leveraged buyout.” In this variant, a small group of investors might buy out Lazy-T owners by issuing “junk bonds,” or highly speculative bonds, of Lazy-T itself.

The example of Lazy-T suggests that takeovers are a kind of market for corporate control, and as such they might provide a useful check to inefficient practices of entrenched managers. And in some cases new managers do indeed shake up a firm’s practices, cut costs, and improve productivity and profits. Studies indicate that takeovers are not always followed by improved profitability, and in many cases takeovers seem more motivated by the possibility of a quick paper profit. Most experts believe, however, that the possibility of a takeover does at least somewhat rein in management inefficiencies.

THE CONSERVATIVE 1980s

The distinguished American historian Arthur Schlesinger, Jr., has written that American political beliefs swing back and forth between periods of liberalism, marked by introduction of innovative new programs, and conservatism, in which the earlier reforms are digested and refined. During the 1930s, President F. D. Roosevelt introduced programs that many businesspersons labelled as “socialistic.” Distrust of business lingered into the Kennedy administration, and Kennedy himself is reported to have reacted to a rise in steel prices by saying, “My father told me all businessmen were SOBs, but I never believed it till now.”

The pendulum swung in the conservative direction during the 1980s. President Reagan championed the free market, attempted to roll back government regulation of business, and reduced taxes sharply for the rich. The supply-side policies of the Reagan administration glorified entrepreneurship and vilified the role of government. Business schools were besieged by eager applicants, and the salaries of newly minted business-school graduates reached $60,000 or even $70,000. The “yuppie” mystique appeared, heralding the young urban professionals, usually depicted as investment bankers who toured the countryside in their BMWs and found it difficult to make ends meet on $500,000 a year. Once again, many joined Calvin Coolidge in proclaiming that “the business of America is business.”
Toward the end of the 1980s, the pendulum began to swing away from these unabashed probusiness views. Many date the end of the gilded era with the stock market crash of October 19, 1987, a day when many a young fortune was lost. Others say that the supply-side excesses became apparent with the budget and trade deficits and the fall of the U.S. dollar after 1985. Another critical point came when arbitragers like Ivan Boesky were convicted of criminal violations of securities laws. As the 1980s come to a close, many commentators wonder whether the excesses of the recent era have propelled America into a new radical age in which Congress will legislate against businesses and in which governments will overturn market forces.

This chapter has taken a whirlwind tour through the world of small, medium, and giant business. We saw how individuals can start, finance, and run their own small firms. But today's economy is increasingly populated by publicly owned corporations, each fueled with funds raised from thousands of investors. And for those who want a closer look at the way that company accounts are reckoned, the appendix to this chapter delves into business accounting.

Having concluded this survey of business organization, we go on to economic analysis of firms. We turn in the next chapters to an analysis of production and cost and then to an analysis of the way competitive firms make their supply decisions.

SUMMARY

A. Big, Small, and Infinitesimal Businesses

1. In our market economy, production is organized in firms—some in tiny one-person proprietorships, some in partnerships, and the bulk of economic activity in corporations.

2. The different kinds of enterprise have different advantages and disadvantages. Small businesses are flexible, can start new products, acquire other firms, and disappear quickly. But they suffer from the fundamental disadvantage of being unable to accumulate large amounts of capital from a dispersed group of investors. Today's large corporation, granted limited liability by the state, is able to amass billions of dollars of capital by borrowing from banks, bondholders, and owners of its common stock.

3. Production takes place in firms because: (a) economies of scale necessitates that output is produced at high volumes; (b) the financial requirement of production requires much more capital than a single individual would willingly put at risk; and (c) efficient production requires careful management and coordination of the tasks by a centrally directed entity.

B. The Corporation

4. Modern corporations have a wide variety of sources from which they can draw funds. Most important is internal financing—funds raised by reinvesting profits or depreciation. External financing comes primarily from common stocks (which are titles of ownership to the company), bonds (which are promises to pay interest and principal over a fixed period of time), and bank debt (a newer form of debt obtained from financial institutions).

5. As public corporations grow, and their owners become numerous and dispersed, we see the phenomenon of the separation of ownership from control. Such a trend can
introduce conflicts of interest between shareholders and managers—such as when managers shun risk or pay themselves overly generous compensation. Takeovers today may help curb the most inefficient practices.

CONCEPTS FOR REVIEW

reasons for firms: scale economies, financial needs, need for coordination
single proprietorship, partnership, corporation
unlimited, limited liability

bonds, common stocks, goodwill earning power
separation of ownership from control
takeovers as constraint on managerial discretion

QUESTIONS FOR DISCUSSION

1. What are the major reasons that production of goods like automobiles or steel takes place in large corporations? Can you think of reasons why certain goods or services are not produced in business firms?
2. Compare the advantages and disadvantages of the (a) single proprietorship, (b) partnership, and (c) corporate form of business organization.
3. List ways of raising capital for small and large businesses.
4. Since interest on bonds is tax-deductible (and therefore avoids "double taxation"), why is a corporation ever "foolish" enough to raise capital through common stocks?
5. Recently Robert Reich, Lester Thurow, and others have claimed that America's stagnation is partly due to poor management being overwhelmed by Japanese managers who are more innovative. Are there any forces other than foreign competition that might force American managers to become more efficient? Examples might be. recession, rivals in product markets, takeovers, deregulation, exposure to ridicule. Explain.
6. What is meant by calling ours the age of the "managerial or bureaucratic revolution"? How does this apply to corporations?
7. Give examples of conflict of interest between stockholders and management; of coincident interests.
APPENDIX: 7

Elements of Accounting

In this age of accounts, familiarity with the key concepts of accounting is a necessity. Indeed, it is one of the most practical tools you learn in economics, whether as a manager, professional, or investor. If you operate a business, you will depend on your accounts and accountants to tell you whether you are making or losing money and which lines of business are thriving. Or if you are thinking of buying a business, or buying a share of a business, you and your financial advisers will want to pore over the firm’s accounts if you want to understand its financial strengths and weaknesses.

We begin with the two fundamental accounting statements: the balance sheet and the statement of profit and loss (or the so-called income statement).

The balance sheet represents a snapshot of the financial condition of the enterprise on some particular day, usually the last day of the year.

The income statement that is discussed next records the flow of resources in and out of a firm during, say, a year. We will emphasize that the balance sheet, like the amount of water in a bathtub, represents a stock of dollars, while the income statement shows a flow of dollars in and out of a firm, like the stream of water coming out of the bathtub drain or spout.

THE BALANCE SHEET

We begin our discussion of accounting with the balance sheet. This is a statement that records what a firm, person, or nation is worth at a given point in time. On one side of the balance sheet are the assets (valuable properties or rights owned by the firm). On the other side are two items, the liabilities (money or obligations owed by the firm) and net worth (or net value, equal to total assets less total liabilities).

The fundamental identity or balancing relationship of the balance sheet is this: The total assets are balanced by total liabilities plus the value of the firm to its owners. That is,

\[\text{Total assets} = \text{total liabilities} + \text{net worth} \]

This states that the assets of the firm must be balanced by its liabilities plus the net worth, or “owner’s equity.” Sometimes, it is useful to think of the fundamental identity by rearranging terms as follows:

\[\text{Net worth (or owner’s equity)} = \text{assets} - \text{liabilities} \]

Let us illustrate this by considering a simple balance sheet, as shown in Table 7A-1. On the left are assets, and on the right liabilities and net worth for a new company—say, Snack-Man Computers, Inc.—whose operations have just begun.

A blank space (black dots) has been deliberately left next to the common-stock net worth item because the only correct entry compatible with our fundamental balance
Table 7A-1
The balance sheet records the stock of assets and liabilities, plus net worth, of a firm at a given point in time.

<table>
<thead>
<tr>
<th>ASSETS</th>
<th>LIABILITIES AND NET WORTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current assets:</td>
<td>LIABILITIES</td>
</tr>
<tr>
<td>Cash</td>
<td>$ 20,000</td>
</tr>
<tr>
<td>Inventory</td>
<td>80,000</td>
</tr>
<tr>
<td>Fixed assets:</td>
<td>Long-term liabilities:</td>
</tr>
<tr>
<td>Equipment</td>
<td>150,000</td>
</tr>
<tr>
<td>Buildings</td>
<td>100,000</td>
</tr>
<tr>
<td>Total</td>
<td>Bonds payable</td>
</tr>
<tr>
<td>$350,000</td>
<td>100,000</td>
</tr>
<tr>
<td>NET WORTH</td>
<td>Stockholders’ equity:</td>
</tr>
<tr>
<td></td>
<td>Common stock</td>
</tr>
<tr>
<td></td>
<td>Total</td>
</tr>
<tr>
<td></td>
<td>$350,000</td>
</tr>
</tbody>
</table>

Sheet identity is $200,000. A balance sheet must always balance—because net worth is a residual defined as assets minus liabilities.

To illustrate how net worth always balances, suppose a fire burns up one-half the inventory. Your accountant reports to you: "Total assets are down $40,000; liabilities remain unchanged. This means total net worth has decreased by $40,000, and I have no choice but to write net worth down from the previous $200,000 to only $160,000." That’s how accountants keep score.

Here is one further general point about a balance sheet:

Although its two sides must balance in total, no single item on one side is necessarily matched by an item on the other side.

Thus, bonds do not correspond in value to the equipment or buildings, nor do capital items correspond to cash. The only correct statement about a balance sheet is that creditors (bondholders, banks, etc.) have a general claim of a definite value against the enterprise, and owners have a residual claim against the rest.

Accounting Conventions

In examining the balance sheet in Table 7A-1 you might well ask, How are the values of the different items measured? How do the accountants know that the buildings are worth $100,000, the equipment worth $150,000, and so forth?

The answer lies in the conventions used by accountants. Accountants use a set of agreed-upon rules that answer most questions. The most important assumption used in a balance sheet is that assets are valued at their historical costs. (As noted below, this differs from the economist’s concept of "value"; also, there are exceptions.) Thus
land enters the balance sheet at its purchase price; equipment and buildings enter the balance sheet at their purchase price less depreciation. While there are exceptions to this central accounting rule, the historical cost principle lies behind most valuations.

Why use historical cost, even when it may be inappropriate? Largely because any other convention would involve arbitrary and manipulable judgments—ones that would inevitably make it much more difficult for an outsider to interpret the economic meaning or the financial viability of a firm.

A number of interesting facts are revealed by the simple balance sheet of Table 7A-1. First, it is often customary to divide up assets according to whether they will normally be convertible into cash within a year or in more than a year; the first category being called current assets and the second, fixed assets. The liabilities also subdivide into current and long-term liabilities, depending on whether they must be paid in less than a year or more than a year.

Most of the specific items listed are more or less self-explanatory. Cash consists of coins, currency, and money on deposit in the bank. Cash is the only asset whose value is exact rather than an estimate.

Inventories and Depreciation

Two elements of a balance sheet require discussion: inventories and fixed assets. In both cases the difficulties arise because these assets are used up or consumed over time.

Inventory—consisting in the case of our computer company of floppy disks, computer paper, and pencils—can be valued in many different ways. Especially difficult problems arise when the costs of materials vary over time. Should we figure the cost of the floppy disks at the original cost, which is different from today’s price? Or should we figure cost at today’s cost, the price that is now being paid for the disks to replace those being used up? [Accounting texts refer to these two alternatives of valuing inventory changes respectively as “first-in, first-out” (FIFO) and “last-in, first-out” (LIFO), and analyze them in detail.]

The other slippery item on the balance sheet is fixed assets—buildings and equipment. If we assume that the equipment and buildings items were bought just at the end of 1989, the date of the balance sheet, then their balance sheet values will be listed as equal to their purchase price. This follows a fundamental accounting rule or convention: At time of purchase a thing is presumed worth what the enterprise pays for it. However, as we shall see in connection with the income statement and next year’s balance sheet, difficult questions are involved in deciding exactly how to evaluate equipment and buildings that have been used up (or “depreciated”) through wear and tear.

On the liabilities side, accounts payable are the sums owed for goods bought but not yet paid for, while notes payable might represent bank debt. The bonds payable are a long-term loan, bearing a 12 percent interest rate, due in 15 years.

The last item on the balance sheet is net worth, or stockholders’ equity. The net worth must equal $200,000.

This completes our first glance at a simple balance sheet.
THE INCOME STATEMENT, OR STATEMENT OF PROFIT AND LOSS

Now let time march on. In the months following the balance sheet shown in Table 7A-1, the firm is profitably engaged in producing and selling computer software. To show its flow of income over the 12 months of the year, we must turn to its income statement, or—as many companies prefer to call it—the statement of profit and loss, shown in Table 7A-2.

This is a statement which reports the following: (1) Snack-Man’s revenues from sales in 1990, (2) the expenses to be charged against those sales, and (3) the net income (or profits remaining after expenses have been deducted). That is,

\[\text{Net income} = \text{total revenue} - \text{total expenses} \]

which is the fundamental identity of the income statement.

Look first at the figures in the right-hand column. Sales were $242,000; the total cost of goods sold came to $170,000. After deducting another $14,000 for selling and administrative costs, $58,000 remained in net operating profit. A total of $8500 plus $15,000 in interest and various taxes had to be paid out of this, leaving $34,500 in net

INCOME STATEMENT OF SNACK-MAN COMPUTERS, INC.
(January 1, 1990, to December 31, 1990)

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Net sales (after all discounts and rebates)</td>
<td>$242,000</td>
</tr>
<tr>
<td>Less:</td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td>$ 50,000</td>
</tr>
<tr>
<td>Labor cost</td>
<td>90,000</td>
</tr>
<tr>
<td>Depreciation</td>
<td>20,000</td>
</tr>
<tr>
<td>Miscellaneous operating cost</td>
<td>10,000</td>
</tr>
<tr>
<td>Equals: Cost of goods sold</td>
<td>$170,000</td>
</tr>
<tr>
<td>Gross profit (or gross margin)</td>
<td>$ 72,000</td>
</tr>
<tr>
<td>Less: Selling and administrative costs</td>
<td>14,000</td>
</tr>
<tr>
<td>Net operating profit</td>
<td>$ 58,000</td>
</tr>
<tr>
<td>Less: Fixed interest charges and state and local taxes</td>
<td>8,500</td>
</tr>
<tr>
<td>Net income before income taxes</td>
<td>$ 49,500</td>
</tr>
<tr>
<td>Less: Corporation income taxes</td>
<td>15,000</td>
</tr>
<tr>
<td>Net income after taxes</td>
<td>$ 34,500</td>
</tr>
<tr>
<td>Less: Dividends paid on common stock</td>
<td>14,500</td>
</tr>
<tr>
<td>Addition to retained earnings</td>
<td>20,000</td>
</tr>
</tbody>
</table>

Table 7A-2 The income statement shows total sales and expenses for a period of time, say, a year.
income after taxes (or profit). Dividends of $14,500 on the common stock were paid, leaving $20,000 to be plowed back as retained earnings in the business.

Now turn back to the manufacturing cost of goods sold. Most of these items are self-explanatory: material, labor, and miscellaneous. But, as with the balance sheet, there are two particularly tricky items on the income statement—inventories and depreciation. In our simple example shown in Table 7A-2, Snack-Man had no inventories, so no problem of valuing inventories arose. If there had been a change in the stock of finished software disks, we would have to ask, “Which units of inventory were sold, the software disks produced in 1989 or in 1990? Were the units sold the last ones produced (the LIFO method) or the first ones (the FIFO method)?”

Depreciation

Turn next to the $20,000 charge for depreciation shown in Table 7A-2. This represents the charge for the cost of using fixed assets like buildings and equipment. Let’s see how it is calculated.

Most companies own their own capital goods—buildings, computers, equipment, trucks, and so forth—using these capital goods in various ways in the production process. But these assets do not last forever. Trucks wear out, computers become obsolete, and buildings eventually begin to deteriorate.

The accountant naturally insists that an appropriate charge or cost be made for fixed assets along with all other costs, and the difficulty arises in determining how much of an asset is “used up” in a given year. Indeed, you might wonder why any depreciation charge at all has been made for 1990 since the buildings and equipment were bought brand new at the beginning of the year and surely they have not worn out already. Your engineer might advise you that the machines will operate perfectly for 10 years and then fall apart at that time. How much, then, should you charge each year for the expense of the machines? Should you charge it all in the year of purchase? In the year when they collapse?

Here is where the farsighted wisdom of the accountant comes to the fore. It would be poor management to charge nothing for depreciation for 9 years, persuade yourself that you are earning a nice profit, and then incur a great loss when you have to replace the entire machine in the tenth year. Much more realistic is to recognize that the machines are being used up all the time—used up in the economic sense that their value declines because of wear and tear, obsolescence, and age. To account for this decline in the value of fixed capital buildings and equipment, then, accountants reduce their value, or depreciate them, by using a depreciation formula.

What kind of formula is used to calculate the depreciation on a capital good? There are a number of different ones, as will be explained in the next section, but the essentials are easily sketched. The major principles are two: (a) The total amount of depreciation must equal the capital good’s historical cost or purchase price; (b) the depreciation is taken in annual accounting charges (even if no money ever leaves the firm) over the asset’s accounting lifetime, which is usually related to the actual economic lifetime of the asset.

We can now understand how depreciation would be charged for Snack-Man Computers. The equipment is depreciated according to a 10-year lifetime, so that the $150,000 of equipment has a depreciation charge of $15,000 per year. The $100,000
of buildings, carrying a 20-year lifetime, shows an annual depreciation charge of $5000. The total depreciation charge for 1990 is then $20,000—just as is shown in Table 7A-2.

A Further Look at Depreciation

The last section touched upon the most essential elements of calculating depreciation. For those who wish to understand better the different depreciation formulas, along with the policy issues involved, this section contains an advanced treatment.

Tax vs. Accounting Treatment Depreciation comes in two different forms, because depreciation for tax purposes may differ from that for normal accounting purposes. There is no rule that requires firms to report the same numbers to the Internal Revenue Service as to their stockholders. We first discuss standard accounting techniques, then cover tax treatment.

Of the methods used by accountants to calculate depreciation, two have been widely used for decades; the third, required for tax purposes, was introduced in 1981 and modified in 1986.

Straight-Line and Accelerated Depreciation The first technique is called "straight-line depreciation" and is the technique employed by Snack-Man in its accounts shown here. We suppose that the $150,000 of equipment will last 10 years (that is, has a 10-year accounting lifetime) and has no scrap value. According to the straight-line method, you will recognize that each year one-tenth of the life of the machine has been used up, and you will figure in as depreciation expense for the year one-tenth of the lifetime decline in its total value—onethenth of $150,000 (new price minus zero scrap value). Thus, $15,000 will be entered every year in depreciation charges for the equipment. Similarly, if the buildings valued at $100,000 have a 20-year life and no scrap value, the depreciation charge will be $5000 each year. Adding these two together gives us the $20,000 of depreciation charges on Snack-Man’s income statement.

A second widely used technique is called the "double-declining-balance method." This technique allows most depreciation charges to be taken in early years and is thus "accelerated depreciation": here, the depreciation charges decline over time rather than being constant as in the straight-line method. For example, under the double-declining-balance method, you take double the amount of straight-line depreciation in the first year; with a 10-year lifetime, you take $2 \times 10\% = 20\%$ depreciation in the first year.

Clearly, you cannot go on charging off that amount for each year of life since that would leave you with zero value by the halfway point, at the end of 5 years. Rather, what the double-declining-balance method does is to let you take off 20 percent of the remaining value or balance each year. Thus, consider a $10,000 truck. In the first year you take $0.20 \times $10,000 = 2000 of depreciation. In the second year, 8000 of value is left, so depreciation equals $0.20 \times $8000 = 1600. So the process goes. It can be calculated that by the time the asset has reached half the length of its useful life, you have been permitted to write off more than two-thirds of its value—rather than one-half, as under the straight-line method. (There are other kinds of declining-balance methods as well, such as 150-percent-declining balance.)
Although depreciation is usually figured by some apparently exact formula, all accountants know that the estimates are really very rough, being subject to large and unpredictable errors and involving arbitrary corrections and assumptions. Accountants comfort themselves with two thoughts: (1) A rough method of depreciation, like an imperfect watch, is often better than none at all. (2) Mistakes in estimates of depreciation will ultimately “come out in the wash.”

Let us see why a mistake in depreciation ultimately tends to correct itself for a given investment. Suppose that the truck lasts 15 years rather than the predicted 10. We have then been overstating our depreciation expenses during the first 10 years. But in the eleventh and later years there will be no depreciation charged on the truck at all, since it has already been written down to its scrap value by the end of the tenth year. Our profits in these later years tend, therefore, to be overstated exactly as much as they were understated in the earlier years. After 15 years, the pluses and minuses cancel out.

Depreciation and Taxes Given that the total depreciation (plus scrap value) must equal the purchase price of the capital good, why would anyone care about the depreciation method? One reason is that the depreciation charge affects the time profile of profits, and this in turn affects a company’s taxes. Generally, firms prefer to have a depreciation method that allows very fast depreciation for tax purposes. Why? Because by postponing tax payments, a firm can put the money it would have paid as taxes to work earning more money. In an economic sense, accelerated depreciation reduces the cost to a firm of buying capital goods because a firm can offset against the price of the truck or building some tax savings from the quicker depreciation.\(^1\)

In order to stimulate investment, the United States over the last 25 years has taken a number of steps to speed up the rate at which depreciation can be calculated for tax purposes. The high point was the 1981 Accelerated Cost-Recovery System (ACRS), passed as part of the Reagan administration’s “supply-side” tax cuts. These changes were modified in the 1986 Tax Reform Act, which repealed the investment tax credit, lowered the corporation tax rate, and tended to equalize the tax burden on corporate equity capital in different sectors.

RELATIONSHIP BETWEEN THE INCOME STATEMENT AND THE BALANCE SHEET

A full year has passed, and the firm’s successes are recorded in the income statement of Table 7A-2. At year-end, we will want to take another financial snapshot of the firm by looking at its new balance sheet, so we turn to Table 7A-3.

Snack-Man has prospered. Net worth has increased between the beginning and end of the accounting period by $20,000: from $200,000 to $220,000. This amount, as we saw at the bottom of the income statement in Table 7A-2, is just equal to $34,500 minus $14,500, or to $20,000 of undistributed profits.

Some net worth item has recognizably risen by $20,000. Conceivably, one

\(^1\) Problem 7 at the end of this appendix provides a detailed example of how accelerated depreciation increases the after-tax profits of firms.
BALANCE SHEET OF SNACK-MAN COMPUTERS, INC. (December 31, 1990)

ASSETS

<table>
<thead>
<tr>
<th>Current assets:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Cash</td>
<td>$27,000</td>
</tr>
<tr>
<td>Inventory</td>
<td>80,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fixed assets:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Equipment</td>
<td>$150,000</td>
</tr>
<tr>
<td>Less: Depreciation</td>
<td>15,000</td>
</tr>
<tr>
<td></td>
<td>135,000</td>
</tr>
<tr>
<td>Buildings</td>
<td>$100,000</td>
</tr>
<tr>
<td>Less: Depreciation</td>
<td>5,000</td>
</tr>
<tr>
<td></td>
<td>95,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Intangible assets:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Patents</td>
<td>10,000</td>
</tr>
<tr>
<td>Goodwill</td>
<td>21,000</td>
</tr>
</tbody>
</table>

Total | $368,000 |

LIABILITIES AND NET WORTH

<table>
<thead>
<tr>
<th>Current liabilities:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Accounts payable</td>
<td>$10,000</td>
</tr>
<tr>
<td>Notes payable</td>
<td>23,000</td>
</tr>
<tr>
<td>Taxes payable</td>
<td>15,000</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Long-term liabilities:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bonds payable</td>
<td>100,000</td>
</tr>
</tbody>
</table>

NET WORTH

<table>
<thead>
<tr>
<th>Stockholders' equity:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Common stock</td>
<td>200,000</td>
</tr>
<tr>
<td>Retained earnings</td>
<td>20,000</td>
</tr>
</tbody>
</table>

Total | $368,000 |

Table 7A-3 The balance sheet after a year of operations.

could add the $20,000 to the common-stock capital account. However, this is not done.

Retained Earnings

Instead, accountants create a new account called "retained earnings" in the business—to show how much of the increase in net worth has resulted from accumulated undistributed earnings plowed back through the years.

We must once more warn against trying to link specific items on the balance sheets. Only the final totals correspond. It is not even possible to say exactly how the $20,000, plowed back into the business as retained earnings, was used. An addition to retained earnings must be associated with an increase in assets or a decrease in liabilities, or both—that is all we can say.

Summary of Elementary Accounting Relationships

Before taking a last look at the new complexities introduced in the 1990 balance sheet over that of 1989, we may briefly summarize the relationship between balance sheets and income statements:
* The balance sheet indicates an instantaneous financial picture or snapshot. It is like a measure of the stock of water in a lake.

* The income statement shows the flow of sales, cost, and revenue over the year or accounting period. It measures the flow of water in and out of the lake—the progress of the firm over the year.

* The change in total net worth between the beginning and end of the period—as shown by comparing the new and old balance sheets—can be derived from changes in retained earnings as appended to the income statement in Table 7A-2: the change in the lake's level over the year is equal to the flow-in minus the flow-out during the year.

There do remain, however, certain changes in the balance sheet items from their levels in the earlier period to which the intervening income statement gives no clue. A closer look at the December 31, 1990, balance sheet will therefore prove instructive.

The New Balance Sheet

The new balance sheet looks much like the old. But some new items are present for the first time. The last of these new items, retained earnings in the business, we have already explained. Among the liabilities there is another new item, called "taxes payable," of $15,000. The taxes that the corporation will have to pay the government are as much short-term liabilities as the accounts payable or notes payable.

Turning to the fixed assets, we find that they are treated in a somewhat roundabout way. From the income statement, we know that $20,000 of depreciation has been charged against income; on the balance sheet, therefore, the original cost of $250,000 should be written down to a new value of $230,000.

Instead, this is done in a three-stage procedure: First, the balance sheet lists the original cost of fixed assets. Then the allowance for depreciation is subtracted. Then the fixed assets are entered on the books at original cost less total depreciation allowances to date.

Why do accountants use such a strange language, writing "5 minus 3" where the rest of us would write "2"? There are good reasons. Accountants know their depreciation estimate is only the roughest of estimates. Were they simply to estimate and put down the final figure of $135,000 for equipment, the public would not know how much reliance to place upon the figure. So they put down $150,000 of original value, which is firmly rooted in the solid fact of original cost; they then isolate their own calculated allowance for depreciation. Then the public is in a better position to evaluate the reliability of the final $135,000 figure. The roundabout procedure does no harm, and it may do some good.

Now we know the precise meaning of allowances for depreciation. They are not sums of money sitting in the bank. They are subtractions from deliberately overstated asset figures. Thus, the allowance for depreciation of buildings of $5000 is an explicit correction of the original cost of buildings.
Intangible Assets

One further new category of assets can be found on the December 31, 1990, balance sheet. In addition to tangible items like trucks or computers, firms own intangible but nonetheless valuable assets like patents, trademarks, or goodwill. To illustrate that an asset need not be a tangible commodity, we can introduce a patent into the picture. Suppose it is a patent on a profitable new printing device giving Snack-Man an exclusive production right for 17 years.

Such a patent is obviously worth money. Of course, as 5, 10, and 16 years pass, the patent will be nearing the end of its 17-year life and will be declining in value. Therefore, some amortization formula (analogous to a depreciation allowance) will be applied to it, much as if it were a truck.

As another example of an intangible asset, let us suppose that, at the same time Snack-Man bought the patent, it also took over a rival computer company. This horizontal combination will presumably add to its market power and earnings. Therefore, Snack-Man was willing to buy the company for more than its net worth. In such a case, the value today (or present value or capitalized value) of the earning power is called goodwill.

How much are the new assets valued for? The careful accountant will reply: "If you paid a certain sum of money for a concern, it must be worth that much to you. If its balance sheet doesn't show what you paid, we must recognize the excess of price paid over net worth as goodwill. And goodwill shall be entered as an asset on your balance sheet."

The intangible asset, goodwill, is thus the difference between what a company pays in buying another company and the accounting or book value of the acquired firm's identifiable assets less liabilities.

Accounting Abuses

Before we complete our discussion of accounting, we should note that accounting entries, like other magnitudes in economics, cannot be measured with great precision. When a firm's auditors certify a company's accounts, they are not really swearing that all measurements are 100 percent accurate. Rather, they perform spot checks of many transactions, audit financial assets, and check the conformity of the firm's accounting practices with generally accepted practices.

However, sometimes a company can fool the public and its accountants so much as to distort the firm's financial picture in a material way. Sometimes the distortion arises from shady accounting practices, sometimes from plain dishonesty. A recent fraud occurred when a company stated it had many millions of grams of gold bullion stored deep in the Rocky Mountains. When auditors came to look, however, the cupboard was bare.

The accounting profession and government agencies are working to reform some of these abuses. But, again, caveat emptor—let the buyer beware—must still prevail.
ECONOMICS AND ACCOUNTING

Up to now we have stressed the logic of the accountant’s language and conventions. We now step back to ask whether these conventions all make good economic sense. The major difference between the viewpoints of the economist and the accountant is the following: The accountant generally prefers actual historical cost as a technique for measuring the value of goods; the economist prefers to use the market value of a good in measuring its value. The market value measures the value of a good in its highest and best use.

Three important examples of this discrepancy can be seen in our simple example. First, the owner of Snack-Man is also its manager; she pays herself no salary, but she takes out her share of the profits at year-end. If she were to work for the local chemical plant, she could earn $50,000 a year—that is her market value as a manager. Thus, the income statement understates the "true" economic cost of management by $50,000.

A second example arises from the capital contributed to start up the firm, along with the retained earnings. If these funds were invested in a stock of equivalent risk, they might yield 10 percent annually. Yet the accountant does not record any charge to the firm for use of this financial investment. As a result, again, the firm’s true profit is overstated: a firm can make an accounting profit yet not earn a rate of return on its net worth that equals the market rate of return on investments of equivalent risk.

A third area of divergence between accounting and economics concerns the effect of inflation. When prices are rising rapidly, the historical cost of items, particularly capital goods, can diverge sharply from their market value. Such divergences are minor during periods of low inflation, such as in the mid-1980s. But during periods of galloping inflation, accounts can become grossly distorted. In the high-inflation year of 1974, for example, profits of American companies were overstated by 40 percent because accounts were not corrected to reflect inflation.

To point out that accountants do not use the same concepts as economists does not imply any criticism of the accounting profession, for there are good reasons why accountants might be reluctant to use the economist’s approach. To take the first of the differences cited above, the accountant would say: "Of course, we could allow for the value of the firm’s owner in other occupations. But what salary should I use? And how would I know that the accounts were not being manipulated from year to year? I prefer to stay with actual historical or market transactions so as to assure the public that the accounts are being honestly kept."

Economics Based on Accounts

Finally, some interesting relationships between economics and accounting can be briefly mentioned.

- All balance sheets depend on valuation of assets, which is one of the basic questions of the capital and interest theory discussed in Part Three.
* National-income statistics depend on the accounting data of sales, cost, etc.
* An understanding of a nation’s balance of payments in Chapter 25 will be aided by knowing how to read a balance sheet.
* Finally, a discussion of banking and the Federal Reserve depends critically on understanding balance sheets.

You will be amply rewarded both in studying economics and in your later economic life by a thorough understanding of accounting.

SUMMARY TO APPENDIX

Instead of summarizing the appendix, we give a checklist of accounting concepts that you should understand:

1. The fundamental balance sheet relationship between assets, liabilities, and net worth; the breakdown of each of these into current and fixed assets, current and long-term liabilities, capital, and retained earnings in the business.
2. The character of the income statement (or profit-and-loss statement) and how retained earnings relate to changes on the new balance sheet.
3. The whole problem of depreciation, both in its income-statement aspect as a necessary expense (which need not be an expenditure) and in its balance sheet treatment as a deduction from a purposely overstated asset.

CONCEPTS FOR REVIEW

- fundamental balance sheet identity
- income statement
- assets, liabilities, and net worth
- current vs. fixed assets
- market value vs. historical cost
- dividends, retained earnings
- sales, cost, net income
- depreciation
- intangible assets—patents, goodwill
- accounting conventions

QUESTIONS FOR DISCUSSION

1. Describe the right-hand side of the balance sheet. Its left-hand side. Because of the basic accounting identity, what items must match?
2. You are a banker deciding whether to lend money to the computer company described in this appendix. Examine carefully the balance sheet and income statement for 1990. Decide how much money the firm could safely borrow at an interest rate of 10 percent per year.
3. Write out a list of many different business assets. Give the nature of each in a few lines. Do the same for liabilities.

4. A company has $10 million of net sales and $9 million of costs of all kinds (including taxes, etc.) and rents its equipment and plant. Its inventory doesn’t change in the year. It pays no dividends. Draw up its simplified 1991 income statement.

5. The same company as in question 4 owes no money, having been completely financed by common stock. Fill in the year-end balance sheet for 1990 using the data in the table below. Then, using the data and income statement from question 4, complete the balance sheet for 1991.

<table>
<thead>
<tr>
<th>ASSETS</th>
<th>LIABILITIES AND NET WORTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>(end of year)</td>
<td>(end of year)</td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
</tr>
<tr>
<td>Total $50 million</td>
<td></td>
</tr>
</tbody>
</table>

6. Redo questions 4 and 5, making the following changes: In addition to the other expenses, the firm bought in 1991 a $20 million building that depreciated by $2 million. Draw up an income statement showing its loss. If the building was bought by a long-term bond, adjust its 1991 balance sheet accordingly.

7. **Advanced problem on depreciation:** Many people are puzzled about the idea that acceleration of depreciation will be valuable to firms even though the total amount of depreciation does not change.

 To see the effect of acceleration, assume the following: A firm is thinking of buying a $10,000 truck. The tax-free interest rate is 10 percent per year. The firm will earn before-tax profits of $50,000 each year on its total operations. The tax rate on company profits is 50 percent.

 The truck is assumed to have a lifetime of 10 years. Under straight-line depreciation, the firm would deduct $1000 per year from profits, thus reducing its taxes by how much? Now say that each year it puts its tax savings into a tax-free savings account yielding 10 percent per year. How much would the firm have accumulated in tax savings from the straight-line depreciation method at the end of the 10-year period, including interest?

 Next consider an accelerated depreciation scheme known as "expensing," where all the depreciation on the truck is charged in the first year. How much is the tax savings in the first year? How does it compare with the total tax saving (excluding interest) in the straight-line case? (Hint: It is equal.)

 Finally, put the tax savings under expensing in the tax-free savings account for 10 years. What is the value of the tax savings under expensing (or accelerated depreciation) at the end of 10 years? Show that this value will be considerably larger than the accumulation under straight-line depreciation. Explain with the help of this example why firms prefer accelerated depreciation.
CHAPTER 8 —
THEORY OF PRODUCTION AND MARGINAL PRODUCTS

We have no more right to consume happiness without producing it than to consume wealth without producing it.

George Bernard Shaw

The last chapter examined the face of American business—the different forms of organizations, the financing of firms, and the role of giant corporations. We now begin to explore some of the critical decisions made by business enterprises: What goods should firms produce—steel or computers or haircuts? What combination of inputs of land, labor, and capital should be employed? How much does it cost a firm to produce a given bundle of goods? At what prices should the goods and services be sold? These and many similar questions must be answered by every firm, large and small, and in the next five chapters we examine the major factors entering into these decisions.

A study of the firm begins with an analysis of production. The essence of a firm is to buy inputs, use these inputs to produce outputs, and then to sell the outputs. This is true of competitive firms as well as monopolies, under capitalism as well as communism. We devote this chapter, therefore, to an analysis of production theory. The next chapter follows with the closely related topic of cost analysis. Only after we have begun to understand the essential elements of production theory can we master the cost concepts that underpin business decisions for perfect and imperfect competitors.
BASIC CONCEPTS

Let us begin by considering the case of production of food by a farmer. The farmer will use a number of inputs, or factors of production, such as land, labor, machinery, and fertilizer. These inputs will be applied over the planting and growing season, and at harvest time the farmer will reap certain outputs, such as wheat.

In what follows, we will assume that the farmer always strives to produce efficiently, or at lowest cost. That is, he will always attempt to produce the maximum level of output for a given dose of inputs, avoiding waste whenever possible. Later on, when our farmer decides what crops to produce and sell, we will also assume that he acts to maximize economic profits.

The Production Function

We have spoken of inputs like land and labor and outputs like wheat. But if you have a given quantity of land and labor, how much output can you get? In practice, the answer depends on the state of technology and engineering knowledge. At any point in time, given available technical knowledge and available labor, machinery, and fertilizer, only so much wheat can be obtained from a given plot of land. The relationship between the amount of input required and the amount of output that can be obtained is called the "production function."

The production function is the technical name given to the relationship between the maximum amount of output that can be produced and the inputs required to make that output. It is defined for a given state of technical knowledge.

Here are some examples.

An agronomist lists in a book of agricultural production functions the various combinations of land and labor that will produce various quantities of corn. On one page of the book, the alternative combinations of land and labor needed to produce 100 bushels of corn are listed; another page lists the alternative input combinations that will produce 200 bushels of corn; and so forth.

Another production function is that for generating electricity. A book of technical specifications shows the combination of plant, turbines, cooling ponds, fuel, and labor needed to produce 1 million kilowatts of power. On one page is a blueprint for an oil-fired plant—whose capital costs are low and whose fuel costs are high. On the next page would be the blueprint for a coal-fired plant; high capital costs (in part to remove sulfur emissions), but much lower fuel costs. On yet other pages are the techniques for building nuclear power plants, hydro stations, solar power stations, and so forth. When all the different blueprints for 1989 are put together, these form the production function for electricity generation for 1989.

A third example of a production function, which will be used extensively in this chapter, is the volume of crude oil that can be delivered through a pipeline. Engineers know that the amount of output (tons of oil pumped per day) depends upon the diameter of the pipe as well as the horsepower of the pump. Other factors such as the viscosity of the oil and the slope of the terrain also enter into the production function. The list of different pipe diameters, pump sizes, and other factors, along with the associated throughputs of oil, represents the production function for oil pipelines.

There are thousands of different production functions in the American economy; at least one for each firm and product. We will see in the next chapter how a firm’s production functions will help determine its cost curves. And, when we discuss the determination of the demand for labor, land, and capital in Part Three, we will again find that the contribution of each factor to production will determine that factor’s price in competitive markets.

Note how, in making its decisions, the firm is poised between two markets: it is a demander in factor markets, buying inputs that enter into the production process, while simultaneously appearing as a supplier in goods markets, where it adjusts its production to the demand curve of its customers.

Total, Average, and Marginal Product

Once a firm’s production function has described how inputs are transformed into outputs, we can calculate important production concepts. We begin by computing the total physical product, or total product, which designates the total amount of output pro-
Figure 8-1 Marginal product is derived from total product

Marginal product is calculated as the additional units of total output produced by 1 extra unit of input (as when the fourth worker adds 300 = 3800 - 3500 units of product). Each new worker adds diminishing marginal product.

The upper diagram (a) shows that total product increases by smaller and smaller steps as more input units are added.

The lower diagram (b) shows the declining steps of extra or marginal product. Smoothing the steps gives the red declining curve of smoothed marginal product. The area in (b) under the red marginal product curve (or of the red rectangles) adds up to the total product shown in (a) above. (For example, 2000 + 1000 + 500 = total product of 3500 for three workers. What gives total product for four, or five, workers?)

Produced, in physical units such as bushels of wheat or barrels of oil pumped. Figure 8-1(a) and column (2) of the accompanying table illustrate the concept of total product. In that case, we examine a farmer producing wheat on a given plot of land and show how total product responds as the amount of labor applied is increased. For the illustrated production function, the total product starts at zero for zero labor, then increases as additional units of labor are applied, reaching a maximum of 3900 units of wheat when 5 units of labor are used.

We can use the numerical example here to define
more carefully the production concepts first introduced in Chapter 2. In earlier chapters we have used the term "marginal" to mean extra units. Here, "marginal product" (sometimes also called marginal physical product) means the additional units of output that are obtained for each additional unit of input.

The marginal product of an input is the extra product or output added by 1 extra unit of that input while other inputs are held constant.

For example, assume that we are holding land, machinery, fertilizer, and all other inputs constant. Then labor's marginal product is the extra output the farmer harvests when adding 1 unit of labor. The third column of the table in Figure 8-1 calculates the marginal product in our farming example. The marginal product of labor starts at 2000 for the first unit of labor, then falls to only 100 units for the fifth unit. This declining marginal product will in the next section be associated with the law of diminishing returns.

A final concept is the average product, sometimes called average physical product; this measures total output divided by total units of input. The fourth column of the table in Figure 8-1 shows the average product for our farming example, with the average product being 2000 units per worker with one worker, 1500 units per worker with two workers, and so forth. Note that, in our farming example, the average product falls through the entire range of increasing labor input.

Marginal Products and Diminishing Returns

The marginal product of labor is shown graphically in Figure 8-1(b). The marginal products are calculated from the total product curves in (a), or from the accompanying table, by calculating the additional amounts of output added by each extra unit of input. Note that each increment of labor adds less and less output, as is shown by the diminishing size of the added-output slabs. Figure 8-1(b) has also included a smoothed marginal product curve as a heavy red line, and that continuous curve shows a smooth downward-sloping marginal-product relationship.

The phenomenon of declining marginal product is Chapter 2's law of diminishing returns.

The law of diminishing returns holds that the marginal product of each unit of input will decline as the amount of that input increases, holding all other inputs constant.

Figure 8-1 illustrates the law of diminishing returns for labor, holding land and other inputs constant. What is true for labor is also true for land and any other input. We can interchange land and labor, now holding labor constant and varying land. Land's marginal product is the change in total harvested output that results from 1 additional unit of land, with all other inputs held constant. We can calculate the marginal product of each input (labor, land, machinery, water, fertilizer, etc.); and the marginal product would apply to any output (wheat, corn, steel, soybeans, and so forth). We would find that other inputs also tend to obey the law of diminishing returns.

Why do production functions generally obey the law of diminishing returns? The rationale for diminishing returns is quite straightforward: As more and more of an input like labor is added to a fixed amount of land, machinery, and other inputs, the labor has less and less of the other factors to work with. The land gets more crowded, the machinery is overworked, and the jobs done become less important. Or, to take another input, we can easily see that diminishing returns to water will soon set in. The first units of water are essential to plant life; the next units will keep the plant healthy and growing smartly; but as more and more water gets added, the soil becomes waterlogged, and most crops will actually die as more water is added.

In describing the law of diminishing returns, we must emphasize that it is really a widely observed empirical regularity rather than a universal truth like the law of gravity. It has been found in numerous empirical studies, but exceptions have also been uncovered. Moreover, diminishing returns might not hold for the entire range of outputs. The very first inputs of labor might actually show increasing marginal products, since a few minutes are needed just to get the machinery running and to transport the workers to the field. And the last units might actually show negative marginal products as workers begin to interfere with one another or as plants suffocate from too much water. Therefore, we should always remember
that the law of diminishing returns is an empirical regularity subject to exceptions and not a universally valid finding.

AN ENGINEERING EXAMPLE: OIL PIPELINES

Critics of economics sometimes say that the subject deals with abstractions rather than with real-world situations. To dispel this notion and to illustrate that production theory is an essential part of modern business life, we present a short case study of the economics of transporting oil by pipelines. This example has the advantage of resting on extremely simple physical principles while constituting a critical lifeline in our economic system.

Recall that we gave as an example of a production function the relationship between the quantity of crude oil transported each day through a pipeline (the output or "throughput") and the inputs, represented by the size of the pipe and the power of the pumping machinery. Engineers studying this technology have made measurements and have discovered a numerical relationship between the inputs and the outputs. We can use these studies to show the nature of the production function along with the total and marginal products for pipelines.

Table 8-1 lists the inputs and outputs for this engineering example. The output, measured in throughput (in barrels of oil per day) is shown to be a function of two different sizes of pipes—12 inches and 24 inches—and of a variety of different horsepower settings for the pumps. Pipes come in other sizes, of course, and each would have different outputs, but two will be sufficient to illustrate the point.

Examining the table, we can determine the effect on total output of an increase of one of the two inputs. By reading down column (2) in Table 8-1, we see the effect of increasing the amount of horsepower inputs. In this calculation, as we move down from one row to the next, the use of horsepower increases in increments of 10,000 units. An estimate of the marginal product can be computed as the ratio of the increase in throughput (output) to the increase in horsepower (input). If, for example, pumping horsepower were to increase 10,000 units from 10,000 to 20,000, then throughput would climb from 43,000 barrels per day to 57,000 barrels per day for the 12-inch pipe. The marginal product of horsepower would, as a result, equal

\[MP = \frac{57,000 - 43,000}{20,000 - 10,000} = \frac{14,000}{10,000} = 1.4 \]

(measured in barrels per day per horsepower) for the interval from 10,000 to 20,000 units of horsepower. Moving down one row, we see that the marginal product of horsepower is 1.0 barrel per day per horsepower as power moves from 20,000 to 30,000 units. We see that our engineering study has confirmed the law of diminishing returns.

Notice that, when horsepower is constant, output rises as the size of the pipe increases. For example, if 10,000 horsepower is applied, moving from a 12-inch pipe to a 24-inch pipe increases the throughput from 43,000 barrels per day to 141,000 barrels per day. This result is sensible because you can force more fluid through a larger pipe without increasing the power. In economic terms, this shows that the marginal product of piping size is positive, for employing a larger pipe increases the total output when other inputs are held constant.

Similar engineering studies have been made for many other areas of the economy, including ones for agriculture, power plants, chemical factories, communications systems, and mines. These studies are essential for firms who wish to design their productive processes efficiently and compete effectively.

RETURNS TO SCALE

Diminishing returns and marginal products refer to the response of output to an increase of a single input when all other inputs are held constant. For example, we saw that increasing labor while holding land constant would increase food output by ever-smaller increments. Similarly Table 8-1 showed that increasing the pumping power while holding pipe size constant would increase output by smaller and smaller quantities.

1 This section contains illustrative material that can be omitted in courses pressed for time.
TOTAL AND MARGINAL PRODUCTS FOR OIL PIPELINES

<table>
<thead>
<tr>
<th>PUMPING HORSEPOWER (bbl per day)</th>
<th>TOTAL PRODUCT</th>
<th>AVERAGE PRODUCT</th>
<th>MARGINAL PRODUCT (bbl per day-hp)</th>
<th>TOTAL PRODUCT</th>
<th>AVERAGE PRODUCT</th>
<th>MARGINAL PRODUCT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>43,000</td>
<td>4.3</td>
<td>1.4</td>
<td>141,000</td>
<td>14.1</td>
<td>4.4</td>
</tr>
<tr>
<td>20,000</td>
<td>57,000</td>
<td>2.85</td>
<td>1.0</td>
<td>185,000</td>
<td>9.25</td>
<td>3.3</td>
</tr>
<tr>
<td>30,000</td>
<td>67,000</td>
<td>2.23</td>
<td>0.8</td>
<td>218,000</td>
<td>7.27</td>
<td>2.7</td>
</tr>
<tr>
<td>40,000</td>
<td>75,000</td>
<td>1.88</td>
<td>0.7</td>
<td>245,000</td>
<td>6.13</td>
<td>2.3</td>
</tr>
<tr>
<td>50,000</td>
<td>82,000</td>
<td>1.64</td>
<td>0.6</td>
<td>268,000</td>
<td>5.30</td>
<td>2.0</td>
</tr>
<tr>
<td>60,000</td>
<td>88,000</td>
<td>1.47</td>
<td>0.5</td>
<td>288,000</td>
<td>4.80</td>
<td>1.8</td>
</tr>
<tr>
<td>70,000</td>
<td>93,000</td>
<td>1.31</td>
<td></td>
<td>306,000</td>
<td>4.37</td>
<td></td>
</tr>
</tbody>
</table>

Table 8-1 Engineering production function for oil pipelines

Studies of the design of oil pipelines provide the table's empirical data on the relationship between the flow of oil (in barrels per day) and the size of pipe and horsepower. The data show diminishing returns to horsepower sets in quickly, as marginal product of horsepower declines at higher levels of horsepower. [Source: L. Cookenboo, *Crude Oil Pipe Lines and Competition in the Oil Industry* (Harvard University Press, Cambridge, Mass., 1955).]

But sometimes we are interested in the impact on output when all inputs are increased. What would happen to corn production if all inputs—land, labor, machinery, and water—were increased by the same amount? Or what would happen to production of automobiles if the quantity of labor, computers, robots, steel, and factory space were all doubled? These questions refer to the returns to scale, or the effects of scale increases of inputs on the quantity produced. Put differently, the returns to scale reflect the responsiveness of total product when all the inputs are increased proportionately. Three important cases should be distinguished:

- **Constant returns to scale** denote a case where a change in all inputs leads to an equally large increase in output. For example, if inputs of labor, land, capital, and other inputs are doubled, then under constant returns to scale output would also double. Many handicraft industries (such as handlooms operated in a developing country) tend to show constant returns.

- A situation of **decreasing returns to scale** occurs when a balanced increase of all inputs leads to a less-than-proportional increase in total output. For example, say that a farmer’s cornland, seed, labor, machinery, etc., were increased by 50 percent. If as a result total output increased by only 40 percent, then this situation is one of decreasing returns to scale. Many productive activities involving natural resources, such as growing wine grapes or forestry, show decreasing returns to scale.

- A final category is **increasing returns to scale**. Such a case arises when an increase in all inputs leads to a more-than-proportional increase in the level of output. For example, an engineer planning a small-
scale chemical plant would generally find that increasing the inputs of labor, capital, and materials by 10 percent will increase the total output by more than 10 percent. Engineering studies have determined that many manufacturing processes enjoy modestly increasing returns to scale for plants up to the largest size used today.

Production shows increasing, decreasing, or constant returns to scale when a balanced increase in all inputs leads to a more-than-proportional, a less-than-proportional, or a just-proportional increase in output.

Economists tend to think that most production activities should be able to attain constant returns to scale. They reason that if production can be adjusted by simply replicating existing plants over and over again, by building one steel plant or textile mill next to another, then the producer would simply be multiplying both inputs and output by the same number. In such a case, you would observe constant returns to scale for any level of output.2

2Suppose as an example that a steel plant were capable of producing 100,000 tons of steel each year using 10 acres of land, 100 million BTU of power, 1500 person-hours, and 120,000 tons of steel scrap. Then an identical plant could ideally be built next door; and another next door; and so on. Hence two plants could produce 200,000 tons of steel with double the inputs; 10 identical plants could produce 1 million tons with 10 times the inputs; and so on for any mix which represented a certain number of plants. Constant returns to scale would then be ensured because multiplying all inputs by any number K by constructing K duplicate plants necessarily would result in total output equal to K times the output of one single plant.

In some cases, however, we should be able to improve upon constant returns and achieve increasing returns to scale. To take our pipeline example, Table 8-1 shows that one 12-inch pipe with 10,000 horsepower of pumping can transport 43,000 barrels of oil each day. If we were to place a second 12-inch pipe alongside the first, adding an additional 10,000 horsepower, the total throughput would increase to 86,000 barrels per day, showing how replication will lead to constant returns to scale. Figure 8-2(a) shows schematically the case of constant returns to scale from replication of identical 12-inch pipelines.

Consider, however, a 24-inch pipe with 20,000 horsepower of pumping capacity, shown in Figure 8-2(b). This new investment would double the power and double the amount of pipe. What would be its effect on total output? A glance at Table 8-1 shows that throughput increases from 43,000 barrels per day to 185,000 barrels per day, which is much more than doubled and therefore displays increasing returns to scale. This example, which is typical of many manufacturing processes, shows that by efficiently redesigning a process, doubling inputs may lead to a considerably larger than proportional increase in outputs.

While the pipeline example emphasizes the role of expanding the physical scale, other reasons may be equally important in contributing to increasing returns. Chapter 3 described how, as output increases, firms may break down production into smaller steps, taking advantage of specialization and division of
labor. In addition, mass production allows intensive use of specialized capital equipment, of automation, even of robots, to perform simple and repetitive tasks quickly.

The question of returns to scale is of great importance for the economic growth of nations. Most countries have experienced steady increases in their population, capital stock, available land, and other resources. In the course of growth, firms have expanded, with production levels of typical firms today many times larger than those of large firms a half-century or century ago. What would be the effect of a general increase in the scale of economic activity of most firms? If increasing returns prevailed, then the larger scale of inputs and production would lead to greater productivity—where productivity is a concept measuring the ratio of total output to a weighted average of inputs. If, for example, the typical firm’s inputs increased by 100 percent and output consequently increased by 120 percent, then productivity (output per unit of input) would rise by 20 percent. This example suggests that increases in a nation’s per capita output and living standards may result in part from exploiting economies of scale in production as the nation grows.3

While the potential scale economies are great in many sectors, at some point decreasing returns to scale may take hold. As firms become larger and larger, the problems of management and coordination become increasingly difficult. In relentless pursuit of greater profits, a firm may find itself expanding into a greater number of geographic markets or into more and more product lines. But a firm can have only one chief executive officer, one chief financial officer, one board of directors. With less time to study each market and spend on each decision, top managers may become insulated from day-to-day production and begin to make business mistakes. Like empires that have been stretched too thin, such firms find themselves liable to invasion by smaller and more agile rivals. In sum, while technology might ideally allow constant or increasing returns to scale, the needs for management and supervision may eventually lead to decreasing returns to scale for giant firms.

3Further analysis of production, economic growth, and productivity trends is contained in Chapter 23.

MOMENTARY RUN, SHORT RUN, AND LONG RUN

The discussion of production has up to now ignored the time needed to build production facilities and to make management decisions. But production and planning take time. Pipelines cannot be built overnight, and once built they last for decades. Farmers cannot change crops in mid-season, nor can new land be cleared quickly. Nuclear power plants take a decade or more to plan, construct, test, and commission. Moreover, once capital equipment has been put in the concrete form of a power plant on the Tennessee River or a petrochemical factory in Galveston, the investment cannot be economically dismantled and moved to another location or transferred to another use.

In Chapter 5 we discussed three different length of time over which a market would reach equilibrium. We can use the same distinctions to understand the dynamics of production response. In these discussions, we call the momentary run a period so short that production is fixed, the short run a period in which firms can adjust production by changing variable factors such as materials and labor but cannot change fixed factors such as capital, and the long run a period sufficiently long so that all factors including capital can be adjusted.

To understand these concepts more clearly, consider the way the production of steel might respond to changes in demand. Say that Republic Steel is operating its furnaces at 70 percent of capacity when a sudden and unexpected increase in the demand for steel occurs because of a breakthrough in a competitor’s plant. In the momentary run of a day or so, the steel firm cannot adjust its production at all. It takes time to check and recheck the order books, to call customers to confirm their needs, to recalculate the optimal production level, to stoke up the furnaces, to reschedule worker-hours, and to order the necessary materials. During the period in which such actions are taken, production will remain unchanged. Therefore, in this shortest of time periods, the momentary run, output is essentially fixed or predetermined.

As time passes, Republic Steel can begin to adjust its production to the new level of demand. The firm can increase production by asking its workers to work
overtime, by hiring more workers, and by operating its plants and machinery more intensively. The factors which are increased in the short run are called variable factors, for they can easily be changed in a short period of time. Hence, the level of production can be increased within the limits of existing plant capacity during the short run.

Suppose that the increase in steel demand persisted for an extended period of time, for 2 or 3 years or even for a decade. Republic Steel might then examine its plant and equipment and decide that it should increase its productive capacity. More generally, it might examine all its fixed factors, those being ones that cannot be changed in the short run because of physical conditions or legal contracts. The period of time over which all inputs, fixed and variable, can be adjusted is called the long run. In the long run, Republic might add new and more efficient production processes, introduce robots to perform new tasks, computerize additional steps, or build a plant in Mexico. These additions to Republic’s capital equipment would allow a greater increase in production than simply adding more workers, and they would also allow more efficient use of the existing labor force.

To recapitulate our definitions:

Planning and implementing production decisions may take long periods of time. We therefore distinguish three different time periods in production and cost analysis:

- The momentary run is the period of time so short that no change in production can take place.
- The short run is the period of time in which variable inputs, such as materials and labor, can be adjusted, but of insufficient length for all inputs to be changed. In the short run, fixed factors, such as plant and equipment, cannot be fully modified or adjusted.
- The long run is the period such that all fixed and variable factors employed by the firm can be changed, including labor, materials, and capital.

TECHNOLOGICAL CHANGE

The production processes analyzed above consider situations of a given state of technology. The study of pipeline production possibilities in Table 8-1 represents the best engineering practice at a point in time, whereas the production data in Figure 8-1 might show the wheat output that was producible with the prevailing agricultural technology of 1988. A production function represents the relationship between inputs and outputs for a given state of engineering and technical knowledge.

But technologies do change. Even the most casual historical observation finds that today’s array of goods and services is far different from what prevailed a century ago. Today we see digital watches, synthetic fibers, electronic computers, airplanes, electric lights, automobiles, and similar products that were unavailable in 1890. Indeed, you would be hard-pressed to find a commodity or production process that has not changed dramatically over the last few decades. Changes in technology—innovation of new products, improvements in old products, or changes in the processes for producing goods and services—are what we mean by technological change.

Expressing this differently, technological change occurs when new or improved engineering and technical knowledge allows more output to be produced from the same inputs, or when the same output can be produced with fewer inputs. In terms of our production terminology, technological change occurs when the production function changes. The following examples illustrate recent technological changes:

- Introduction of new hybrid-corn seeds increased the productivity of corn farming by over 25 percent within a decade.
- Introduction of continuous casting of steel increased the output per unit of input by 20 percent.
- Wide-body jets increased the number of passenger-miles per unit of input by almost 40 percent.
- Miniaturization and laser-etching allows, for the same inputs of capital and labor, 100 times more information to be stored in computer memories compared to two decades ago.

These examples can be multiplied manifold in manufacturing, telecommunications, mining, agriculture, and other spheres of economic life. Figure 8-3 illustrates the impact of technological change on the total product curve of Figure 8-1. The lower line
might represent the producible output, or production function, for the year 1985. If we return to the same industry or firm a decade later, changes in technical and engineering knowledge in this example have led to a 50 percent improvement in output per unit of input, or productivity. The technological change is represented by an upward shift in the total product curve to the dashed line in Figure 8-3.

This discussion raises the natural question, Can there ever be technological regress? In a well-functioning market economy, firms will introduce only technological advances. If, for example, someone discovered a new photocopying machine that cost as much as the old one and copied at only half the rate, no sensible, profit-oriented firm would introduce the new machine. Inferior technologies would tend to be discarded in a market economy, while superior technologies—ones with higher productivity levels—would tend to be introduced because they will increase the profits of the innovating firms.

In perverse cases, particularly those involving market failures, technological regress might occur. An unregulated electricity-generating company might introduce a socially wasteful process, say one using high-sulfur coal instead of low-sulfur coal, because the former was much cheaper to buy. The company would introduce the environmentally inferior process because it did not include the pollution costs in its calculations of costs of production. Another example might occur if government regulation mandated that a company adopt an inefficient technology.

Instances of technological regress are clearly in the minority, however, for economic history shows a clear preponderance of technological advance over technological regress. The next section shows the overall impact of technological improvements in the United States.

THE AGGREGATE PRODUCTION FUNCTION FOR THE UNITED STATES

Now that we have examined the principles of production theory, we can apply these theories to measure the aggregate performance of the U.S. economy. We might investigate the behavior of total output, of different inputs (like labor, capital, and land), and total productivity. Because they involve serious problems of measurement, all such magnitudes must be calculated with great care. Yet they are useful in giving a broad description of an overall economy's behavior.

Empirical studies of the aggregate production function date back to the 1920s, when Paul Douglas (Chicago professor; later a U.S. senator) analyzed data for manufacturing. In the 1950s and 1960s, others pursued this approach further, including Robert Solow, John Kendrick, and Edward Denison. The goal of these studies was to find how economic growth depended upon capital, labor, and productivity growth. Recall from our earlier discussion that productivity measures the total quantity of output per unit of input. Productivity growth denotes the rate of growth of the level of productivity. For example, if output per worker is 100 units in 1990, and it grows to 102.5 units in 1991, then we say that productivity growth was 2.5 percent per year.
In measuring productivity, we denote labor productivity as the amount of output per unit of labor; capital productivity as output per unit of capital; and total factor productivity as output per unit of total inputs of capital and labor.

Empirical Findings What have economic studies found? Here are a few of the important results:

- Total factor productivity has been increasing throughout this century because of technological progress and higher levels of worker education and skill. The average rate of total productivity growth has been slightly under 1½ percent per year during the twentieth century.

- The capital stock has been growing faster than the number of worker-hours. As a result, labor has a growing amount of capital goods to work with; hence labor productivity and wages have tended to rise even faster than the 1½ percent per year attributable to productivity growth alone.

- The rate of return on capital (the "rate of profit") might have been expected to encounter diminishing returns because each capital unit now has less labor to cooperate with it. Yet capital's rate of return has in fact remained about the same. Why? Because the increased capital per worker has been offset by the impact of technological progress on the productivity of capital. Just as a greater number of machines might have led to a lower rate of return on machines, there appear new and improved machines that once again make capital highly profitable.

- In the last two decades, all measures of productivity have shown a marked growth slowdown.

Whereas the first seven decades of this century witnessed total factor productivity growth of almost 1½ percent per year on average, the decades of the 1970s and 1980s experienced productivity growth of only ½ percent per year. This productivity growth slowdown has produced a markedly slower growth in real wages and in living standards in the United States.

Similar statistical measurements all over the globe help to put flesh on the bare bones of the microeconomic theory of production. They serve as factual tests of the validity of economic principles—principles that Chapter 23 will use for explaining the economic growth of nations.

From Production to Cost

This analysis of trends in the aggregate production function ends our survey of the basic elements of the theory of production and marginal products. Production theory is of great importance in its own right, helping us to understand how firms manage their internal activities and to analyze underlying behavior of productivity and living standards. But production theory is also an important building block in understanding business costs, which are the central determinants of supply. In the next chapter, then, we turn to an analysis of different cost concepts; the appendix to Chapter 9 will also provide a more complete analysis of the theory of production and cost. Mastery of these analytical tools is a prerequisite to understanding businesses' supply of goods and services and the behavior of markets in the remaining chapters of this part.

SUMMARY

1. In understanding the functioning of business enterprises, we begin by analyzing a firm's production behavior. The relationship between the quantity of output (such as wheat, steel, or automobiles) and the quantities of inputs (of labor, land, and capital) is called the production function.

2. Total product refers to the total output produced. Average product equals total output divided by the total quantity of inputs. By varying the inputs of one factor of production, while holding all other inputs constant, we can calculate the marginal product of a factor, which is equal to the extra output added for each additional unit of
input. The law of diminishing returns holds that the marginal product of each input will decline as the amount of that input increases, when all other inputs are held constant. The law of diminishing returns is a widely observed empirical regularity and is seen in many engineering examples, such as that of oil pipelines.

3. Because decisions take time to implement, and because capital and other factors are often very long-lived, the reaction of production may change over different time periods. The momentary run is the brief period in which output cannot be changed. The short run is a period in which variable factors, such as labor or material inputs, can be easily changed. In the long run, all factors, fixed and variable, can be adjusted; the capital stock, a firm's machinery and factories, can depreciate and be replaced.

4. The returns to scale refer to the impact on output of a balanced increase in all inputs. A technology in which doubling all inputs leads to an exact doubling of outputs is one of constant returns to scale. When doubling inputs leads to less than double the quantity of output, this situation is one of decreasing returns to scale. Conversely, when doubling inputs leads to greater than double the quantity of output, we have increasing returns to scale. When processes can be replicated, as when one 12-inch pipeline is nested next to another one, constant returns to scale will generally prevail. In many manufacturing processes, where a larger scale of operations allows redesign of capital equipment, studies indicate that increasing returns to scale prevail. As firms become larger and larger, difficulties of control and management may produce decreasing returns to scale.

5. Technological change refers to a change in the underlying techniques of production, as when a new product is invented, an old product is improved, or a process of production is made more efficient. In such situations, the same output is produced with fewer inputs, or more output is produced with the same inputs. In technical terms, technological change shifts the production function.

6. Ambitious attempts to measure an aggregate production function for the American economy tend to corroborate theories of production and marginal products. In this century, technological change has increased the productivity of both labor and capital. Total factor productivity (measuring the ratio of total output to total inputs) has averaged almost 1½ percent per year over the twentieth century although the rate of productivity growth has slowed markedly since 1970.

CONCEPTS FOR REVIEW

inputs, outputs, production function
total, average, marginal product
diminishing marginal product and the law of diminishing returns
momentary, short, and long run
constant, increasing, and decreasing returns to scale
technological change
productivity (labor, capital, total factor)
aggregate production function

QUESTIONS FOR DISCUSSION

1. Explain the concept of a production function. Describe the production function for hamburgers, concerts, and education.
2. For the following table, fill in the missing values for marginal products and average products.

<table>
<thead>
<tr>
<th>(1) PUMPING HORSEPOWER</th>
<th>(2) TOTAL PRODUCT (bbl per day)</th>
<th>(3) MARGINAL PRODUCT (bbl per day-hp)</th>
<th>(4) AVERAGE PRODUCT (bbl per day-hp)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10,000</td>
<td>86,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20,000</td>
<td>114,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30,000</td>
<td>134,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40,000</td>
<td>150,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50,000</td>
<td>164,000</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3. For the data in question 2, plot the production function of output against horsepower. On the same chart, plot the curves for average product and marginal product.

4. For the data given in question 2, say that technological change in the form of a new pipe material allows 20 percent more output to be produced for each level of horsepower. Plot the original production function and the new production function after the technological change.

5. Give some examples of important technological advances of the twentieth century. Explain for each how it would change the production function for the given product or process.

6. "If it were not for the law of diminishing returns, it would be possible to grow all the world's food in a single flowerpot." Explain this statement.

7. Refer back to Table 8-1. Calculate the marginal product of "pipe" at each level of horsepower, that is, what is the additional output obtained when the diameter of the pipe increases from 12 inches to 24 inches?

8. Refer back to Table 8-1. Calculations will show that the numerical production function for throughput of oil is given by the following formula:

\[Q = 43,000 \left(\frac{H}{10,000} \right)^{0.4} \left(\frac{P}{12} \right)^{1.7} \]

where \(Q \) is throughput in barrels per day, \(H \) is horsepower, and \(P \) is pipeline diameter in inches. Calculate the marginal product of additional horsepower for increments of 10,000, and calculate the marginal product of adding an additional 12 inches of pipe for the first five horsepower settings.

9. Consider a firm producing automobiles. If the demand for the firm's output declines, what steps could it take to reduce output in the short run? In the long run?
10. Consider the following changes in a firm's behavior. Which represent substitution of one factor for another with an unchanged technology, and which represent technological change?

(a) When the price of oil increases, a firm replaces an oil-fired plant with a coal-fired plant.

(b) With the introduction of laser-operated scanning machinery, a steel manufacturer improves the guarantee on the thickness of its steel plate to a tolerance of 0.01 inch from 0.05 inch in the prior year.

(c) Over the period 1970–1985, a typesetting firm decreases its employment of typesetters by 60 percent and increases its employment of computer operators by 150 percent.

(d) After a successful unionization drive for clerical workers, a university buys personal computers for its faculty and reduces its secretarial work force.

11. Consider a firm that produces wheat with land and labor inputs. Contrast diminishing returns and decreasing returns to scale. Is it possible to have diminishing returns to one input and constant returns to scale for both inputs?

12. Advanced problem: Show that if the marginal product is always decreasing, then the average product is always above the marginal product.

13. Advanced problem: Let output be Q and inputs be L (for labor) and A (for acres of land). Show that the arithmetic mean of L and A, namely $Q = \frac{1}{2}L + \frac{1}{2}A$, would not make an accurate production function because it does not show diminishing marginal products. (Hint: Each equal increment of L by 1 always increases Q by the same increment of $\frac{1}{2}$.) But the Cobb-Douglas production function $Q = \sqrt{LA} = \sqrt{LV}A$ is a good production function with diminishing returns. (Hint: The square roots of 1, 2, 3, . . . are 1, 1.41, 1.73, . . . which do show decreasing increments of Q, namely, 0.41, 0.32, . . .)
Costs merely register competing attractions.
Frank Knight.
Risk, Uncertainty, and Profit (1921)

The last chapter analyzed physical production by firms, examining such questions as marginal products and the relationship of production concepts to the law of diminishing returns. We now translate issues of production into analysis of cost, laying the groundwork for a full analysis of the supply decisions of firms and of the price and output determination in markets.

Why do firms care about costs? Clearly they must pay careful attention to costs because every dollar of cost reduces the firm’s profits. But costs are important in economics for a deeper reason: firms will decide how much of a good to produce and sell depending on the price and cost of the good. More precisely, supply depends upon incremental or marginal cost. And the dependence of supply decisions on cost is true not only for perfect competitors but also for firms in the vast terrain of imperfect competition. We thus devote the present chapter to a thorough analysis of different economic concepts of cost, including broader opportunity costs as well as dollar costs.

Once the major cost concepts have been mastered we can move on to Chapter 10’s analysis of the sup-
ply decisions of competitive firms and industries. Whatever the market structure, whether perfectly or imperfectly competitive, marginal cost is a key concept for understanding a firm’s behavior.

TOTAL COST: FIXED AND VARIABLE

Consider a firm that produces a quantity of output denoted by \(q \). As described in the last chapter, this output is produced according to some production function with capital, labor, and other inputs. The firm must of course buy these inputs in the factor markets. A profit-minded firm will keep an eagle-eye on its costs so as to maintain its profits, and it is to the firm’s accountants that the task is given to calculate the total dollar costs incurred at each level of \(q \).

Table 9-1 shows the simplified total cost (\(TC \)) for each different level of output \(q \). Columns (1) and (4) are the crucial ones, showing that \(TC \) goes up as \(q \) goes up. This is natural because it takes more labor and factor inputs to produce more of a good; these extra factors involve an extra money cost. It costs \$110 in all to produce 2 units, \$130 to produce 3 units, and so forth.

As an aside, note that when we write down a cost schedule like that in Table 9-1 or draw a cost curve later in this chapter, we make the firm’s job look altogether too simple. Why so? Because much hard work lies behind the figures in Table 9-1. To attain the lowest level of costs, the firm’s managers have to make sure that they are paying the least possible amounts for necessary materials (like oil or iron ore); that wages are neither so costly as to raise the firm’s costs unnecessarily nor so low as to increase labor turnover and vacancies; that the latest engineering techniques are incorporated into the factory layout; and that countless other decisions are made in the most economical fashion.

As a result of such managerial effort, the fixed and variable costs shown in Table 9-1 are the firm’s *minimum costs* necessary to produce that level of output. A poor manager could, of course, do worse. But a good manager can do no better than attain the minimum costs shown in the table.

Fixed Cost

Columns (2) and (3) break total cost into two components: total fixed cost, \(FC \), and total variable cost, \(VC \). Figure 9-2(a) later in this chapter will show these components graphically.

What are a firm’s fixed costs? Sometimes called “overhead” or “sunk costs,” they consist of items like contractual payments for building and equipment

<table>
<thead>
<tr>
<th>(1) QUANTITY q</th>
<th>(2) FIXED COST FC</th>
<th>(3) VARIABLE COST VC</th>
<th>(4) TOTAL COST TC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>55</td>
<td>0</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>55</td>
<td>30</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>55</td>
<td>110</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td>75</td>
<td>130</td>
</tr>
<tr>
<td>4</td>
<td>55</td>
<td>105</td>
<td>160</td>
</tr>
<tr>
<td>5</td>
<td>55</td>
<td>155</td>
<td>210</td>
</tr>
<tr>
<td>6</td>
<td>55</td>
<td>225</td>
<td>280</td>
</tr>
</tbody>
</table>

Table 9-1 Fixed, variable, and total costs

The major elements of a firm’s costs are its fixed costs (that do not vary at all when output changes) and variable costs (that increase as output increases). Total costs are equal to fixed plus variable costs: \(TC = FC + VC \).
rents, interest payments on debts, salaries of long-
term employees, and so forth. These must be paid
even if the firm produces no output, and they will not
change if output changes. Hence, FC is the amount of
cost that must be paid independently of the level of
output; that is why FC stays constant at $55 in column
(2).

Variable Cost

Column (3) of Table 9-1 shows variable cost (VC).
Variable costs are those costs that vary with the
level of output. Examples include materials required to
produce output (such as steel to produce automobiles);
production workers to staff the production lines; fuel, light, and power to operate factories; and
the like.

By definition, VC begins at zero when q is zero. It
is the part of TC that grows with output; indeed, the
jump in TC between any two outputs is the same as
the jump in VC. Why? Because FC stays constant at
$55 throughout and cancels out in the comparison of
costs between different output levels. Let us summa-
rate these cost concepts:

"Total cost" represents the lowest total dollar ex-
 pense needed to produce each level of output q. TC
rises as q rises.

"Fixed cost" represents the total dollar expense
that is paid out even when no output is produced;
fixed cost is unaffected by any variation in the quan-
tity of output.

"Variable cost" represents expenses that vary with
the level of output—including raw materials, wages,
and fuel—and includes all costs that are not fixed.

Always, by definition,

\[TC = FC + VC \]

DEFINITION OF MARGINAL COST

The key to understanding how much a firm will want
to produce and sell is its marginal cost of producing
goods and services. What do we mean by marginal
cost? **Marginal cost** denotes the extra or additional
cost of producing 1 extra unit of output.

Say a firm is producing 1000 hard disks for a total
cost of $10,000. If the total cost of producing 1001
disks is $10,015, then the marginal cost of production
is $15 for the 1001st disk.

Table 9-2 uses the example from Table 9-1 to illus-
trate how we calculate marginal costs. Begin by re-
calling that in economics the term "marginal"—
whether applied to utility, cost, production, con-
sumption, or whatever—means "incremental" or "extra."
The red MC numbers in column (3) of Table
9-2 come from subtracting the TC in the adjacent col-
umn from the TC of the earlier unit. Thus the MC
of the first unit is $30 = $85 - $55. The marginal
cost of the second unit is $25 = $110 - $85. And so on.
Verify that the marginal cost of the fifth unit of output
is $50.

Instead of getting MC from the TC column, we
could as easily get the MC figures by subtracting each
VC number of column (3) of Table 9-1 from the row
below it. Why? Because variable cost always grows
exactly like total cost, the only difference being that
VC must—by definition—start out from 0 rather than
from the constant FC level. (Check that 30 - 0 =
85 - 55, and 55 - 30 = 110 - 85,)
Figure 9-1 Marginal cost is to total cost exactly as marginal product is to total product
Marginal cost in (b) is found by calculating the extra cost added in (a) for each unit increase in output. Thus to find the MC of producing the fifth unit, we subtract $160 from $210 to get MC of $50. A smooth curve has been drawn through the points of TC in (a), and the smooth MC curve in (b) links the discrete steps of MC. (Source: Table 9-2.)

At each output level, the marginal cost of production is the additional cost incurred in producing 1 extra unit of output. It is calculated in Table 9-2 by comparing the total costs of producing adjacent output levels.

Marginal Cost in Diagrams Figure 9-1 illustrates total cost and marginal cost. It shows that TC is related to MC in the same way that Figure 8-1 related total product to marginal product (or as Figure 6-1 related total utility to marginal utility).

What kind of shape would we expect the MC curve to have? Empirical studies have found a wide variety of MC curves in practice, with the shape of the MC curve depending upon the type of industry and the time period under consideration. A typical marginal cost curve for the short run is the U-shaped one shown in Figure 9-1(b). This U-shaped curve falls in an initial phase, then reaches a minimum point, and finally begins to rise. Such a U-shaped cost curve would be appropriate for calculating the short-run marginal costs for many firms—that is, costs for a period of time in which the firm’s plant and equipment are fixed.

The cost curves can have other shapes as well. The reasons behind the shape of the cost curves will be covered later in this chapter where we describe the relationship between cost analysis and production analysis.

COST CONCEPTS

We can complete our catalogue of cost concepts important in economics and business with a discussion of different kinds of average or unit cost. Table 9-3 extends the figures of Table 9-1 to include three new measures: average cost, average fixed cost, and average variable cost.
Average or Unit Cost

One of the most important cost concepts is average cost, which, when compared with price or average revenue, will allow a business to determine whether or not it is making a profit. **Average cost** is the total cost divided by the number of units produced, as is shown in column (6) of Table 9-3. That is,

$$\text{Average cost} = \frac{\text{total cost}}{\text{output}} = \frac{TC}{q} = AC$$

In column (6), when only 1 unit is produced, average cost has to be the same as total cost, or $85/1 = 85$. But for $q = 2$, $AC = TC/2 = $110/2 = 55, as shown. Note that average cost is, at first, falling lower and lower. (We shall see why in a moment.) But AC reaches a minimum of 40 at $q = 4$, and then slowly rises.

Next, we plot carefully the different concepts of cost as they are shown in Table 9-3. The top half of Figure 9-2 is the total, fixed, and variable cost shown at different levels of output. The bottom half shows

<table>
<thead>
<tr>
<th>QUANTITY q</th>
<th>FIXED COST FC</th>
<th>VARIABLE COST VC</th>
<th>TOTAL COST $TC = FC + VC$</th>
<th>MARGINAL COST $MC = \frac{TC}{q}$</th>
<th>AVERAGE COST PER UNIT $AC = \frac{TC}{q}$</th>
<th>AVERAGE FIXED COST PER UNIT $AFC = \frac{FC}{q}$</th>
<th>AVERAGE VARIABLE COST PER UNIT $AVC = \frac{VC}{q}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>55</td>
<td>0</td>
<td>55</td>
<td>30</td>
<td>Infinity</td>
<td>Infinity</td>
<td>Undefined</td>
</tr>
<tr>
<td>1</td>
<td>55</td>
<td>30</td>
<td>85</td>
<td>25</td>
<td>85</td>
<td>55</td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>55</td>
<td>55</td>
<td>110</td>
<td>20</td>
<td>55</td>
<td>27½</td>
<td>27½</td>
</tr>
<tr>
<td>3</td>
<td>55</td>
<td>75</td>
<td>130</td>
<td>30</td>
<td>43½</td>
<td>18½</td>
<td>25</td>
</tr>
<tr>
<td>4*</td>
<td>55</td>
<td>105</td>
<td>160</td>
<td>40*</td>
<td>40*</td>
<td>13½</td>
<td>26½</td>
</tr>
<tr>
<td>5</td>
<td>55</td>
<td>155</td>
<td>210</td>
<td>50</td>
<td>42</td>
<td>11</td>
<td>—</td>
</tr>
<tr>
<td>6</td>
<td>55</td>
<td>225</td>
<td>280</td>
<td>90</td>
<td>46½</td>
<td>9½</td>
<td>37½</td>
</tr>
<tr>
<td>7</td>
<td>55</td>
<td>—</td>
<td>370</td>
<td>110</td>
<td>52½</td>
<td>7½</td>
<td>45</td>
</tr>
<tr>
<td>8</td>
<td>55</td>
<td>—</td>
<td>480</td>
<td>130</td>
<td>60</td>
<td>6½</td>
<td>53½</td>
</tr>
<tr>
<td>9</td>
<td>55</td>
<td>555</td>
<td>610</td>
<td>150</td>
<td>67½</td>
<td>6½</td>
<td>61½</td>
</tr>
<tr>
<td>10</td>
<td>55</td>
<td>705</td>
<td>760</td>
<td>76</td>
<td>5½</td>
<td>70½</td>
<td>5½</td>
</tr>
</tbody>
</table>

*Minimum level of average cost.

Table 9-3 From schedule of firm's total cost, all other costs can be computed

All the costs can be calculated from the TC in column (4). Columns (5) and (6) are the important ones to concentrate on: Incremental or marginal cost is calculated by subtraction of adjacent rows of TC and is shown in red. The light red numbers of smoothed MC come from Figure 9-2(b). In column (6) note the point of minimum cost of 40 on the U-shaped AC curve in Figure 9-2(b). (Can you see why the starred MC equals the starred AC at the minimum? Also, calculate and fill in all the missing numbers.)
Figure 9-2 Total cost curve gives rise to all the other curves
(a) Total cost is made up of fixed cost and variable cost. (b) The red curve of marginal cost falls and then rises, as indicated by the light red MC figures given in column (5) of Table 9-3. The three average cost curves in (b) are calculated by dividing total, fixed, and variable cost by total output, so

\[AC = TC/q \quad AVC = VC/q \quad \text{and} \quad AFC = FC/q \]

Also,

\[AC = AVC + AFC \]

Note that MC intersects AC at its minimum. This key fact is not a coincidence, but is due to the important relationship between marginal and average costs.
the different average cost concepts, along with a smoothed marginal cost curve.

The top half of Figure 9-2 is self-explanatory. You can see how total cost moves with variable cost while fixed cost stays fixed.

Now turn to the bottom half. This gives a careful plotting of U-shaped AC, correctly aligned below the TC it came from. We can now break down average cost into its two components, fixed and variable—just as earlier we had the breakdown of TC into FC and VC. By dividing each of the last two by q, we get average fixed cost, $AFC = FC/q$ of column (7), and average variable cost, $AVC = VC/q$ of column (8).

Average Fixed Cost

Since total fixed cost is a constant, dividing it by an increasing output gives a steadily falling average fixed cost curve in column (7) of Table 9-3. The dashed black AFC curve in Figure 9-2(b) looks like a hyperbola, approaching both axes: it drops lower and lower, approaching the horizontal axis as the constant FC gets spread over more and more units. If we allow fractional and zero units of q, AC starts infinitely high, as finite FC is spread over ever tinier q.

Average Variable Cost

Average variable cost (AVC) equals variable cost divided by output, or $AVC = VC/q$. In our numerical example of Table 9-3 and Figure 9-2(b), AVC first falls and then rises. As we will see in the next section, this shape for AVC can be predicted from the behavior of marginal cost.

Minimum Average Cost

Figure 9-2(b) is a crucial economic diagram. Study it carefully and fix it in your mind's eye. Note the relationship between the MC curve and the AC curve—particularly the way that the MC curve cuts the minimum point of the AC curve: The AC curve is always pierced at its minimum point by the rising MC curve.

This is no coincidence, and we will now explain why this has to be the case. The basic point to see is that if MC is below AC, then AC must be falling. Why is this so? Because if MC is below AC, then the last unit produced costs less than the average of all the earlier units produced. If the last unit costs less than the earlier ones, then the new AC (i.e., the AC including the last unit) must be less than the old AC, so AC must be falling. To put this in terms of our cost curves, this shows that if the MC curve is below the AC curve, then the AC curve must be falling.

What if MC is above AC? In this case, the last unit costs more than the average of the earlier units. Hence the new average cost (the AC including the last unit) must be higher than old AC. Therefore, when MC is above AC, AC must be rising.

Finally, if MC is just equal to AC, this means that the last unit costs exactly the same as the average cost of all earlier units. Hence the new AC, the one including the last unit, is equal to the old AC; the AC curve is flat when AC equals MC.

From this discussion, we can see why a rising MC curve must cut the AC curve at its minimum point. To the left of the minimum point of the AC curve, MC is below AC, so the AC curve is falling. To the right of the AC minimum, MC is above AC, so the AC curve is rising. At the point where MC equals AC, the AC curve is flat. Hence, the MC curve cuts the AC curve at the minimum average cost.

A Classroom Example Here is an explanation of the MC and AC relationship in terms of college grade averages. Let AG be your average grades (or cumulative grade average up to now), and MG is your marginal or incremental grade average for this year. When MG is below AG, it will pull the new AG down. Thus if your AG for the first 2 years is 3, while your MG for your junior year is 2, then the new AG (at the end of junior year) is 2.9. Similarly, if your MG in your third year is higher than your AG up to then, your new AG will be pulled up. Where MG equals AG, AG will be flat over time, or is unchanged. The same relation holds for average and marginal cost.

To better understand the relationship between MC and AC, you should study carefully the curves in Figure 9-2(b) and the numbers in Table 9-3. Note that for the first 3 units, MC is below AC; AC is thus declining. At exactly 4 units AC equals MC. Above 4
units, \(MC \) is above \(AC \) and pulling \(AC \) up steadily.

To summarize:

So long as marginal cost is below average cost, it is pulling average cost down; when \(MC \) gets to be just equal to \(AC \), \(AC \) is neither rising nor falling and is at its minimum; when \(MC \) is above \(AC \), it is pulling \(AC \) up. Hence:

At the bottom of U-shaped \(AC \), \(MC = AC = \) minimum \(AC \).

Finally, note as well that a rising \(MC \) cuts \(AVC \) at its lowest point or minimum. You can again verify this fact in Table 9-3. The reasoning about why it cuts \(AVC \) at the minimum is exactly the same as why it cuts \(AC \) at its minimum.*

THE LINK BETWEEN PRODUCTION AND COSTS

At this point, we should pause to consider the source of the cost curves that have appeared in this chapter. In truth, cost curves are not the beginning of the story. Rather, they are grounded in the production techniques employed by the firm and in the prices the firm pays for the inputs. Now that both production and cost concepts have been presented, we bring the linkage between the two out of the background.

The essence of the link between costs and production is simple: for each level of output, firms must choose the least costly combination of inputs. A profit-oriented firm will always strive to choose the bundle of labor, capital, land, and materials that produces the output at lowest cost. Hence, for given wage rates, land rents, machinery rentals, and materials prices, the firm will seek that combination of inputs that can produce the output in the least expensive way. When the total cost of this least-cost bundle of inputs is calculated, we have the total cost shown in Tables 9-1 through 9-3.

We can show the derivation of cost from production data through a simple numerical example. Suppose Farmer Jones rents 10 acres of land and can hire farm labor to produce wheat. Per period, land costs $5.5 per acre and labor costs $5 per worker. Using up-to-date farming methods, Jones can produce according to the production function shown in the first three columns of Table 9-4. In this example, land is a fixed cost (because Farmer Jones operates under a 10-year lease), while labor is a variable cost (because labor can be easily hired and dismissed in the local labor market).

Using the production data and the input-cost data, we can for each level of output calculate the total cost.

*One other important relation can be seen by looking at the total cost graph. In our example up to now, we have seen large jumps in \(MC \) as output goes from one level to the next. Instead, focus a microscope on the total cost curve. This we can do if the units of \(q \) are in thousands, so we can examine the cost of going from 3.999 (thousand) \(q \) to 4.000 (thousand) \(q \). This smoothed total cost curve was used to give the light red \(MC \)’s in Table 9-3.

Recall that marginal cost is the slope of the total cost curve. We saw how the slope of curved lines is measured back in the appendix to Chapter 1, and \(MC \) is an excellent illustration of the technique. Figure 9-3 helps to clarify the distinction between (1) \(MC \) as an increment of cost for a finite step between two points of \(q \), and (2) \(MC \) as a smoothed-out instantaneous rate depicting the tangential slope at which \(TC \) is rising at one given \(q \) point. The \(a \) to \(b \) distance represents 1 extra unit of output. The \(b \) to \(a’ \) distance represents the resulting increase in total cost, which is the first and simplest definition of marginal cost. The second definition is given by the slope of the total cost curve at point \(a \)—and what mathematicians call \(d(TC)/dq \)—or what is the same thing numerically, by the distance from \(b \) to \(c \) divided by the unit distance \(a \) to \(b \). In the limit, as the size of the extra units becomes small and we reexamine the ratios in the new smaller triangle, the discrepancy between the two definitions becomes relatively negligible. (That is, \(ba'/bc \) approaches \(1 \) as \(a' \) approaches \(a \).)
Table 9-4 Costs are derived from production data and input costs

Farmer Jones rents 10 acres of wheat land and employs variable labor. According to the relevant production function, careful use of labor and land allows inputs and yields shown in columns (1) to (3) of the table. At input prices of $5.5 per acre and $5 per worker, we obtain Jones’ cost of production shown in column (6). All other cost concepts (such as those shown in Table 9-3) can be calculated from the total cost data.

<table>
<thead>
<tr>
<th>OUTPUT (tons of wheat)</th>
<th>LAND INPUTS (acres)</th>
<th>LABOR INPUTS (workers)</th>
<th>LAND RENT (dollars per acre)</th>
<th>LABOR WAGE (dollars per worker)</th>
<th>TOTAL COST (dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>0</td>
<td>5.5</td>
<td>5</td>
<td>55</td>
</tr>
<tr>
<td>1</td>
<td>10</td>
<td>6</td>
<td>5.5</td>
<td>5</td>
<td>85</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>11</td>
<td>5.5</td>
<td>5</td>
<td>110</td>
</tr>
<tr>
<td>3</td>
<td>10</td>
<td>13</td>
<td>5.5</td>
<td>5</td>
<td>130</td>
</tr>
<tr>
<td>4</td>
<td>10</td>
<td>21</td>
<td>5.5</td>
<td>5</td>
<td>160</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>31</td>
<td>5.5</td>
<td>5</td>
<td>210</td>
</tr>
<tr>
<td>6</td>
<td>10</td>
<td>45</td>
<td>5.5</td>
<td>5</td>
<td>280</td>
</tr>
<tr>
<td>7</td>
<td>10</td>
<td>63</td>
<td>5.5</td>
<td>5</td>
<td>370</td>
</tr>
<tr>
<td>8</td>
<td>10</td>
<td>85</td>
<td>5.5</td>
<td>5</td>
<td>480</td>
</tr>
<tr>
<td>9</td>
<td>10</td>
<td>111</td>
<td>5.5</td>
<td>5</td>
<td>610</td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td>141</td>
<td>5.5</td>
<td>5</td>
<td>760</td>
</tr>
</tbody>
</table>

of production shown in column (6) of Table 9-4. As an example, consider the total cost of production for 3 tons of wheat. Using the given production function, Jones can produce this quantity with the 10 acres of land and 15 farmhands. The total cost of producing 3 tons of wheat is (10 acres × $5.5 per acre) + (15 workers × $5 per worker) = $130. Similar calculations will give all the other total cost figures in column (6) of Table 9-4.

Note that these total costs are identical to the ones shown in Tables 9-1 through 9-3, so that the other cost concepts shown in the tables (i.e., MC, FC, VC, AC, AFC, and AVC) are also applicable to the production-cost example of Farmer Jones.

Diminishing Returns and U-Shaped Cost Curves

Once the relationship between cost and production is understood, we can explain why the U-shaped cost curves so prevalent in economics are grounded in the law of diminishing returns.

Momentary, Short, Long Run The reasons for a U-shaped cost curve are best understood in terms of the time factor in production and cost. Economists recognize that planning and implementing decisions may take long periods of time. They therefore distinguish three different time periods in production and cost analysis. Recall our definitions of the momentary period, short run, and long run from Chapter 8 and apply those concepts to costs:

- The momentary run is the period of time so short that no change in production can take place, so costs are fixed in this period.
- The short run is the period of time in which variable inputs, such as materials and labor, can be adjusted, but which is of insufficient length for all inputs to be changed. In the short run, the plant and equipment cannot be fully modified or adjusted. Therefore, in the short run, labor and materials costs are variable costs, while capital costs are fixed.
* In the long run, all inputs can be adjusted—including labor, materials, and capital; hence, in the long run, all costs are variable and none are fixed.¹

Returning to our analysis of cost curves, suppose some factor such as capital is fixed in the short run under consideration. Further suppose that output varies when different amounts of the variable factor labor are hired. In a competitive labor market, where the firm can buy all the labor it wants at the going wage rate per unit of labor, the marginal cost of output would only rise because the extra output produced by each extra labor unit was going down. Put differently, if there is diminishing returns to the variable factor in the short run, then the short-run marginal cost will increase as the marginal product decreases. We can therefore see why diminishing returns would naturally lead to rising marginal costs after some point.

¹For a more complete discussion of momentary, short, and long runs, see Chapter 8.

Figure 9-4, which contains exactly the same data as Table 9-4, illustrates the point. In that figure, point B in part (a) is the point where diminishing returns to the variable factor labor sets in. To the right of point B in (a), diminishing returns means that the marginal product of labor is declining. Turning to part (b) of Figure 9-4, point B corresponds to the minimum marginal cost of output. For higher levels of output, as the marginal product in (a) declines, the marginal cost of output rises.

The data in Table 9-4, along with the left-hand part of the marginal cost curve in Figure 9-4(b), show that MC often declines at first. Why might this happen? Recall that the law of diminishing returns tends to hold as output increases with a fixed capital plant or capacity. However, at very low levels of inputs, there may be a strong tendency toward increasing marginal product of labor, owing to economies of large-scale production associated with indivisibility of manufacturing processes. You need a minimum of
people to field a baseball team or to fly a large commercial aircraft. For the first few workers, therefore, we may have a period of increasing marginal product rather than decreasing marginal product. For that period, illustrated in Figure 9-4 at point A in both (a) and (b), marginal costs will be declining.²

We can summarize the relationship between the productivity laws and the cost curves as follows:

In the short run, when some factors like capital are fixed, variable factors tend to show an initial phase of increasing returns followed by diminishing returns. The corresponding cost curves show an initial phase of declining marginal costs followed by increasing MC after diminishing returns has set in.

THE LONG-RUN ENVELOPE CURVE

We have seen how a firm’s short-run cost curves tend to look U-shaped when a fixed factor such as capital or land limits the firm’s production capacity. But what will happen when firms can replace their worn-out capital, adjust the size of their plants, or even move to new regions? What is the relation between the short-run cost curves and those holding for the long run?

Suppose that a petroleum refinery located on the Gulf Coast has a plant of so much capacity (perhaps 100,000 barrels per day of refining capacity). For this size plant, it has a short-run U-shaped AC curve (call it SAC in order to emphasize its short-run nature). If the firm builds a larger refinery, its cost-minimizing output will be larger, so the new SAC curve must be drawn farther to the right. Now, suppose the firm is still in the planning stage, with no obligations, not having decided exactly what size plant to build. The firm’s engineers can estimate different U-shaped SAC curves. For each design capacity, or planned output level, the firm would choose a different plant size and a different SAC curve.

Figure 9-5(a) shows how, in the long run, the firm would select an SAC’ at the left if it needs a low q. For intermediate q, it does better to plan to use SAC”. For still larger q, SAC”” leads to lowest costs. The heavy black curve of long-run average cost (LAC) is composed of the three lowest branches of the three SAC curves.

Figure 9-5(b) shows the same lower limit in the case where the firm has a choice of infinitely many smooth short-run AC curves. The long-run average cost (LAC) curve is the smooth lower boundary of the many SAC curves. It is called an “envelope curve” because it wraps around the outside of all the curves.

The long-run LMC envelope curve provides the firm’s long-run marginal cost curve and can be derived from the LAC. As with all AC and MC curves, the LMC goes through the minimum point of the LAC, and the LMC has a gentler slope than the short-run SMC at the minimum point.

This concludes our discussion of cost curves and their relationship to production. We turn now to further applications of cost concepts.

CHOICE OF INPUTS BY THE FIRM

Our major tasks are nearly completed. We now must apply our production and cost analysis to the firm’s need to select the best combination of inputs. More precisely, this section completes the link between production and cost by using the marginal product concept to illustrate how firms select the least-cost combinations of inputs for a given set of input prices.

Marginal Products and the Least-Cost Rule

One of the most important questions that every firm must decide is how much of each input it should em-
ploy: how much labor, capital, land, and materials. In making this decision, we start with a fundamental assumption, the assumption of cost minimization: *Firms are assumed to choose their combination of inputs so as to minimize the total cost of production.*

This cost-minimization assumption actually makes good sense not only for perfectly competitive firms but for firms in imperfect competition and indeed for nonprofit entities like colleges or hospitals. It simply states that, whatever the level of output, the firm should strive to produce that output at the lowest possible cost and thereby have the maximum amount of revenue left over for profits or other objectives of the firm.

A simple example will show how a firm might decide between different input combinations. The firm’s engineers have calculated that the desired output level of 9 units could be produced with two possible options. In both cases, fuel (F) costs $2 per unit while labor (L) costs $5 per hour. Under option 1, the input mix is $F = 10$, and $L = 2$. Option 2 has $F = 4$ and $L = 5$. Which is the preferred option? At the going input prices, total production costs for option 1 are $(2 \times 10) + (5 \times 2) = 30$, while total costs for option 2 are $(2 \times 4) + (5 \times 5) = 33$. Therefore, option 1 would be the desired or least-cost combination of inputs.

Can we generalize to a case where there is a large number of possible input combinations? Is there a general rule for picking the least-cost combination? The general procedure is to begin by calculating the cost per unit of each input of labor, fuel, capital, and so forth. Then calculate the marginal product of each input. The cost-minimizing combination of inputs comes when the marginal product per dollar of input is equal for all inputs. That is to say, the marginal contribution to output of each dollar’s worth of labor, of land, of oil, and so forth must be just the same.

What is the rationale for this rule? Let’s say that land costs $800 an acre and labor costs $8 per hour. No one of sound mind would expect to achieve least cost if land and labor were chosen so that their marginal *physical* products were equal. Since land costs 100 times as much as labor, the least-cost combination arises when land’s MP is 100 times labor’s MP.

Following this reasoning, a firm will minimize its total cost of production when the marginal product per dollar of input is equalized for each factor of production. This is the least-cost rule.
Least-cost rule: To produce a given level of output at least cost, a firm will hire factors until it has equalized the marginal product per dollar spent on each factor of production. This implies that

\[\frac{\text{Marginal product of } L}{\text{Price of } L} = \frac{\text{Marginal product of } A}{\text{Price of } A} \]

This rule for firms is exactly analogous to what consumers do when they maximize utilities, as shown in Chapter 6. In that chapter we saw that maximizing utility comes when the marginal utility per dollar spent on consumer goods is equalized for all commodities.

One way of understanding the least-cost rule is the following: Break each factor into units worth $1 each (in our earlier fuel-labor example, $1 of labor would be one-fifth of an hour, while $1 of fuel would be one-half unit). Then the least-cost rule states that the marginal product of each dollar-unit of input must be equalized.

To understand the least-cost rule, we can use a common method of analysis by supposing that it is not true and showing a contradiction. Assume, for example, that a dollar-unit of labor had a marginal product of 1 bushel of wheat, and a dollar-unit of fuel had a marginal product of 3 bushels of wheat. Since dollar-units of fuel have higher marginal products than those of labor, reorganize production by expanding the employment of fuel by 1 dollar-unit and contracting that of labor by 3 dollar-units. By assumption, total production would remain unchanged, but the cost of production would go down by $2. Therefore the original state, in which marginal products per dollar-unit of input were not equal, was not a least-cost situation.

Substitution Rule A corollary of the least-cost rule is the substitution rule. If the price of one factor, say labor, falls while all other factor prices remain the same, firms will benefit by substituting the now-cheaper factor for all the other factors. Why will this happen? It occurs because a fall in the price of labor will raise the ratio \(MP_L/P_L \) above the \(MP/P \) ratio for other inputs. By raising the employment of \(L \), which by the law of diminishing returns lowers \(MP_L \) and therefore lowers \(MP_L/P_L \), we bring the marginal product per dollar for labor back into equality with that ratio for other factors.

OPPORTUNITY COST

This chapter has concentrated on the treatment of many kinds of business costs. But what kinds of costs are included in these calculations? Monetary costs only? Or do they include costs, like pollution damage, that are social costs but do not enter into a firm's accounts?

Chapter 2 introduced the notion of opportunity cost. Here we will consolidate our earlier understanding by relating opportunity costs to the dollar costs measured by firms and analyzed in this chapter. We have observed on numerous occasions (such as in our treatment of accounting in the appendix to Chapter 7) that the world of the businessperson or the accountant often differs from that of the economist. And right here—with the concept of cost—is where a major distinction arises.

Where does the difference lie? In essence, the economist generally includes more items in cost than do accountants or businesspeople. Economists include all costs—whether they reflect monetary transactions or not; business accountants generally exclude nonmonetary transactions.

We have already encountered in Chapter 7 examples of true economic costs that do not show up in business accounts. The return to an owner's effort, the normal return on contributed capital to a firm, the risk premium on highly leveraged owner's equity—these are all elements that should figure into a broadly conceived set of economic costs but do not enter business accounts. An economist would insist that the wages of management or the return on contributed capital are real economic costs: they use real, live managers and tangible capital.

The concept that can help us understand this distinction between money costs and true economic costs is **opportunity cost**. The opportunity cost of a decision consists of the things that are given up by making that particular decision rather than the best alternative decision.

Let's illustrate the concept of opportunity cost by considering the owner of a small business, such as the
computer-firm proprietor in Chapter 7. The owner puts in 60 hours a week but earns no "wages." At the end of the year, the firm earns a profit of $20,000—pretty good for a neophyte firm.

Or is it? The economist would disagree, saying that the return to a factor of production is economically important regardless of how the factor happens to be owned. We should count the owner’s own labor as a cost even though the owner does not get paid directly but instead receives compensation in the form of profits. We should take into account that the owner has alternative opportunities for work and reckon that lost opportunity as a cost.

Thus, by looking around the town, we see that the firm’s owner could find a similar and equally interesting job working for someone else and earning $45,000. This represents, then, the opportunity cost or earnings forgone because the owner decided to become the unpaid owner of a small business rather than the paid employee of another firm.

Therefore, the economist continues, let’s calculate the true profits of the computer firm. If you take the measured profits of $20,000 and subtract the $45,000 opportunity cost of the owner’s labor, you find a net loss of $25,000. Thus while the accountant might conclude that such a typical small business was an economically viable enterprise, the economist would pronounce the firm an unprofitable loser.

Another example of an opportunity cost not included in the firm’s accounts is the return on the capital contributed by the owners. Suppose that the firm’s owners put $30,000 of equity capital into the firm—perhaps in the form of computer equipment. The standard financial accounts do not deduct an opportunity cost for these funds. If investments of similar risk normally earn 14 percent, then another $4200 (= 0.14 × $30,000) should be deducted from earnings to account for the opportunity costs of these funds.

Or if you own some special factors of production—like rich ore land, exceptional know-how, or fertile soil—your accounts may show a high profit. But we should recognize the opportunity costs of these factors and realize that this high return is in fact not a genuine profit but rather a rent return to that special factor of production you are lucky enough to own.

Opportunity Cost and Decisions

The concept of opportunity cost is actually even broader and more useful than the examples of unpaid factors used by a firm. It can be applied in economics to the real economic cost or consequence of making decisions in a world where goods are scarce.

Life is full of choices. In choosing one thing we must give up something else. When we go to a movie, we cannot read a book. When we go to college, we forgo for a time the opportunity of getting a full-time job. When a nation drafts people into the army, it loses the time they might otherwise spend reading poetry or writing computer programs. Every time a firm or a nation makes a decision, it incurs costs by discarding alternative courses of action.

When we are forced to choose between scarce goods, we incur opportunity costs. The opportunity cost of a decision is the value of the best available alternative.

One of the best ways of seeing the concept of opportunity cost is to return to the production-possibility frontier of Chapter 2. Let’s say the nation wants to gird up its loins and increase the size of the army. It proposes to draft 1 million young men, increasing the army’s size from 2 million to 3 million. Critics fume, claiming that the economic vitality of the nation will be sapped. The Pentagon rebuts by pointing to the small budgetary cost of the larger army. Who is right?

From an economic vantage point, the best way to answer this question is to examine the opportunity cost of the action. Figure 9-6 provides an illustrative production-possibility frontier between the size of the army and the production of civilian goods and services. In an efficiently organized society, the military expansion would be represented by a movement from point A to point B in the figure. As the boot camps fill

* Economists call these unpaid factors of production *implicit costs*, which is a somewhat narrower concept than opportunity cost.

*If you happen to own very fertile land and persist in cultivating it by uneconomical methods, you will be paying for your folly or stubbornness by forgoing the high return such land is capable of yielding. In dollars, the land is worth more to others than to you, and if you refuse to rent or sell, you are as surely spending your sustenance to please your own tastes as you would be doing if you sold the land and spent the proceeds on wine, skiing, or song.
This reasoning, which is extremely common in such debates about federal spending, is not correct economic analysis. If in fact there is unemployment, then this can be corrected without necessarily increasing the size of the army. In using the concept of opportunity cost, we should make comparisons of points on the PPF, or with constant levels of unemployment, so as to calculate the economic effects of the decision relative to the best or most efficient alternative.

Opportunity Costs in Markets You might naturally say, “Well, now I’m totally confused. First I learn that the market price is the measure of the social value of a good. Now I read that opportunity cost is the right concept. There seems to be an inconsistency here.”

Actually not, for when we examine a competitive market, it is easily seen that the price equals opportunity cost. Assume that a commodity like coal is bought and sold on a competitive market. If I bring my ton of coal to market, I will receive a number of bids from prospective buyers: $25.02, $24.98, $25.01. These represent the values of my coal to, say, three utilities. I pick the highest—$25.02. The opportunity cost of this sale is the value of the best available alternative—that is, the second-highest bid at $25.01—which is almost identical to the price that is accepted. As the market approaches absolutely perfect competition, the bids get closer and closer until in the limit the second-highest bid (which is our definition of opportunity cost) exactly equals the highest bid (which is the price). This example shows that in competitive markets, the price that will be generated equals the best available alternative and is therefore equal to the opportunity cost.

Opportunity Costs outside Markets The concept of opportunity cost is particularly crucial when analyzing transactions that take place outside markets. How do you measure the cost of a college education? The value of a dam or a park? Of a draft army? Of a health or safety regulation? For these we need to turn to opportunity cost for sound economic analysis.

* What is the opportunity cost of going to college? For a public university, tuition, room, board, books,
and expenses in 1988 were around $5000. So the opportunity cost is $5000, right? No. You must include as well the opportunity cost of the time spent studying and going to classes. A 20-year-old high school graduate holding a full-time job would on an average earn about $14,000 in 1988. Thus the opportunity cost of college is $19,000 per year rather than $5000 per year.

- The notion of opportunity cost might explain why students watch more TV the week after exams than the week before exams. Watching TV right before an exam has a high opportunity cost, for the alternative use of time (studying) would have high value in improving grade performance. After exams, time has a lower opportunity cost.

- Say the federal government is thinking of drilling for oil at Yosemite National Park. A storm of complaints is heard. The secretary of energy says, ‘What’s all the ruckus about? There’s valuable oil under there, and the land’s not worth two bits an acre.’

In fact, the opportunity cost might be very high. If oil drilling brought lots of noise and new roads, it might spoil the park for hikers and bear watchers. The opportunity cost might not be easily measured, but the recreational value of the land is as real as is the energy value of the barrels of oil under the soil.

The Road Not Traveled Opportunity cost, then, is a measure of what has been given up when we make a decision. Consider what Robert Frost had in mind when he wrote

Two roads diverged in a wood, and I—
I took the one less traveled by,
And that has made all the difference.

What other road did Frost have in mind? An urban life? An avocation where he would not be able to write of roads and walls and birches? Imagine the immeasurable opportunity cost to all of us if Robert Frost had taken the road more traveled by.

But let us return from the poetic to the practical concepts of cost. The crucial point to grasp is this: Cost includes, in addition to explicit money outlays, those opportunity costs that arise because factors might be used in alternative ways. If my labor or capital in computer programs could have been used in coal or wheat, or even in some other person’s computer firm, then my true costs must include the best alternative opportunity costs.

Preview

We have now completed a discussion of the economic meaning of production and cost, along with the important total, average, and marginal cost concepts. The appendix pursues those issues in greater depth. In the next chapter, we show how a firm’s and an industry’s supply decisions are directly derived from their marginal cost curves.

SUMMARY

1. Total cost (TC) can be broken down into fixed cost (FC) and variable cost (VC). Fixed costs are unaffected by any production decisions, while variable costs are incurred on items like production labor or materials which increase as production levels rise.
2. Marginal cost (MC) is the extra total cost resulting from 1 extra unit of output. Average total cost (AC) is the sum of ever-declining average fixed cost (AFC) and average variable cost (AVC). Short-run average cost is generally represented by a U-shaped curve that is always intersected at its minimum point by the rising MC curve.
3. Useful rules to remember are

\[
TC = FC + VC \quad AC = \frac{TC}{q} \quad AC = AFC + AVC
\]

At the bottom of U-shaped AC, MC = AC = minimum AC.
4. Trends of costs and of productivity returns are like mirror images. When the law of diminishing returns ultimately holds, the marginal product falls and the MC curve rises. When there is an initial stage of increasing returns, MC initially falls. If all factors of production could be bought at unchanged prices and output were to show constant returns to scale, long-run marginal costs would be horizontal forever.

5. In the long run, when all fixed commitments expire and a firm is free to plan to operate any number of plants, the long-run cost curve LAC (and LTC) must be the lower-envelope frontier of best choice of plant for each level of output. If potential plant sizes are smoothly continuous, this frontier will be a smooth envelope, containing at any point a tangential short-run cost curve.

6. We can apply cost and production concepts to understand a firm’s choice of the best combination of factors of production. Firms that desire to maximize profits will want to minimize the cost of producing a given level of output. In this case, the firm will follow the least-cost rule: different factors will be chosen so that the marginal product per dollar of input is equalized for all inputs. This implies that \(\frac{MP_L}{P_L} = \frac{MP_A}{P_A} = \ldots \). This rule has the important corollary that when the price of an input falls (or rises) relative to other inputs, the employment of that factor will rise (or fall) relative to other factors of production.

7. The economic definition of costs is broader than the accountant’s. Economic cost includes not only the obvious out-of-pocket purchase of fuel and labor. It also includes the more subtle implicit or opportunity costs, such as the implicit return to labor supplied by the owner of a firm. These opportunity costs are tightly constrained by the bids and offers on competitive markets, so that price is usually close to opportunity cost for marketed goods and services. The most important application of opportunity cost arises for non-market goods—those like clean air or health or recreation—where the services may be highly valuable even though they are not bought and sold in markets.

CONCEPTS FOR REVIEW

- Total costs: fixed and variable
 \[TC = FC + VC \]
- Average cost (incremental and smoothed)
 \[AC = \frac{TC}{q} = AFC + AVC \]
- Marginal cost (incremental and smoothed)
 \[MP_L = MP_A = MP_{\text{any factor}} = \ldots \]
- Least-cost rule:
 \[\frac{MP_L}{P_L} = \frac{MP_A}{P_A} = \frac{MP_{\text{any factor}}}{P_{\text{any factor}}} = \ldots \]
- Economists’ and accountants’ cost concepts
- Opportunity costs
- Diminishing returns, rising MC
- Long-run envelope curve
QUESTIONS FOR DISCUSSION

1. Make a list of cost elements: wages, salaries, fuel, rentals, etc. Divide them into fixed and variable categories.

2. Explain the difference between marginal cost and average cost. Why should \(AVC \) always look much like \(MC \)? Why is \(MC \) the same when computed from \(VC \) as from \(TC \)?

3. To the $55 of fixed cost of Table 9-3, add $90 of additional \(FC \). Now calculate a whole new table, with the same \(VC \) as before but new \(FC = $145 \). What happens to \(MC, AVC \)? To \(TC, AC, AFC \)? Can you verify that minimum \(AC \) is now at \(q^* = 5 \) with \(AC = $60 = MC \)?

4. Explain why \(MC \) cuts \(AC \) and \(AVC \) at the bottom of their U's.

5. Explain how the long-run envelope cost curve is defined as the lower frontier of all short-run curves. Illustrate with (a) the case of a few plant sizes, and (b) the case of many and continuously varied plant sizes.

6. Relate the rising \(MC \) curve to the law of diminishing returns. Contrast the falling part of the curve with that law.

7. Consider the data in the following table, which contains a situation similar to that in Table 9-4.

(a) Calculate the \(TC, VC, FC, AC, AVC, \) and \(MC \). On a piece of graph paper, plot the \(AC \) and \(MC \) curves.

(b) Assume that the price of labor doubles. Calculate a new \(AC \) and \(MC \). Plot the new curves and compare them with those in (a).

(c) Now assume that productivity doubles (i.e., that the level of output doubles for each input combination). Repeat the exercise in (b). Can you see two major factors that tend to affect a firm's cost curves?

<table>
<thead>
<tr>
<th>OUTPUT (tons of wheat)</th>
<th>LAND INPUTS (acres)</th>
<th>LABOR INPUTS (workers)</th>
<th>LAND RENT (dollars per acre)</th>
<th>LABOR WAGE (dollars per worker)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>15</td>
<td>0</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>1</td>
<td>15</td>
<td>6</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>2</td>
<td>15</td>
<td>11</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>3</td>
<td>15</td>
<td>15</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>4</td>
<td>15</td>
<td>21</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>5</td>
<td>15</td>
<td>31</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>45</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td>15</td>
<td>63</td>
<td>12</td>
<td>5</td>
</tr>
</tbody>
</table>

8. Explain the fallacies in each of the following:

(a) Average costs are minimized when marginal costs are at their lowest point.
(b) Because fixed costs never change, average fixed cost is a constant for each level of output.
(c) Average cost is rising whenever marginal cost is rising.
(d) The opportunity cost of spilling oil in the Atlantic Ocean is zero because no one pays to sail or swim there.
(e) A firm minimizes costs when it spends the same amount on each input.

9. Say you are considering whether to fly or take the bus from Atlanta to New Orleans. The airfare is $100, and the flight takes 1 hour. Bus fare is $50 and takes 6 hours. Which is the most economical way to travel for: (a) a businessperson whose time costs $40 per hour, (b) a student whose time is worth $4 per hour, (c) you? Show how the concept of opportunity cost is crucial here.

10. Advanced problem: With the help of the adjoining graphs, explain the meaning of the following rules. First rule: If a marginal cost curve is below its associated average cost curve, it is pulling the AC curve down; if MC is above AC, it is pulling AC up; if $MC = AC$, AC must be horizontal. Second rule: If AC is a straight line, as in (a), (b), or (c), MC will be a straight line starting from the same vertical intercept point but with twice the slope of AC. [Note: This tells us how to find the MC point above or below the AC point on any nonstraight-line AC curve. At a chosen q in (d), merely draw the straight line tangent to AC; from the vertical intercept of that line, draw an MC line with twice the slope; read off from the last line the MC value at your chosen q level. Of course, you must draw two new straight lines for every different q level.]
APPENDIX: 9
Production, Cost Theory, and Decisions of the Firm

The production theory described in Chapter 8 and the cost analysis of this chapter are among the fundamental building blocks of microeconomics. A thorough understanding of production and cost is necessary for an appreciation of how economic scarcity gets translated into prices in the marketplace. In this appendix, therefore, we develop these concepts further and introduce the concept of a production-indifference curve, or isoquant.

A Numerical Production Function

Production and cost analysis have their roots in the concept of a production function. Recall that a production function is the relation showing the maximum amount of output that can be produced with various combinations of inputs. Table 9A-1 starts with a numerical example of a hypothetical, constant-returns-to-scale production function, showing the amount of inputs along the axes and the amount of output at the grid points of the table.

Along the left-hand side are listed the varying amounts of land, going from 1 unit to

<table>
<thead>
<tr>
<th>A</th>
<th>346</th>
<th>600</th>
<th>692</th>
<th>775</th>
<th>846</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>316</td>
<td>448</td>
<td>548</td>
<td>632</td>
<td>705</td>
</tr>
<tr>
<td>4</td>
<td>282</td>
<td>400</td>
<td>500</td>
<td>564</td>
<td>632</td>
</tr>
<tr>
<td>3</td>
<td>245</td>
<td>346</td>
<td>423</td>
<td>548</td>
<td>600</td>
</tr>
<tr>
<td>2</td>
<td>200</td>
<td>282</td>
<td>346</td>
<td>400</td>
<td>448</td>
</tr>
<tr>
<td>1</td>
<td>141</td>
<td>200</td>
<td>245</td>
<td>282</td>
<td>316</td>
</tr>
</tbody>
</table>

Table 9A-1 A tabular picture of a production function relating amount of output to varying combinations of labor and land inputs

When you have 3 land units and 2 labor units available, the engineer tells you your maximum obtainable output is 346 units. Note the different ways to produce 346. Do the same for 490. (The production function shown in the table is a special case of the "Cobb-Douglas production function," one given by the formula $Q = 100\sqrt{LA}$.)
6 units. Along the bottom are listed amounts of labor, which also go from 1 to 6. Output corresponding to each land row and labor column is listed inside the table.

If we are interested in knowing exactly what output there will be when 3 units of land and 2 units of labor are available, we count up 3 units of land and then go over 2 units of labor. The answer is seen to be 346 units of product. (Can you identify some other input combinations to produce \(q = 346 \)?) Similarly, we find that 3 units of land and 6 of labor produce 600 units of \(q \).

Thus, for any combination of labor and land, the production function shown in Table 9A-1 tells us exactly how much output we can produce. Remember, also, that this is the **maximum** output given engineering skills and technical knowledge available at a given point in time. Also, note that the example given in Table 9A-1 displays **constant returns to scale**: a proportional increase in both factors of production (increasing them both by a factor of 2 or \(\frac{1}{2} \) or 1.5) will increase output by exactly the same factor (2 or \(\frac{1}{2} \) or 1.5).

THE LAW OF DIMINISHING MARGINAL PRODUCT

Table 9A-1 can nicely illustrate the law of diminishing returns.

First recall that we have given the name "marginal product of labor" to the extra production resulting from 1 additional unit of labor, land being held constant. At any point in Table 9A-1, the marginal product of labor can be derived by subtracting the given number (representing product at that point) from the number on its right lying in the same row. Thus, when there are 2 units of land and 4 units of labor, the marginal product of an additional laborer would be 48, or 448 minus 400 in the second row.

By the "marginal product of land" we mean, of course, the extra product resulting from 1 additional unit of land, labor being held constant. It is calculated by comparing adjacent items in a given column. Thus, when there are 2 units of land and 4 units of labor, the marginal product of land is shown in the fourth column as 490 - 400, or 90.

We can easily find the marginal product of each of our two factors by comparing adjacent entries in vertical columns or horizontal rows of Table 9A-1.

Having defined the concept of marginal product of an input, we now can easily define the law of diminishing returns: The law of diminishing returns states that as we increase one input and hold other inputs constant, the marginal product of the varying input will, at least after some point, decline.

To illustrate this, hold land constant in Table 9A-1 by sticking to a given row—say, that corresponding to land equal to 2 units. Now let labor increase from 1 to 2 units, from 2 to 3 units, and so forth. What happens to \(q \) at each step?

As labor goes from 1 to 2 units, the level of output increases from 200 to 282 units, or by 82 units. But the next dose of labor adds only 64 units, or 346 - 282. Diminishing returns has set in. Still further additions of a single unit of labor give us, respectively, only 54 extra units of output, 48 units, and finally 42 units. You can easily verify that the law holds for other rows, and that the law holds when land is varied and labor held constant.

We can use this example to verify our intuitive justification of the law of diminishing returns—the assertion that the law holds because the fixed factor decreases relative to the variable factor. According to this explanation, each unit of the variable factor has
less and less of the fixed factor to work with. So it is natural that extra product should drop off.

If this explanation is to hold water, there should be no diminishing returns when both factors are increased in proportion. When labor increases from 1 to 2 and land simultaneously increases from 1 to 2, we should get the same increase in product as when both increase simultaneously from 2 to 3. This can be verified in Table 9A-1. In the first move we go from 141 to 282, and in the second move the product increases from 282 to 423, an equal jump of 141 units.

LEAST-COST FACTOR COMBINATION FOR A GIVEN OUTPUT

The numerical production function shows us the different ways to produce a given level of output. But which of the many possibilities should the firm use? Which way should goods be shipped or houses be built or electricity be generated? If the desired level of output is \(q = 346 \), there are no less than four different combinations of land and labor shown as \(A, B, C, \) and \(D \) in Table 9A-2.

As far as the engineer is concerned, each of these combinations is equally good at producing an output of 346 units. But the accountant, interested in keeping profits of the firm at a maximum and costs at a minimum, knows that only one of these four combinations will give least cost. Just which one will depend, of course, on the respective factor prices.

Let us suppose that the price of labor is $3 and the price of land $2. The total costs when input prices are at this level are shown in the third column of the red row of numbers in Table 9A-2. For combination \(A \), the total labor and land cost will be $20, equal to \((1 \times \$2) + (6 \times \$3)\). And costs at \(B, C, \) and \(D \) will be, respectively, $13, $12, $15. At these stated input prices, there is no doubt that \(C \) is the least costly way to produce the given output.

If either of the input prices changes, the equilibrium proportion of the inputs will also change so as to use less of the input that has gone up most in price. This is just like the substitution effect of Chapter 6's discussion of consumer demand.

Thus, if labor stays at $2 per unit but land falls to $1 per unit, the new optimal

<table>
<thead>
<tr>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>INPUT</td>
<td>COMBINATIONS</td>
<td>TOTAL</td>
<td>COST</td>
</tr>
<tr>
<td>LABOR</td>
<td>LAND</td>
<td>WHEN</td>
<td>WHEN</td>
</tr>
<tr>
<td>(L)</td>
<td>(A)</td>
<td>(P_L = $2)</td>
<td>(P_A = $3)</td>
</tr>
<tr>
<td>(A)</td>
<td>1</td>
<td>6</td>
<td>($20)</td>
</tr>
<tr>
<td>(B)</td>
<td>2</td>
<td>3</td>
<td>13</td>
</tr>
<tr>
<td>(C)</td>
<td>3</td>
<td>2</td>
<td>12</td>
</tr>
<tr>
<td>(D)</td>
<td>6</td>
<td>1</td>
<td>15</td>
</tr>
</tbody>
</table>

Table 9A-2 Inputs and costs of producing a given level of output

Assume that the firm has chosen 346 units of output. Then it can use any of the four choices of input combinations shown as \(A, B, C, \) and \(D \). As the firm moves down the list, production becomes more labor-intensive and less land-intensive.

The firm's choice among the different techniques will depend on input prices. When \(P_L = \$2 \) and \(P_A = \$3 \), verify that the cost-minimizing combination is \(C \). Show that lowering the price of land from \$3 to \$1 leads the firm to a more land-intensive combination at \(B \).
combination will be B, where more land is substituted for reduced labor and where total cost is only $57. Verify this by computing the new total expense of all other combinations and seeing that they are higher. (Pencil in missing costs in Table 9A-2.)

Exactly the same exercise can be performed for every level of output. As soon as input prices are known, the least-cost method of production can be found by calculating the costs of different input combinations and choosing the one that costs the least.

Equal-Product Curves

The common-sense numerical analysis of the way in which a firm will combine inputs to minimize costs can be made more vivid by the use of diagrams. We will take the diagrammatic approach by putting together two new curves, the equal-product curve and the equal-cost line.

Looking back at Table 9A-1, imagine how that could be turned into a smooth curve. More precisely, let us draw a smooth curve through all the points that yield $q = 346$. This smooth curve, shown in Figure 9A-1, indicates all the different combinations of labor and land that yield an output of 346 units. It could be called a "production-indifference curve" by analogy with the consumer's indifference curve of the appendix to Chapter 6. But a more expressive name would be an equal-product curve. (You should be able to draw on Figure 9A-1, as a light red curve, the corresponding equal-product curve for output equal to 490 by getting the data from Table 9A-1. Indeed, an infinite number of such equal-product contour lines could be drawn in, just as a topographical or weather map could be covered with an indefinitely large number of equal-altitude or equal-pressure contour lines.)

Equal-Cost Lines

Given the price of labor and land, the firm can evaluate the total cost for points A, B, C, and D or for any other point on the equal-product curve. The firm will minimize its

![Figure 9A-1 Equal-product curve](image)

Figure 9A-1 Equal-product curve

All the points on the equal-product curve represent the different combinations of land and labor that can be used to produce the same 346 units of output.
costs and maximize its profits when it selects that point on its equal-product curve that has the lowest total cost.

An easy visual device for finding the least-cost method of production is to construct equal-cost lines. This is done in Figure 9A-2, where the family of parallel straight lines represents a number of equal-cost curves when the price of labor is $2 and the price of land $3.

To find the total cost for any point, we simply have to read off the number appended to the equal-cost line going through that point. The lines are all straight and parallel because the firm is assumed to be able to buy all it wishes of either input at constant prices. The lines are somewhat flatter than 45° because the price of labor P_L is somewhat less than the price of land P_A. More precisely, we can always say that the arithmetic value of the slope of each equal-cost line must equal the ratio of the price of labor to that of land—in this case $P_L/P_A = \frac{2}{3}$.

Equal-Product and Equal-Cost Contours:

Least-Cost Tangency

Combining the equal-product and equal-cost lines, we can easily determine the optimal, or cost-minimizing, position of the firm. Recall that the optimal input combination comes at that point where the given output of $q = 346$ can be produced at least cost. To find such a point, simply superimpose the single red equal-product curve upon the family of black equal-cost lines, as is shown in Figure 9A-3. The firm will always keep moving along the red convex curve of Figure 9A-3 as long as it is able to cross over to lower cost lines. Its equilibrium will therefore not be at A, B, or D. It will be at C, where the equal-product curve touches (but does not cross) the lowest equal-cost line. This is, of course, a point of tangency, where the slope of the equal-product curve just matches the slope of an equal-cost line and the curves are just kissing.

We already know that the slope of the equal-cost curves is P_L/P_A. But what is the slope of the equal-product curve? Recall from Chapter 1’s appendix that the slope at a point of a curved line is the slope of the straight line tangent to the curve at the point in
SUBSTITUTING INPUTS TO MINIMIZE COST OF PRODUCTION

Figure 9A-3 Least-cost input combination comes at C

The firm desires to minimize its costs of producing a given output of 346. It thus seeks out the least expensive input combination along its red equal-product curve. It looks for the input combination that is on the lowest of the equal-cost lines. Where the equal-product curve touches (but does not cross) the lowest equal-cost curve is the least-cost position. This tangency means that factor prices and marginal products are proportional, with equalized marginal products per dollar.

question. For the equal-product curve, this slope is a kind of "substitution ratio" between the two factors, and it depends upon the relative marginal products of the two factors of production, namely, \(MP_L / MP_A \) — just as the rate of substitution between two goods along a consumer's indifference curve was earlier shown to equal the ratio of the marginal, or extra, utilities of the two goods (see the appendix to Chapter 6).\(^1\)

Least-Cost Conditions

Using our graphical apparatus, we have therefore derived the conditions under which a firm will minimize its costs of production:

1. The ratio of marginal products of any two inputs must equal the ratio of their factor prices.

\[
\text{Substitution ratio} = \frac{\text{marginal product of labor}}{\text{marginal product of land}} = \frac{\text{slope of equal-product curve}}{\text{price of labor}} = \frac{\text{price of labor}}{\text{price of land}}
\]

\(^1\)The careful reader will notice the parallel between the geometry of this section and that of the analysis of consumer equilibrium in the appendix to Chapter 6. Each equal-cost line indicates all the possible different quantities of labor and of land that the firm might buy for any given cost outlay. Each line is straight since its equation is \(TC = 2L + 3A \). In the appendix to Chapter 6, the consumer is buying goods, not factor services; otherwise the "budget line" exactly parallels the equal-cost lines we are now discussing. We can explain, similarly, why the slope of an equal-cost line equals the ratio of the two prices involved.

But note this difference: the consumer was assumed to have a fixed budget, and had but one budget line. The firm is not limited to any particular level of costs, so it must consider many equal-cost lines before discovering its least-cost equilibrium.
2. The marginal product per dollar received from the (last) dollar of expenditure must be the same for every productive factor:

\[
\frac{\text{Marginal product of } L}{\text{Price of } L} = \frac{\text{marginal product of } A}{\text{price of } A} = \ldots
\]

Relation 2 is discussed in detail in the main body of this chapter. (It could also be derived from relation 1 by transposing terms from one numerator to the other denominator, i.e., by going from \(\frac{a}{b} = \frac{c}{d}\) to \(\frac{a}{c} = \frac{b}{d}\).)

But you should not be satisfied with abstract explanations. Always remember the common-sense economic explanation which shows how a firm will redistribute its expenditure among inputs if any one factor offers a greater return for each last dollar spent on it.

SUMMARY TO APPENDIX

1. A production-function table lists, for each labor column and each land row, the output that is producible. Diminishing returns to one variable factor applied to a fixed factor can be shown by calculating the decline of marginal products in any row or column.

2. An equal-product curve depicts the alternative input combinations that produce the same level of output. The slope, or substitution ratio, along such an equal-product curve equals relative marginal products (e.g., \(MP_L/MP_A\)). Curves of equal total cost are parallel lines with slopes equal to factor-price ratios (\(P_L/P_A\)). Least-cost equilibrium comes at tangency point, where an equal-product curve touches but does not cross the lowest TC curve. There, marginal products are proportional to factor prices, with equalized marginal product per dollar spent on all factors (i.e., equalized \(MP_r/P_r\)).

CONCEPTS FOR REVIEW

- equal-product curves
- parallel lines of equal TC
- substitution ratio = \(MP_L/MP_A\)
- \(P_L/P_A\) as the slope of parallel equal-TC lines
- least-cost tangency:

\[
MP_L/MP_A = P_L/P_A \quad \text{or} \quad MP_L/P_L = MP_A/P_A
\]

QUESTIONS FOR DISCUSSION

1. Show that raising labor's wage while holding land's rent constant will steepen the black equal-cost lines and move tangency point \(C\) in Figure 9A-3 northwest toward \(B\) with the now-cheaper input substituted for the input which is now more expensive. Should union leaders recognize this relationship?

2. What is the least-cost combination of inputs if the production function is given by Table 9A-1 and input prices are as shown in Figure 9A-3, where \(q = 346\)? What would
be the least-cost ratio for the same input prices if output doubled to $q = 692$? What has happened to the "factor intensity," or land/labor ratio? Can you see why this result would hold for any output change under constant returns to scale?

3. **Advanced problem** for those trained in geometry and elementary calculus: The famous statistical equation of Senator Douglas related Q output to L labor and K capital by the Cobb-Douglas production function $Q = 1.01 L^{0.75}K^{0.25}$. Ignoring the 1.01 scale factor and identifying marginal products with partial derivatives, show that labor's relative share is necessarily given by $WL/PQ = L(W/P)Q = L(\partial Q/\partial L)Q = L(0.75L^{0.75-1}K^{0.25})/L^{0.75}K^{0.25} = 0.75$. Show also that capital's share is $K(\partial Q/\partial K)/Q = 0.25$. Instead suppose $Q = [3L^{-1} + K^{-1}]^{-1}$, a weighted harmonic mean. Verify that $MP_K = \partial Q/\partial K = [\lambda(K/L) + 1]^{-2}$, and hence capital's share, $K(\partial Q/\partial K)/Q$, declines as K increases relative to L, as a calculation shows.

4. **Advanced problem**: Using the same Cobb-Douglas production function as in problem 3 show that, if both K and L are paid their marginal products, the sum of wages and payments to capital exactly equals output. This proves the "exhaustion of product" theorem of the neoclassical economists for the Cobb-Douglas production function.
CHAPTER 10
COMPETITIVE SUPPLY AND COMPETITIVE MARKETS

Cost of production would have no effect on competitive price if it could have none on supply.

John Stuart Mill

The last two chapters analyzed the pivotal concepts of production and cost. We are now prepared to see how the cost of production determines the supply behavior of competitive firms and industries. In the first pan of this chapter, we show how the desired production level of profit-maximizing firms depends upon the cost of production. We will then see that the competitive firm's supply curve corresponds to its marginal cost curve.

After we have explored the individual firm's supply behavior, the second half of the chapter analyzes the behavior of a competitive industry and shows that the marginal cost of production plays a central role for the industry as well as for the firm. We also study how a competitive industry behaves in an efficient fashion, allocating resources so that there is no reorganization of production that can make everyone better off.

Throughout this chapter, we will see that marginal cost is not an arid piece of economic terminology. Rather, it is a central economic concept with a crucially important role to play in any society or organization trying to allocate its resources in the most efficient manner.
A. SUPPLY BEHAVIOR OF THE COMPETITIVE FIRM

This first part concentrates on the behavior of perfectly competitive firms. The central questions we address are: How much output should the firm produce given market conditions? How much wheat should Farmer Jones produce if wheat sells at $3 per bushel? How many tons of coal should Pittsburgh Coal and Coke produce if the market price of coal is $25 per ton?

In answering such questions about supply, we begin by recalling the assumptions we are making about firm behavior. First, we are analyzing perfectly competitive firms. While the essential elements of perfect competition will be described in greater detail in the next section, recall for now that a perfectly competitive firm is one that is so small relative to the market that it cannot affect the market price.

The other major assumption we will maintain is that our competitive firm maximizes profits. This means that the firm will buy inputs, select production processes, manage its operations, choose goods to produce, set its output level, and make all business decisions so that profits (the arithmetic difference between revenues and costs) are at their highest attainable level. Put differently, a profit-maximizing firm must both manage its internal operations (prevent waste, encourage worker morale, and choose efficient

<table>
<thead>
<tr>
<th>QUANTITY q</th>
<th>FIXED COST FC</th>
<th>VARIABLE COST VC</th>
<th>TOTAL COST TC = FC + VC</th>
<th>MARGINAL COST PER UNIT MC</th>
<th>AVERAGE COST PER UNIT AC = TC/q</th>
<th>AVERAGE FIXED COST PER UNIT AFC = FC/q</th>
<th>AVERAGE VARIABLE COST PER UNIT AVC = VC/q</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>55,000</td>
<td></td>
<td></td>
<td></td>
<td>85</td>
<td>55</td>
<td>30</td>
</tr>
<tr>
<td>1,000</td>
<td>55,000</td>
<td>30,000</td>
<td>85,000</td>
<td>27</td>
<td>85</td>
<td>55</td>
<td>30</td>
</tr>
<tr>
<td>2,000</td>
<td>55,000</td>
<td>55,000</td>
<td>110,000</td>
<td>22</td>
<td>55</td>
<td>27.5</td>
<td>27.5</td>
</tr>
<tr>
<td>3,000</td>
<td>55,000</td>
<td>75,000</td>
<td>130,000</td>
<td>21</td>
<td>43.33</td>
<td>18.33</td>
<td>25</td>
</tr>
<tr>
<td>3.999</td>
<td>55,000</td>
<td>104,960.01</td>
<td>159,960.01</td>
<td>39.98</td>
<td>40.000+</td>
<td>13.753</td>
<td>26.247</td>
</tr>
<tr>
<td>4,000</td>
<td>55,000</td>
<td>105,000</td>
<td>160,000</td>
<td>40</td>
<td>40</td>
<td>13.75</td>
<td>26.25</td>
</tr>
<tr>
<td>4.001</td>
<td>55,000</td>
<td>105,040.01</td>
<td>160,040.01</td>
<td>40.02</td>
<td>40.000+</td>
<td>13.747</td>
<td>26.253</td>
</tr>
<tr>
<td>5,000</td>
<td>55,000</td>
<td>155,000</td>
<td>210,000</td>
<td>60</td>
<td>42</td>
<td>11</td>
<td>31</td>
</tr>
</tbody>
</table>

Table 10-1 Cost of production for a competitive firm
This table reiterates the important cost concepts analyzed in the last chapter (see Table 9-3). We have changed units so that these now are in thousands. We also made a tiny adjustment in output to find the cost levels around the point of minimum average cost at 4000 units. The dark red marginal cost figures in column (5) are the numbers that are read off the smoothed MC curve. The light red MC numbers in column (5) between the lines are the exact MC. Note that at 4000, AC is minimized and MC = AC.
production processes) and make external decisions (buy the correct quantity of inputs at least cost and choose the optimal level of output) so that profits are at the highest possible level.

Why would a firm want to maximize profits? Profits are like the net earnings or take-home pay of a corporation. They represent the amount a firm can reinvest in new plant and equipment, use to buy other firms or make financial investments, or pay out to owners in dividends. All these actions increase the value of the firm to its owners. We see then why a firm primarily interested in serving its owners will desire to maximize its profits.¹

Competitive Supply and Marginal Cost

Before we turn to the derivation of the individual firm’s supply curve, we quickly review marginal cost.

Marginal Cost Review In Chapter 9 we first encountered the important concept of marginal cost. Recall that marginal cost is defined as the increment to total cost that comes from producing an additional unit of output. Table 10-1 repeats the basic cost table used in the last chapter. The only change we have made is to measure q in thousands of units. Take a moment to review the important concepts: total, fixed, and variable cost; marginal cost; and the different varieties of average cost.

Perfect Competition

This chapter analyzes the supply behavior of perfectly competitive firms and markets. Recall the definition of perfect competition:

Perfect competition occurs when no producer can affect the market price. More specifically, under perfect competition, there are many small firms, each producing an identical product and each too small to affect the market price. Under such conditions, each producer faces a completely horizontal demand (or dd) curve.

The world of perfect competition is the world of "price-takers," where firms produce and sell their output at given market prices. Just as most households must accept the prices that are charged by grocery stores or movie theaters, so must competitive firms accept the market prices of the wheat or oil or coal that they produce.

Using the concept of a perfect competitor, we can see how the market looks to a competitive firm. Figure 10-1 shows the contrast between the industry demand curve (the DD curve) and the dd demand curve facing a single competitive firm. Because a competitive industry is populated by a multitude of small firms, the firm’s segment of the demand curve is but a tiny segment of the curve. Graphically, the competitive firm’s portion of the demand curve is so small that, to the illiputian eye of the perfect competitor, the firm’s dd demand curve looks completely horizontal or infinitely elastic. Figure 10-1 illustrates

¹ Chapter 7 discussed situations where the divorce of ownership from control may lead firms to choose not to maximize profits, focusing instead on the firm’s sales or upon managers’ compensation. We return to this issue in Chapter 12.
how the elasticity of demand for a single competitor appears very much greater than that for the entire market.

Competitive Supply

How does a competitive firm decide on the amount that it will supply? Recall that we are concerned with the decisions of profit-maximizing firms. Clearly, then, the amount of output supplied must have a great deal to do with the costs of production. Take the supply of bicycles as an example. No sane firm would supply bicycles at a dollar a dozen, for that price would not even cover the cost of the seats. On the other hand, if bicycles were selling at $10 million apiece, a rush of businesses would enter to start up new bicycle firms. But under normal circumstances, a firm's output decision is not so obvious and will involve the marginal cost of producing output. Let's see how.

A typical perfect competitor will be able to sell any amount of output it wishes at the going market price. Under perfect competition, a profit-maximizing firm will set its production at that level where marginal cost equals price.

Why? Because the firm can always make additional profit so long as the price (which is the extra revenue brought in from the last unit sold) is greater than the extra or marginal cost which that last unit entailed. Total profit reaches its peak—is maximized—when there is no longer any extra profit to be earned by selling extra output; the last little unit the perfect competitor produces and sells is then just in balance as far as extra cost and extra revenue are concerned. What is that extra revenue? It is price per unit. What is that extra cost? It is marginal cost.

This point can be seen in the numerical example shown in Table 10-1. Assume that the market price for the good is $40 per unit. Looking at the firm's costs in Table 10-1, ask why it would not want to sell 1 unit more than 4000 units. If it did, that unit would bring a price of $40, but the marginal cost of that unit is $40.01. So the firm would lose money on the 4001st unit.

Let's go in the other direction, asking whether it would make sense for the firm to sell 1 unit less than 4000. It would save the MC on the last unit (which is $39.99), but it would lose $40 in revenue. Thus P is greater than MC, and it does not pay to reduce output. So best-profit output comes at exactly q = 4000 where P = MC.

Deriving the Firm's Supply Curve from Its MC Curve

We have now demonstrated that a profit-maximizing competitive firm will set output so that all units it is producing have marginal cost less than or equal to price and so that it is not producing units for which MC is greater than price. Hence, a competitive firm's maximum-profit equilibrium comes when it follows the rule

\[\text{Price} = \text{marginal cost} \quad \text{or} \quad P = MC \]

We can illustrate a firm's supply decision diagrammatically in Figure 10-2. This shows the firm's upward-sloping MC curve. When the market price of output is $40, the firm can consult its cost schedule in Table 10-1 and find that the production level corresponding to that marginal cost is 4000 units. Hence, for a market price of $40, the firm will wish to produce and sell 4000 units, an amount that corresponds to the intersection of the price line at $40 and the MC curve at point B in Figure 10-2. Note as well that at a production level of 4000, Table 10-1 shows that total average or unit cost is also $40, so the firm just breaks even there, with total revenues just covering total costs.

If the market price were $50, then the profit-maximizing firm would be at intersection point A in Figure 10-2. (We can calculate the loss of profit if the firm mistakenly produced at B when price was at $50 by the shaded gray triangle in Figure 10-2. This depicts the surplus of price over MC for the last few units. Draw in a similar shaded triangle above A to show the loss from producing too much.)

Alternatively, suppose the firm were faced with a market price of $35.00, shown by the horizontal d"d" line in Figure 10-2. At that price the firm has MC equal to price at point C. But note that the price is actually less than the average cost of production. Would the firm want to keep producing even though it was incurring a loss? Or would it want to shut down? We might say that the firm should in this situation
minimize its loss. Shutting down would lead to a loss of the fixed cost of $55,000. A careful calculation shows that producing at point C would produce a loss of only $20,000. Therefore, in this situation, the firm would continue to produce where price equals marginal cost because it would lose less money than if it were to shut down completely.

The general rule then is:

A profit-maximizing firm will set its output at that level where marginal cost equals price. Diagrammatically, this means that a firm's marginal cost curve is also its supply curve.

Total Cost and the Shutdown Condition

Our general rule for a firm’s supply condition leaves open one possibility—that the price will be so low that the firm will want to shut down. When would this occur? Generally, a firm will want to shut down in the short run when it can no longer cover its variable costs.

Recall that the "short run" is defined as that period of time in which certain equipment, resources, and commitments of the firms are fixed. Because of these frozen elements, a firm has certain fixed costs in the short run, costs that must be incurred at every level of output, even zero. Examples of fixed costs include bond interest, rentals, and directors' salaries.

The balance of the firm’s total cost is called variable cost. This consists of costs that vary with output. Examples are cost of materials, wages for workers on the production line, and so forth. Chapter 9 discussed all these in detail.

Returning to our firm, consider what happens as it faces lower and lower P. It has the option of producing nothing at all. How much will it then lose? With its revenue zero and all its fixed costs going on anyway, its loss would exactly equal its fixed costs.

This reasoning suggests a rule governing when the firm should shut down: When the price falls so low that total revenues are less than variable cost, the firm will minimize its losses by shutting down.

The critically low market price at which revenues just equal variable cost (or at which losses exactly equal fixed costs) is called the **shutdown point**. For prices above the shutdown point, the firm will produce along its marginal cost curve. (Why so? Because, even though the firm might be losing money, it would lose more money by shutting down.) For prices below the shutdown point, the firm will produce nothing at all, i.e., will shut down. (Why so? Because by shutting down, the firm will lose only its fixed costs. If it were to produce at the point where MC equals the
very low price, it would lose even more than fixed costs.)

Figure 10-3 shows the important shutdown and breakeven points for a firm. The breakeven point comes where price is equal to AC, while the shutdown level of output comes where price is equal to AVC. Thus the firm’s supply curve is the solid red line in Figure 10-3. It goes up the vertical axis to price corresponding to the shutdown point; jumps to the shutdown point at M', where P equals the level of AVC; then continues up the MC curve for prices above the shutdown price.

The analysis of shutdown conditions leads to the surprising conclusion that profit-maximizing firms may in the short run continue to operate even though they are losing money. Such a paradox occurs, particularly for firms that own a great deal of capital and therefore have high fixed costs, because it is often less costly to continue producing at a loss than to shut down and still be forced to pay the high fixed costs.

We have completed our analysis of the supply behavior of competitive firms. The essential point is that profit-maximizing competitive firms will decide how much to produce and sell depending upon their costs of production: the optimal level of output will be such that the marginal cost of the last unit is just equal to the price of that unit.

B. SUPPLY BEHAVIOR IN COMPETITIVE INDUSTRIES

We now move from the firm to the industry, beginning with a description of how the supply decisions of individual firms are added together to get total industry supply. We then proceed to a discussion of long-run supply and examine the implications of decreasing costs. The discussion concludes with an analysis of the efficiency of competitive markets.

Summing All Firms’ Supply Curves to Get Market Supply

Figure 6-2 showed how we add horizontally all individual demand curves to get the market demand curve. The same horizontal addition also applies to supply.

![Diagram showing supply curve](image)

Figure 10-3 Firm’s supply curve travels down the MC curve to the shutdown point

The firm's supply curve corresponds to its MC curve as long as it is covering its variable costs. Once price falls to below P*, the shutdown point, revenues no longer cover variable costs, so the firm gives up the ghost. Thus the solid red curve is the firm's supply curve.

Suppose we are dealing with a competitive market for fish. How much of this commodity will be brought to market at each different level of market price? Firm A will bring so much to market at a particular price. Firm B will bring so much at this price. Firms C, D, and so forth will also bring quantities of fish as shown by their supply curves. The total quantity that will be brought to market at a given market price will be the sum of the individual quantities that firms supply at that price. This reasoning leads to the following relationship between individual and market supplies:

To get the market supply curve for a good, we must add horizontally the supply curves of the independent producers of that good.
Figure 10.4 below illustrates this for two firms, both in the short run and for momentary supply. Recall that the firms’ momentary supply curves are defined as the inelastic supplies in a time period so short that no change in output is possible. Thus, to get the industry’s momentary supply curve $S_m S_m$, add horizontally, at the same P, all firms’ momentary supply curves $s_m s_m$. If the firms’ supply curves are all vertical, so will be the industry’s $S_m S_m$ curve.

Recall next from Chapter 8 that the short run is defined as that period of time in which variable factors of production (like materials or production labor) can be changed, but during which the firm is stuck with certain fixed commitments like capital. In the short run, then, the firm can produce more output if the price is higher, so we see the short-run supply curves for firms A and B as $s_s s_s$ in Figure 10.4. Again, to obtain the short-run supply curve for the industry, we add horizontally the individual short-run supply curves, as is shown in Figure 10.4(c).

The Long Run for a Competitive Industry
We know that firms might stay in business for a time even though they are losing a great deal of money. This would occur when losses are less than fixed costs, which is most likely when fixed costs are very high. The logic of continuing to produce while covering fixed costs helps explain why, in the business downturn in the early 1980s, many of America’s large companies—General Motors, U.S. Steel, International Harvester—stayed in business even though they incurred staggering losses in the billions of dollars.

But do such losses suggest a troubling conclusion? Might capitalism tend toward a state where chronic losses are the normal condition? For this question, we need to turn to the long run.

The shutdown point arises when firms no longer can cover their variable costs. But in the long run, all costs are variable. I can pay off my bonds, let go my managers, decide not to renew my franchise or fact-
tory lease. Thus in the long run, when all commitments are once again options, firms will produce only when price is at or above the long-run breakeven point. Consider the average cost curve (AC) in Figure 10-3. (Since this is a long-run situation, AC is long-run average costs.) Hence, price must be at or above the dd curve—the intersection must be at point M or above—for the firm to stay in business in the long run.

There is, then, a critical breakeven point below which long-run price cannot remain if I am to stay in this business. If every other firm were exactly like me, the long-run supply would dry up completely below this critical breakeven level which covers all costs of staying in business.

Now let us suppose further that entry into the industry is absolutely free in the long run, so that any number of firms can come into the industry and manage to produce in exactly the same way and at exactly the same costs as the firms already in the industry. When firms can be freely replicated, the long-run price cannot remain above this same critical breakeven point at which they all cover their long-run total costs. That is, long-run price must just cover (1) all labor, materials, equipment, taxes, and other expenses; (2) all wages payable to the identical managers at the level determined competitively by the bidding in all industries for people of such talents and industriousness; and (3) the interest yield that the firms’ owners could get on the amounts of capital that they tie up here instead of investing it elsewhere.

The long-run breakeven condition comes at a critical P where identical firms just cover their full competitive costs. Below this critical long-run P, firms would leave the industry until P had returned to the critical equilibrium level. At higher than this long-run P, new firms would enter the industry, replicating what existing firms are doing and thereby forcing market price back down to the long-run equilibrium P where all competitive costs are just covered.

Thus, as Figure 10-3 shows, the long-run equilibrium condition of a competitive market with free entry and exit is as follows:

When an industry is supplied by competitive firms with identical cost curves, and when firms can enter and leave the industry freely, the long-run equilibrium condition is that price equals marginal cost equals the minimum average cost point for each identical firm. Thus:

$$P = MC = \text{minimum } AC = \text{breakeven price}$$

Figure 10-5 shows the long-run supply curve for an industry. If this industry uses general factors, such as labor, that can be attracted from the vast ocean of other uses without affecting the overall level of wage rates, we get the case of constant costs as shown by the horizontal $S_{L}S_{L}$ supply curve.

By contrast, suppose the labor readily attracted from other industries must be applied to fixed factors specific to this industry alone—e.g., rare vineyard land for the wine industry or scarce beachfront prop-
erties for ocean swimming. Then higher demand for wine or swimming must intersect a rising supply curve, shown as $S_L'S_L'$ in Figure 10-5.

Why must the long-run supply curve of industries with specific factors be rising? Because of the law of diminishing returns. To take the case of the rare vineyard land, varying labor, applied to fixed land, produces smaller and smaller increments of wine products; but each dose of labor costs the same in wages—and, hence, MC of wine rises. This long-run rising MC means the long-run supply curve must be rising.

An interesting phenomenon occurs in industries with rising long-run MC. In such cases, owners of productive factors peculiar to this industry—vineyards, beachfront property, ski mountains, productive oil fields—will earn a higher income from their properties as the industry expands. (This return to scarce resources will be examined in Chapter 14, where such earnings will be identified as “rents.”)

What can we conclude about the long-run profitability of competitive capitalism? While no precise conclusions can be drawn, we may note that the forces of competition tend to push firms and industries toward a zero-profit long-run state. Those industries that are profitable tend to attract entry of new firms, thereby driving down prices and reducing profits toward zero. By contrast, those industries which are suffering losses tend to repel firms, as firms seek industries with better profit opportunities. Prices and profits then tend to rise. The long-run equilibrium hence is one with no pure profits.

But note that we are discussing economic profits, that is, profits after all implicit and opportunity costs are accounted for. This proviso is especially important when we examine the profits of today’s large corporations. Recall from Chapters 7 and 9 that a substantial amount of the funds in a publicly owned company is contributed by the stockholders (mainly through retained earnings). The zero-profit condition should clearly hold only after allowing for the appropriate cost of capital on shareholders’ invested funds. Once we have taken into account that the company’s shareholders expect a 6 or 8 or 10 percent real return on their equity capital, then a competitive firm should in the long run make zero economic profits. And, as we shall see in Chapter 17, American corporations have earned on average no more than their cost of capital over the last two decades.

Decreasing Costs and the Breakdown of Perfect Competition

At the beginning of this century, textbooks used to supplement the cases of horizontal and upward-sloping supply curves with a third case in which marginal costs of the firms were falling rather than rising. This was thought to create a long-run supply curve for the competitive industry that sloped gently downward.

Today, we know such reasoning is incorrect. If we review our argument of page 196 (which tells us why a profit-maximizing firm will want to produce where $MC = P$), we find the competitive argument fails completely in the case where the firm’s MC declines with greater output, i.e., when the firm’s MC curve is downward-sloping. For, if you move to the right of a point on a falling MC curve, you find that your additional price per unit is in excess of the now lower MC. Hence, in the case of decreasing marginal cost, the perfectly competitive firm can increase its profits indefinitely by expanding its output.

Under decreasing marginal cost, the first firm to get a head start will find its advantage increasing the larger this firm grows. Other firms must contract their outputs, resulting in a competitive disadvantage as they are forced to travel back up their falling MC curves.

What is the result? Under persisting decreasing costs for the firms, one or a few of them will so expand their outputs as to become a significant part of the market for the industry’s total Q. We then end in one of the following three cases:

1. A single monopolist who dominates the industry
2. A few large sellers who together dominate the industry and who we will call “oligopolists”
3. Some kind of imperfect competition that, either in a stable way or in a series of intermittent price wars, represents an important departure from the economist’s model of “perfect” competition
The case of decreasing costs is not an isolated phenomenon. Numerous detailed econometric and engineering studies confirm that a wide range of manufacturing industries show declining average costs—their \(AC \) curves are more like elastic demand curves than like U-shaped cost curves. The case of the U-shaped cost curves, with the bottom of the \(U \) coming at a negligible percent of industry output, appears to hold mainly in agriculture. Given the prevalence of decreasing \(AC \) in many industries, we should not be surprised to find that perfect competition is the exception rather than the rule outside agriculture.

The case of decreasing costs is of great importance to economics. Once cost curves are seen to be generally decreasing, we see the role that imperfect competition plays.

THE EFFICIENCY OF COMPETITIVE MARKETS

We have now completed our basic analysis of how competitive markets function, of the way supply and demand solve the basic economic problems in a market economy. The appendix to this chapter provides a number of cases of supply and demand in competitive markets—including constant-cost industries, inelastic supply, backward-bending supply, and shifts in supply. These cases will help illustrate the analytical power and versatility of our supply-and-demand theory.

In this final section, we go beyond the descriptive analysis of the determinants of price and quantity in competitive markets to ask how well these markets perform. Do competitive markets fail to satisfy people's economic needs and desires? Or do they deserve high grades in terms of using society's scarce resources to provide high living standards?

To answer these questions, we proceed as follows: First, we review the meaning of efficiency, which will turn out to be the key concept in analyzing the performance of competitive markets. We then turn to see how competitive markets behave in a simplified economy of identical individuals. Finally, we turn to the realistic case of an economy with many goods, consumers, and firms. At the end of this section, important qualifications concerning competitive markets are presented as a reminder that—however elegant and ideal perfect competition may be—the market economy of the 1980s is a blend of competitive and monopolistic forces.

The Concept of Efficiency

We have seen how competitive markets grind out thousands of prices and quantities as supply and demand interact in the marketplace. We have looked behind these forces in this and earlier chapters to try to understand what forces determine supply and demand. From Chapter 6, we found that marginal utility determines how much consumers will pay for different quantities of a commodity. And in the early pages of this chapter, we saw that the supply curve for a commodity reflects the horizontally summed marginal cost curves of the supplying firms.

But the critical question for those judging a competitive economy—and perhaps thinking whether to turn production over to the government or to a cooperative movement—is, How efficient is such an outcome? Is society getting much guns and butter for a given amount of inputs? Or is the butter melting on the way to the store, while the guns have crooked barrels?

To answer this we must introduce the concept of *allocative efficiency* (or efficiency, for short). An economy is efficient if it is organized so as to provide the consumers the largest possible combination of commodities, given the resources and technology of the economy. More precisely:

Allocative efficiency occurs when no possible reorganization of production can make anyone better off without making someone else worse off. Under conditions of allocative efficiency, therefore, one person's utility can be increased only by lowering someone else's utility.\(^2\)

We can think of the concept of efficiency intuitively. One clear example of inefficiency occurs when society is inside its production-possibility frontier. If we move out to the PPF, no one need suffer a decline in utility.

\(^2\)This concept of efficiency is also called "Pareto efficiency," after Vilfredo Pareto (1848–1923), the Italian economist who first devised the concept.
Efficiency of Competitive Equilibrium

Let us examine the performance of a competitive economy in terms of the standard of allocative efficiency. We begin with a simplified example to illustrate the general principles.

Consider an idealized situation where all individuals are identical. Further simplify by assuming: (a) Each person works at growing food. Moreover, as leisure hours dwindle, each additional hour of work becomes increasingly tiresome. (b) Each extra unit of food consumed brings diminished marginal utility (MU). (c) Because the food production takes place on fixed plots of land, the law of diminishing returns tells us that each extra minute of work brings less and less extra food.

Figure 10-6 represents the outcome for such a simplified competitive market. When we add the identical supply curves of our identical farmers, we get the upward-sloping MC curve. We learned in this chapter that this is also the industry's supply curve (hence note that Figure 10-6 shows MC = SS). In addition, we see the downward-stepping MU = DD curve for food in Figure 10-6. This DD curve is the horizontal summation of the identical individuals' marginal utility and demand-for-food curves.

The intersection of the SS and DD curves provides the competitive equilibrium for food. At point E, farmers supply just what consumers will purchase. Each person will be laboring up to the critical point where the declining marginal-utility-of-consuming-food curve intersects the rising marginal-cost-of-growing-food curve.

A careful analysis of this competitive equilibrium will show a remarkable truth: The competitive outcome has allocative efficiency. More precisely, at competitive equilibrium point E in Figure 10-6, the representative consumer will have higher utility than for any other feasible allocation of resources. This is so because at competitive equilibrium E, the marginal utility of the consumed good (MU) equals the price (P), which in turn equals the marginal cost of producing the good (MC). As the following three-step process shows, if MU = P = MC, then the allocation is efficient.

1. P = MU. Consumers choose food purchases up to the amount P = MU. As a result, every person is gaining P utils of satisfaction from the last unit of food consumed.
2. P = MC. As producers, each person is supplying sweaty labor up to the point where the price of food

3To simplify the analysis, we adjust our utility yardstick so that the marginal utility of an additional hour of leisure replacing an hour of work is always constant (say, having 10 utils per hour of increased leisure). If we go further and define $1 as the value of 1 unit of leisure, we can express all prices in these dollar-units.
exactly equals the MC of the last unit of food supplied (the MC here being the cost in terms of the utility of leisure forgone and the disutility of sweaty labor that is needed to produce the last unit of food). To repeat, the price is equal to the utils of satisfaction lost by working that last bit of time needed to grow that last unit of food.

3. Putting these two equations together, we see that $MU = MC$. This means that the utils gained from the last unit of food consumed exactly equals the utils lost from the sweaty labor required to produce that last unit. It is exactly this condition—that the marginal gains to society from the last unit consumed equal the marginal costs to society of that last unit produced—which guarantees that a competitive equilibrium is efficient.

Consumer Surplus

An alternative way to understand the efficiency of competitive markets is through the concept of consumer surplus. Recall from Chapter 6 that consumer surplus is the difference between the amount that a consumer would be willing to pay for a good and the amount actually paid for that good. Clearly an economy is performing well when it generates much consumer surplus, and an efficient situation is one in which the maximum amount of consumer surplus is squeezed out of the system.

Figure 10-6 shows the consumer surplus at E as the red shaded area between the MU line and the MC line. Each slab represents the difference between the MU of that unit and the MC (in terms of utility lost from sweaty work) of producing that food unit. At point E, the total surplus from the economy is maximized (that is, the red area is maximized).

Indeed, we can also see why any point other than the competitive equilibrium point E in Figure 10-6 will be inefficient. Assume that, by some mistake, the level of output rose from E to the level indicated by the thin line at F. Because the MC curve is above the MU curve for outputs beyond E, people will be putting in more sweaty labor and losing more from that labor than they will be gaining from extra food consumption. The dark gray area between the MC and MU curves and between E and line FF is a measure of the loss in consumer welfare resulting from too high a level of output.

Equilibrium with Many Markets

Let us now turn from parables about identical farmer-consumers. What about an economy populated by millions of different firms, hundreds of millions of people, and endless numbers of commodities? Can a perfectly competitive economy still achieve allocative efficiency in such a situation?

Qualifications The answer is, "Yes," or better still, "Yes, if." The most complex competitive economy is efficient if certain conditions are met: atomistic competition, true demand curves, and no externalities.

First, the markets must be perfectly competitive; we must rule out monopolies and oligopolies. As the next chapter will show, when imperfect competition reigns, prices will be too high and output will be too low.

Second, we must rule out cases where people's demand curves deviate from true utility. That is, don't apply the theory to heroin consumption. Or, if you believe that television advertising has manipulated consumers into demanding worthless gadgets that don't deserve to have the word "utility" applied to them, don't apply the theory to that area.

Third, we must rule out externalities. If some firms pour dioxin or arsenic into the local dump and do not pay for the social cost of that activity, then we have an oversupply of dioxins and other such commodities. In this case, the price equals the firm's marginal costs but not society's marginal costs. So, as we will see in Chapter 19, perfect competition doesn't behave efficiently when uncorrected spillovers take place.

If there remains a group of goods and industries—say, shoes, beef, or bowling—where there are many reasonably informed consumers, many mutually competing producers, and negligible externalities, then you may hope to achieve efficiency by means of market pricing along perfectly competitive principles.

Market Synthesis Now turn to Figure 10-7 to see how a competitive system does bring out a balance
between utility and cost for a single commodity with nonidentical firms and consumers.

On the left, we add horizontally the demand curves for all consumers to get the market DD curve in the middle. On the right, we add all the separate firms' MC curves to get the industry SS curve in the middle.

Note what the equilibrium price at the E intersection achieves: it gives people on the left what they are willing to purchase of the good at the price reflecting efficient social MC. On the right, we see how the equilibrium market price does allocate production most efficiently. (That is, the gray area under SS in the middle represents the minimized sum of gray cost areas on the right.)

One of the key points to understand is that each firm is producing output at $MC = P$. Production efficiency is achieved because there is no reorganization of production that would allow the same level of industry output to be produced at lower cost. (Note also that firm C is not producing at all. Is this efficient? Is this fair? Question 7 at the end of this chapter addresses these issues.)

The perfectly competitive market is a device for synthesizing (a) the willingness of people possessing dollar votes to pay for goods as represented by demand with (b) the marginal costs of those goods as represented by supply. Under ideal conditions, the outcome guarantees allocative efficiency, in which no consumer's utility can be raised without lowering another consumer's utility.

Many Goods A final situation would be where there are many consumer goods. A real economy has not only food, but also clothing, movies, concerts, vacation trips, haircuts, and many other commodities. How does our analysis apply when consumers must also choose among many products?

The principles are exactly the same, but now we add one further condition: that utility-maximizing consumers spread their dollars among different goods until the marginal utility of the last dollar is equalized for each good consumed. In this case, as long as the three qualifications discussed in the last subsection are met, we determine that a competitive economy is
efficient with a multitude of goods and factors of production.

In a multiproduct and multifactor world, when individual and social costs and demands coincide, a perfectly competitive economy is efficient. Each industry must balance MC and MU. If movies have two times the MC of hamburgers, then the P and the MU of movies must also be twice those of hamburgers. Only then will the MUs, which are equal to the Ps, be equal to the MCs. Thus by equating price and marginal cost, competition guarantees that an economy can attain allocative efficiency.

We must emphasize that our conclusion about the efficiency of perfect competition does not depend on any of the simplifying assumptions discussed here. It is a general conclusion subject only to the three qualifications discussed above.

The Central Role of Marginal-Cost Pricing

This chapter has stressed the importance of competition and marginal cost in attaining an efficient allocation of resources. But the centrality of marginal cost extends far beyond perfect competition. The idea that the marginal benefit of an action should equal its marginal cost is a vital concept for any society or organization trying to make the most effective use of its resources—whether that entity is a capitalist or socialist economy, a profit-maximizing or not-for-profit corporation, a university or a church, or even a family.

What is the essential role of marginal cost in a market economy? It is this: Only when prices are equal to marginal costs is the economy squeezing the maximum output from its scarce resources of land, labor, and capital. Only when each firm has its own marginal cost equal to each other firm’s MC—as will be the case when each MC has been set equal to a common price—will the industry be producing its total output at minimum total cost. Only when price is equal to marginal cost for all firms will society be out on its production-possibility frontier and not inefficiently inside this frontier.

The use of marginal cost as a benchmark for efficient resource allocation is as applicable to a communist, socialist, or fascist society as to a capitalistic society. Unless wheat cultivation has been pushed in different parts of the Soviet Union so as to equalize marginal costs (including transportation), the planners there will fail to achieve the abundance of wheat and other goods that could be theirs with a more efficient allocation of resources. Given such a hardheaded result, it is not surprising to learn from recent debates in Soviet economic journals that they are considering ways to use marginal costs in their economic decisions.4

Because marginal cost has this efficiency property, it can with some care be used as a yardstick to detect inefficiency in any organization or society. Even if perfectly competitive industries did not exist at all, we would still derive great benefit from defining and studying the concept of marginal cost.

Two Cheers for the Market, but Not Three

But we must not leave the subject of efficient pricing without a warning. We have not proved that laissez-faire with perfect competition maximizes the greatest good for the greatest number. We have not proved that it produces a maximum of social utility. We have not proved that it results in the best attainable level of social welfare.

Why not? Because people are not equally endowed with purchasing power. Some are very poor through no fault of their own. Some are very rich through luck or inheritance rather than skill or talent. So the weighting of dollar votes, which lie behind the individual demand curves on the left in Figure 10-7, is not necessarily equitable or even tolerable.

For Maximal Bread Alone? How does a modern society respond to the tension between efficiency and fairness? Is society satisfied with outcomes where the maximal amount of bread is produced? Or will modern democracies take loaves from the wealthy and pass them out to the poor? And if they do, what residual role remains for the market mechanism to play?

4The Soviet mathematician, Academician L. V. Kantorovich, shared the 1975 Nobel Prize in economics for his original and deep research into the use of optimal pricing mechanisms in a centrally planned economy. Chapter 22 explores this topic further.
Will society want to have the maximal bread produced out of which to distribute a small fraction to the poor? Or will society tolerate a large reduction in the total bread output in order to ensure a more equal distribution of bread consumption? These issues—of the importance of the distribution of income and consumption, as well as the tradeoffs between equality and efficiency—are ones that will occupy us at length in Parts Three and Four.

This completes our discussion of the relationship between marginal cost and industry supply, and of marginal-cost pricing in its relationship to efficient allocation of resources. In the next chapter, we extend our analysis by examining the way monopolists behave, the inefficiencies they cause, and public-policy remedies for monopoly.

SUMMARY

A. Supply Behavior of the Competitive Firm

1. A perfectly competitive firm is one that can sell all the output it wants at the going market price. Competitive firms are assumed to maximize their profits (or minimize their losses). To maximize profits, the competitive firm will choose that output level at which price equals the marginal cost of production, i.e., \(P = MC \). Diagrammatically, the competitive firm's equilibrium will come where the rising \(MC \) curve intersects its horizontal demand curve.

2. Variable (or avoidable) costs must be taken into consideration in determining a firm's short-run shutdown point. Below some critical shutdown point, the firm will not even recover in revenues the variable cost that could be saved completely if it shut down. Rather than end up losing more than its fixed cost, it will shut down and produce nothing when price falls below the shutdown price.

3. A competitive industry's long-run supply curve, \(S_L S_L \), must take into account the entry of new firms and exodus of old ones. In the long run, all the commitments of any firm will expire. It will decide to stay in business only if price at least covers all its long-run costs. These costs may be "explicit" out-of-pocket payments to labor, lenders, material suppliers, or landlords; or opportunity costs, such as implicit returns on the property assets owned by the firm (and whose opportunity costs are measured by what they will yield in other equally risky uses).

B. Supply Behavior in Competitive Industries

4. The rising \(MC \) curve of each firm is its supply curve. To obtain the supply curve of a group of independent competitive firms, we add horizontally their separate supply curves. The supply curve of the industry hence also represents the marginal cost curve for the competitive industry as a whole.

5. In the long run, when firms are free to enter and leave the industry, and where no one firm has any particular advantage of skill or location, competitors will compete
away any excess profits earned by existing firms in the industry. So, just as free exit means P cannot fall below the breakeven point. Free entry means P cannot persist above that point in long-run equilibrium. Where an industry can expand by replication without pushing up the prices of any factors peculiar to it or used in especially large proportions by it, the resulting long-run supply curve will be horizontal. More likely, any but the smallest industry will generally use some factors of production in large enough amounts to force up their prices slightly. As a result, the long-run supply curve of a competitive industry will slope upward, at least gently.

6. When firms' marginal costs are declining, and firms enjoy decreasing costs as output increases, marginal cost curves cannot serve as supply curves. With decreasing MC, competitive firms could increase their profits by expanding output indefinitely, so one or a few firms will tend to expand and the remaining firms will tend to contract. Thus, forever-decreasing cost curves lead to destruction of perfect competition.

7. The analysis of competitive markets sheds light on the efficient organization of a society. Allocative efficiency occurs when there is no way of reorganizing production and distribution such that everyone's satisfactions can be improved. A different way of defining allocative efficiency is to say that no single individual can be made better off without making another individual worse off.

8. Under ideal conditions, a competitive economy attains allocative efficiency. This occurs because of a three-step condition: (a) First, when consumers buy goods in markets, they buy that amount such that the marginal utility just equals the price. (b) But when competitive producers supply goods, this chapter shows how the output is chosen so that marginal cost just equals price. (c) Since $MU = P$ and $MC = P$, it follows that $MU = MC$. Thus the social cost of producing a good under competition just equals its marginal-utility valuation.

9. Ideal competitive markets must meet three tests before they are socially optimal. First, there must not be any imperfect competition—no producers should be able to affect the price of output. Second, there must be no spillover effects or externalities—processes where one firm imposes a social cost (or causes a benefit) without the affected party being compensated (or paying). Finally, for a competitive outcome to be optimal, the distribution of dollar votes must correspond to the society's concepts of justice. Competitive markets by themselves cannot ensure that the resulting distribution of income and consumption corresponds to the society's ethical ideals.

CONCEPTS FOR REVIEW

- marginal cost
- characteristics of perfect competition
- $P = MC$ as maximum-profit condition
- firm's SS supply curve and its MC curve
- breakeven point where $P = MC = AC$
- shutdown point where $P = MC = AVC$
- summing SS curves to get SS
- decreasing costs and the breakdown of competition
- long-run zero-profit condition
- horizontal and rising S_LS_L
- allocative (Pareto) efficiency
- conditions for allocative efficiency:
 - $MU = P = MC$
- efficiency of competitive markets
- three qualifications on efficiency of perfect competition
QUESTIONS FOR DISCUSSION

1. Explain why each of the following statements about profit-maximizing competitive firms is incorrect. Restate each one correctly.
 (a) A competitive firm will produce output up to the point where price equals average variable cost.
 (b) A firm's shutdown point comes where price is less than minimum average cost.
 (c) A firm's supply curve depends only on its marginal cost. Any other cost concept is irrelevant for supply decisions.
 (d) The \(P = MC \) rule for competitive industries holds for upward-sloping, horizontal, and downward-sloping MC curves.

2. Why would a firm ever supply goods at a loss?

3. One of the most important rules of economics, business, and life is: "Let bygones be bygones." This means that fixed costs (which are bygone in the sense that they are unrecoverably lost) should be ignored when making decisions. Only future costs, involving marginal and variable costs, should count in making rational decisions.

 To see this, ask the following: What is the profit-maximizing level of output for the firm in Table 10-1 if price is $40 while fixed costs are $0? $55,000? $100,000? $1,000,000,000? Minus $30,000?

 How does the bygones rule apply to the price you should ask for your house as compared to the price you paid?

4. Examine the cost data shown in Table 10-1. Calculate the supply decision of a profit-maximizing competitive firm when price is $21, $40, and $60. What would the level of total profit be for each of the three prices? What would happen to exit or entry of firms in the very long run at each of the three prices?

5. For the cost data shown in Table 10-1, calculate the price elasticity of supply between \(P = 40 \) and \(P = 40.02 \) for the individual firm. If there are 2000 firms identical to that shown in Table 10-1, construct a table showing the industry supply schedule. What is the industry price elasticity of supply between \(P = 40 \) and \(P = 40.02 \)?

6. Consider a world where goods are allocated by ideal planning rather than by markets. Assume that the planners wish to maximize the total consumer surplus (shown as the light red slabs in Figure 10-6); in addition, however, the planners wish to allow consumers to have free choice, so they set planning prices and allow consumers to pick their consumption bundles. Show why the rule of \(P = MU = MC \) holds in such an idealized planned economy.

7. Examine Figure 10-7 to see that competitive firm C is not producing at all. Explain the reason why the profit-maximizing (or loss-minimizing) output level for firm C is at \(q_C = 0 \). What would happen to total industry cost of production if firm C produces 1 unit while firm B produces 1 less unit than the competitive output level?

 Say that firm C is "Mom and Pop's" grocery store. Why do chain grocery stores A and B drive C out of business? How do you feel about keeping C in business? What would be the impact of legislation that divided the market in three equal parts between "Mom and Pop's" store and chain stores A and B?

8. Interpret this dialogue. A: "How can competitive profits be zero in the long run? Who'll work for nothing?" B: "It is only excess profits that are wiped out by competition. Managers get paid for their work; owners get a normal return on capital in competitive long-run equilibrium—no more, no less."
9. **Advanced problem**: A firm can generate power from two generators; the newer one has lower \(MC \) at first. Show that only at peak loads should the firm use the older generator, only after the new generator's \(MC \) rises above the beginning \(MC \) of the older generator. At high loads, it should charge high \(P \), equal to the common \(MCs \) of the two.

10. **Advanced problem**: Interpret the accompanying diagrams. *(a)* The first three depict Adam Smith's labor theory of value. Each 1 hour's labor catches 1 beaver; each 2 hours' labor catches 1 deer. Long-run supply curves are constant or horizontal, and the production-possibility frontier is a straight line, with relative prices or exchange values set by embodied labor requirements of 2 to 1. *(b)* The second three diagrams depict a case where scarce cornland and diminishing returns (to labor producing corn) destroy the labor theory of value and produce cornland rent. As people demand more corn, the corn industry moves up its rising \(MC \) or \(S,S_1 \) curve. The rising corn receipts are divided between variable labor costs (the dark gray area under the \(MC \) curve) and competitively bid-up land rent (the light red area, often called "rent" or "producer surplus"). By contrast, since haircuts need labor only, \(S_hS_h \) is horizontal.

Describe why Smith's labor theory of value is correct in his beaver-deer economy.

* Explain why the addition of a fixed factor, land, destroys Smith's (or Marx's) labor theory of value. Further describe the efficient distribution of income between wages and rent in the two economies.

Finally, explain why the PPFs are linear for Smith's economy and concave for Ricardo's economy.

SMITH'S LABOR THEORY OF VALUE

- **Beaver**
 - \(P_1 \)
 - \(S_1 \) to \(E_1 \) to \(Q_1 \)

- **Deer**
 - \(P_2 \)
 - \(S_2 \) to \(E_2 \) to \(Q_2 \)

RICARDO'S DIMINISHING RETURNS

- **Corn**
 - \(P_c \)
 - \(S_c \) to \(E_c \) to \(Q_c \) and Rent

- **Haircuts**
 - \(P_h \)
 - \(S_h \) to \(E_h \) to \(Q_h \)

- **Corn**
 - \(P_c \)
 - \(S_c \) to \(E \) to \(Q_c \)
APPENDIX: 10
Special Cases of Competitive Markets:
Supply and Demand at Work

Chapters 5 through 10 have laid out the foundations of competitive, supply-and-demand analysis. This treatment put together the building blocks of utility and demand analysis for consumers, along with production, cost, and supply behavior for competitive firms. Supply-and-demand analysis is the most important item in the economist’s tool kit, and it will reappear in many guises in the chapters that follow.

Before moving on to study imperfect competition, however, we pause in this appendix to probe more deeply into supply-and-demand analysis. We first consider certain general propositions about competitive markets and then continue with some special cases. A careful study of this appendix will pay valuable dividends in understanding the functioning of competitive markets.

GENERAL RULES

We begin with two general rules about the impact of demand and supply shifts in competitive markets. These rules apply to virtually any competitive market, whether it is for codfish, brown coal, Douglas fir, Japanese yen, IBM stock, or petroleum. In the propositions that follow, we investigate the impact of shifts in supply or demand upon the price and quantity bought and sold. Recall always that by a shift in demand or supply we mean a shift in the demand or supply curve or schedule, not a movement along the curve.

Proposition 1. (a) As a general rule, an increase in demand for a commodity (supply being constant) will raise the price of the commodity. (b) For most commodities, an increase in demand will increase the quantity demanded as well. A decrease in demand will have the opposite effects.

We will see that Proposition 1(b) is phrased cautiously because the case of “backward-bending supply” (see Case 4 below) provides an exception to the rule that increased demand raises quantity demanded.

Proposition 2. An increase in supply of a commodity, demand being constant, will almost certainly lower the price and increase the quantity bought and sold. A decrease in supply has the opposite effects.

These two central propositions summarize the qualitative effects of shifts in supply and demand. But the quantitative effects on price and quantity depend upon the exact shapes of the supply and demand curves. In the cases that follow, we will see the response for a number of important cost and supply situations.

CASE 1. CONSTANT COST

Imagine a manufactured item, like pencils, whose production can be easily expanded by merely duplicating factories, machinery, and labor. To produce 100,000 pencils per
CASE 2. INCREASING COSTS AND DIMINISHING RETURNS

Suppose an industry like wine-grape growing requires a certain kind of soil and location (sunny hillsides, etc.). Such sites are limited in number. The annual output of wine can be increased to some extent by adding more labor and fertilizer to each acre of land. But as we saw in Chapter 8, the law of diminishing returns will begin to operate if variable factors of production, like labor and fertilizer, are added to fixed amounts of a factor like land. Why is that? Because each new addition of labor and fertilizer has a smaller proportion of land to work with. By the same token, each fixed unit of land has more labor and fertilizer cooperating with it. Therefore productivity and earnings from the land are higher.

The result: Getting extra amounts of wine sends total cost up more than proportionately. Therefore the cost per unit of wine is rising. The supply curve rises because at higher market prices, more will be supplied.

Figure 10A-2 shows the rising supply curve SS. What will be the effect on prices of
an increase in demand? How will an increase in demand affect quantity supplied? The figure illustrates the answers.

CASE 3. COMPLETELY INELASTIC OR FIXED SUPPLY AND ECONOMIC RENT

Some goods or productive factors are completely fixed in amount, regardless of price. There is only one *Mona Lisa* by da Vinci. Nature’s original endowment of the “natural and indestructible” qualities of land can also often be taken as fixed in amount. Raising the price offered for land cannot create more than four corners at State and Madison in Chicago. Highly paid artists and business executives who love their work would continue to work at their jobs even at low pay.

In all such cases the supply curve is vertical in the relevant region. In Figure 10A-3, a higher price cannot elicit an increase in \(Q \). Nor is the higher price necessary to coax out the existing \(Q \); for even at lower prices the same \(Q \) will still be forthcoming. If the commodity is land, then our example shows that the supply of land is fixed no matter what its rent. Because the same amount of land is forthcoming no matter what its price, the price of such a factor of production is called a “pure economic rent.”

If demand now shifts upward, the whole effect is to raise price. Quantity supplied is unchanged. And the rise in price exactly equals the upward shift in demand. (More on this topic will be found in the section on rents and costs in Chapter 14.)

Likewise, when a tax is placed upon the commodity, its whole effect is to reduce the
price received by the supplier by exactly the amount of tax. The tax is completely paid by the supplier (say, the landowner); the tax is "shifted" completely to the supplier, who absorbs it all out of economic rent. The consumer buys exactly as much of the good or service as before and at no higher price.

CASE 4. BACKWARD-BENDING SUPPLY CURVE

Firms in poor regions often noted that when they raised the wages of workers, they received less rather than more labor. When the wage was doubled, instead of working 6 days a week for this minimum of subsistence, the workers might go fishing for 3 days. The same has been observed in high-income countries. As improved technology raises real wages, people feel that they want to take part of their higher earnings in the form of more leisure and less work. Chapter 6’s discussion of income and substitution effects explained why a supply curve might bend backward. Chapter 15 explores the empirical evidence on this issue for labor supply.

Figure 10A-4 shows how a supply curve for labor might appear. At first it rises as higher wages coax out more labor, but beyond point T higher wages lead people to work fewer hours and to take more leisure. An increase in demand does increase the price of labor, as was stated in Proposition 1 at the beginning of this appendix. But note why we were cautious to add "for most commodities" to Proposition 1(b), for now the increase in demand decreases the quantity of labor supplied.

Verification of backward-bending supply can be found in many areas. One of the most important came when many oil-rich countries curbed their production of oil after
the price of oil quadrupled in the early 1970s. The higher oil prices in effect induced countries like Kuwait to move from point E to point E' in Figure 10A-4.

CASE 5. SHIFTS IN SUPPLY

All the above discussions dealt with a shift in demand and no shift in supply. To analyze Proposition 2, we must now shift supply, keeping demand constant. This is done in Figure 10A-5.

If the law of downward-sloping demand is valid,\(^1\) then increased supply must send us down the demand curve, decreasing price and increasing quantity. You may verify, by drawing diagrams, the following quantitative corollaries of Proposition 2:

(a) An increased supply will decrease P most when demand is inelastic.
(b) An increased supply will increase Q least when demand is inelastic.

What are common-sense reasons for these rules? Illustrate with cases of elastic demand for autos and of inelastic demand for electricity.

\(^1\)In Chapter 6 we found the legitimate exception to the law of downward-sloping demand in the case of the Irish peasants who might be forced by higher potato P to consume more of such necessities. Another exception is provided by items such as diamonds or Gucci shoes, which are valuable not so much for their intrinsic qualities as for their "snob appeal" and expensiveness, and which may therefore fall off in demand if their price is cut. What appears to be another exception is the case in which a short-run rise in P may make people expect future P to be still higher, thus causing them to buy more rather than less now and thereby leading to destabilizing speculation; but this is more properly interpreted as a case where the whole demand curve is dynamically shifting, rather than as a northeast move along a fixed DD curve.
CASE 6. DYNAMIC COBWEB

A famous economic case shows that tools of supply and demand are not restricted to handling static and unchanging situations but can also be used fruitfully to analyze dynamic situations of change.

Suppose that a competitive crop—let us take the conventional example of hogs for pork production—is auctioned off in the market in the usual way so as to fetch the P given by running vertically up from any given Q to the DD demand.

But now we want to make the supply side dynamic. Suppose farmers look at today’s P and use it to determine the Q they will bring to market in the next period. Specifically, if today’s P is high, they begin to breed many new pigs, to feed and fatten them, and finally to bring them to market some months from now. The farmers do have an upward-sloping supply curve, but it acts with a time lag and connects the next period’s Q with this period’s P. (We define a period as the time involved in producing hogs.)

If the market price were at the intersection of SS and DD in Figure 10A-6, this would represent an unchanging equilibrium in exactly the same way that it did in the nondynamic cases. Today, tomorrow, and in the period after that, the farmers would be on their SS curve producing the amount shown by E, and the amount consumers would gladly demand at that P would just match what farmers will gladly supply. As yet, then, there is no difference.
But suppose that for some reason, such as hog cholera, the crop initially drops to \(Q_1 \), which is below the equilibrium amount \(Q^* \). We run up to \(E_1 \) on the demand curve and see that we get the higher \(P_1 \) corresponding to the reduced crop. But that is not the end of the story. We are not at long-run equilibrium. To see why, ask, How much will the farmers produce tomorrow at this higher \(P_1 \)? They will move rightward on their supply curve and produce in the second period at the point marked \(F_2 \). We can see that this amount of \(Q \) is above the equilibrium \(Q^* \). What will it sell for in the competitive market? We run down to the demand curve and see that \(P_3 \) will have to fall to the level shown at \(E_2 \). But we are not yet in final equilibrium. At this low price, farmers will plan to cut down tomorrow's production by going leftward to their SS curve, ending up at \(F_3 \). From there we move upward to the DD curve, to find the \(P_3 \) given at the \(E_3 \) point. (Study Figure 10A-6 and its accompanying legend.)

And thus it goes on and on. First \(Q \) is low and \(P \) is high. But high \(P \) makes next period's \(Q \) high and next period's \(P \) low. So—like an acrobat on a tightrope who goes too far on one side, then compensates by going too far on the other—market price oscillates in successive periods above and below equilibrium, tracing out a spidery cobweb.

What is the final outcome? Figure 10A-6 was drawn with the supply curve's slope at \(E \) steeper than the demand curve's falling slope. So, as can be seen from the diagram, the oscillations finally do dampen and die out: the cobweb winds inward to \(E \). We are then back at equilibrium, where we can stay forever. Forever? Well, until the next outside disturbance comes to set off another dying-out oscillation.

Not all equilibrium points are so dynamically stable. Figure 10A-7 puts a microscope on the region around \(E \) in a number of other possible situations. Thus, in its first
diagram, SS has been made flatter than DD, and the cobweb diverges outward in an explosive oscillation.

In the middle diagram, the straight lines are of the same absolute slope and we get a perfect cobweb: Depending upon how severely it is disturbed, the market will oscillate endlessly around equilibrium, getting neither more nor less violent in its swings. (This is like the case of an ideal frictionless pendulum which would repeat its swings forever.)

The final diagram is designed to show that there is no need to stick with straight lines. Because its SS is flatter than DD at the equilibrium point, any small disturbance will at first send the system into increasing oscillations. But no explosion can go on forever in real life; the curvature of the schedules finally brings the system to the stable "box," indicated by the letters $ABCG$. Ultimately, then, the system oscillates repeatedly, and the amplitude or degree of the oscillation will be determined by the curvatures of DD and SS.

After any new disturbance, the system tends to come back to this box from inside or outside; even if stationary equilibrium were restored at E by accident, the slightest new shock would send the market away from such an unstable equilibrium point.

Rational Speculation

A little thought leads to the following concerns: Could prices swing forever in this regular way without some shrewd speculators beginning to notice the pattern? Wouldn't they soon rationally come to expect that prices were caught in some kind of regular pendular motion? Would they not then tend to buy at low P, store, and resell later at a profitable high price? Would not this speculative activity tend to wipe out the price differentials?

More advanced analysis, using the tools of "rational expectations" and dynamic analysis, shows that such effects would indeed occur under ideal speculation. The appendix to Chapter 11 shows how speculators tend to even out price fluctuations over time.

SUMMARY TO APPENDIX

By way of summarizing the appendix, you should

1. Review Propositions 1 and 2 along with their corollaries.
2. Make sure you understand important cases, such as constant and increasing costs, completely inelastic supply, backward-bending supply, and shifts in both supply and demand.
CONCEPTS FOR REVIEW

price rise from \(DD \) increase and
probable quantity rise
constant costs, horizontal supply
increasing costs, rising \(SS \)
inelastic supply, vertical \(SS \), rent
backward-bending supply
increased \(SS \) lowering \(P \)
dynamic supply and demand:
cobweb oscillations
lagged supply
unlagged demand
every-other-period oscillation of \(P \)
effects of rational speculation

QUESTIONS FOR DISCUSSION

1. For each of the following examples, decide which of the cases in this appendix apply. Use a supply-and-demand diagram to explain each of the observations.
 (a) When the federal individual income tax rate fell after 1981, a top movie star did not thereby change her labor supplied.
 (b) When a faster integrated circuit was made, computer prices fell as sales increased.
 (c) As wine became more popular, wine prices rose sharply.
 (d) Even though real wages have increased manyfold in recent decades, hours of work have fallen.

2. What is the effect of a specific tax (i.e., $X per unit) when supply is as described in each of Cases 1 through 4?
CHAPTER 11 MONOPOLY ANALYSIS AND REGULATION

The monopolists, by keeping the market constantly understocked, . . . sell their commodities much above the natural price, and raise their emoluments, whether they consist in wages or profit . . .

Adam Smith
The Wealth of Nations

The preceding chapters analyzed the workings of competitive markets — those in which many small firms produce and sell a standardized product. Perfect competition receives a great deal of attention from economists because competitive markets achieve a remarkable degree of economic efficiency. Moreover, competitive structures are relatively easy to understand, and the supply-and-demand analysis of competition allows us to study the impact of taxes, demand changes, bad harvests, and a multitude of other real-world disturbances.

But the time has come to push beyond the world of perfect competition. We cannot act like the man who looks for his lost wallet under a lamppost because the light is better there. Most markets — whether in America, Europe, or Asia — contain significant mixtures of monopoly along with competitive element.

This and the next chapter show how pricing and resource allocation behave in the different types of market structures — monopolistic competition, mo-
monopoly, and oligopoly. We shall see that prices are higher and outputs are lower under imperfect competition than under perfect competition. In addition, two major forms of government control of imperfect competition—regulation of business and antitrust policies—will be discussed.

A. PATTERNS OF IMPERFECT COMPETITION

Our strict definition of perfect competition is a market in which every firm is too small to affect the market price. Think of any commodity that comes to mind: automobiles, computers, electricity, cigarettes, aluminum, beer, refrigerators, wheat, or cotton. Which will fit into our strict definition of perfect competition? Certainly not beer or computers or cigarettes. Who ever heard of thousands of brewers or computer firms auctioning off their goods at the competitive Chicago Board of Trade?

Nor does the market in electricity meet the definition of perfect competition. In most towns, a single company, a monopoly, generates and markets all the electricity used by the populace.

What about aluminum or automobiles? Until World War II there was only one aluminum company, Alcoa. Even today, the four largest U.S. firms produce three-quarters of U.S. aluminum output. Aluminum would therefore be called an oligopoly, or an industry characterized by a small number of sellers. And the automobile industry is today served by a handful of giant manufacturing firms—General Motors, Ford, Toyota, and Nissan being the most important oligopolists in this industry.

Looking at the list above, you will find that only wheat and cotton fall within our strict definition of perfect competition. All the other goods, from autos to refrigerators, fail the competitive test for a simple reason: there are firms in the industry (General Motors for automobiles, IBM for computers, and so forth) that can affect the market price by selling less or more output in the market.

Imperfect Competition Defined

If a firm finds that it can appreciably affect the market price of its output, then the firm is classified as an "imperfect competitor."

Imperfect competition prevails in an industry whenever the individual sellers have some measure of control over the price of the good in that industry.

Imperfect competition does not imply that a firm has absolute control over the price of its product. To call Pepsi an imperfect competitor means that it may be able to set the price of a can at 40 or 50 cents and still remain a viable firm. The firm could hardly set the price at $40 or 0.5 cents, or it would go out of business. But an imperfect competitor has at least some discretion in its price decisions.

Moreover, the amount of discretion over price will differ from firm to firm. In some industries, the degree of monopoly power is very small. In the retail gasoline business, for example, more than a few pennies difference in price will usually have a significant effect upon a firm's sales. In the monopolistic electricity distribution business, on the other hand, changes of 10 percent or more in the price of electricity will have only a small effect on a firm's sales in the short run.

Note that the word "imperfect" does not in any way reflect upon the business ethics of the owner of such firms. Nor is there an implication that such firms are not keen rivals in the marketplace. Intense rivalry should be distinguished from perfect competition. Rivalry encompasses a wide variety of behavior, from advertising that attempts to shift out one's demand curve to inventing better products. Perfect competition says nothing about rivalry but simply denotes that every firm in the industry can sell all it wants at the prevailing market price.

Graphical Depiction Figure 11-1 shows graphically the difference between perfect and imperfect competition. Figure 11-1(a) reminds us that a perfect competitor faces a horizontal demand curve, indicating that it can sell all it wants at the going market
price. An imperfect competitor, by contrast, faces a downward-sloping demand curve. As we see in Figure 11-1(b), if an imperfectly competitive firm throws more output on the market, it definitely can depress the market price of its output.

BEHAVIOR OF IMPERFECT COMPETITORS

In analyzing imperfect competition, we will examine the different kinds of market imperfections, the sources of these imperfections, and the most commonly used measures of market power.

Varieties of Imperfect Competition

Let's begin by surveying the principal kinds of market structures. The market structure of an industry denotes the organizational characteristics of an industry, of which the most important are the number and size of the sellers, the extent of concentration and collusion among the firms, and the degree of homogeneity or heterogeneity of their products.

Monopoly How imperfect can imperfect competition get? The extreme case would be that of a single seller with complete control over an industry. (It is called a "monopolist," from the Greek words *mono* for "one" and *polis* for "seller.") It is the only one producing in its industry, and there is no industry producing a close substitute for its good.

Exclusive monopolies are rare today. Only in the case of franchised local services—local telephone, gas, water, and electricity being the major examples—is there truly a single seller of a service with no close substitutes. But even these isolated examples must reckon with competition from other industries—with cellular telephone for cable phones, with other fuels for electricity or gas. No firm is completely secure from attack by competitors in the long run.

Oligopoly We have seen that this word means "few sellers." Oligopolists are of two types.

First, an oligopolist may be one of a few sellers that produce an identical (or almost identical) product. If A's steel delivered in the Pittsburgh area is much the same as B's, then the smallest price cut by B will drive the consumer from A to B. Neither A nor B can be called a monopolist. Yet, if the number of sellers is few, each can have a great effect on market price.

This first kind of oligopoly is common in a number of the basic industries where the product is fairly homogeneous and the size of enterprise is large—as in the aluminum and oil industries. The airline industry today is oligopolistic, for only a few carriers travel between most cities. In this unregulated market, there are periodic price wars in which one airline undercuts...
the other in an attempt to gain more of the market in this relatively homogeneous product.

The second kind of oligopoly is typified by the industry where there are few sellers of differentiated products. Goods are said to be differentiated when their valued characteristics or qualities vary. The automobile industry sells differentiated products because cars have numerous distinguishing characteristics (size, power, fuel economy, durability, and safety). Indeed, we can say that every distinct automotive product (e.g., Buick Regal) is differentiated from every other product (e.g., Nissan Maxima). Differentiation of products occurs in virtually all consumer commodities, including refrigerators and ice creams, shirts and jeans, pop singers and baseball teams, medical care and legal advice.

While the differentiated products of oligopolists are distinct, they are nonetheless close substitutes. Without being identical, Buicks compete sharply with Lincolns in the luxury-car market while Canon and Minolta vie for market shares in cameras. Oligopoly is competition among the few, but the competition can be very brisk indeed.

Many Differentiated Sellers In this last category of imperfect competition, usually called monopolistic competition, a large number of sellers produce differentiated products. This case resembles perfect competition in that there are many sellers, none of whom have a large share of the market. It differs from perfect competition in that the products are differentiated rather than identical.

The classic case of monopolistic competition is the retail gasoline market. I may go to the local Exxon station because it is a bit more convenient and clean or because I think its tanks are free of dirt and water. But it is only one of a number of gas stations, and I am sensitive to the gasoline prices at Exxon and other neighboring stations. If the price at Exxon gets more than a few pennies above the competition, I'll move to the unbranded station a short distance away.

We see here, then, imperfect competition among the many. The only difference between this industry and one in perfect competition is that the commodity here is slightly differentiated. What are the sources of product differentiation in these monopolistically competitive industries? Generally, these industries tend to be populated by retail outlets doing small volumes of business and serving many customers. The major source of differentiation arises from location: because people want to economize on the time it takes to drive to a store, they prefer nearby locations. In addition, there are differences in quality (as in the crispness of French fries), in brands or trademarks (as in soft drinks), or in styling (as in clothing). Often, custom, familiarity, or inertia leads customers to prefer one seller over another.

We must emphasize that, while the forces of differentiation may be powerful, the product's price will ultimately play a pivotal role in consumer choice. Even though Pop's Grocery Store has a loyal clientele, if Pop's prices are much higher than those of other stores, for an equivalent quality of service, Pop's customers will eventually become disaffected and will move to a lower-priced store. Many a firm has come to ruin because it neglected the fact of business life that the best service a firm can perform is to provide high-quality goods at low prices.

Table 11-1 gives a picture of the various possible categories of imperfect and perfect competition; this table is vitally important and warrants careful study. Note, however, that all these many categories of market structure overlap. They range from perfect competition to monopolistic competition to oligopoly to pure monopoly, and the exact point on the spectrum where an industry falls may be unclear. Often, particularly when legal disputes arise, lawyers will disagree as to whether a particular market is monopolistic or oligopolistic, or whether the degree of product differentiation is high or low. In some important antitrust cases, the answers to these questions have determined the fate of a giant firm.

Sources of Market Imperfections

Why do certain industries display near-perfect competition while others are dominated by a handful of large firms? Fundamentally, imperfect competition arises when an industry's output is supplied by a small number of firms. The two major sources of imperfect competition are cost conditions and barriers to competition. When there are significant economies of large-scale production, the large firms can simply produce more cheaply and undersell small firms so
TYPES OF MARKET STRUCTURES

<table>
<thead>
<tr>
<th>STRUCTURE</th>
<th>NUMBER OF PRODUCERS AND DEGREE OF PRODUCT DIFFERENTIATION</th>
<th>PART OF ECONOMY WHERE PREVALENT</th>
<th>FIRM’S DEGREE OF CONTROL OVER PRICE</th>
<th>METHODS OF MARKETING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfect competition</td>
<td>Many producers; identical products</td>
<td>A few raw agricultural products (wheat, corn, ...)</td>
<td>None</td>
<td>Market exchange or auction</td>
</tr>
<tr>
<td>Imperfect competition</td>
<td>Many differentiated sellers (monopolistic competition)</td>
<td>Many producers; many real or perceived differences in product</td>
<td>Retail trade (food, gasoline, ...)</td>
<td>Advertising and quality rivalry; administered prices</td>
</tr>
<tr>
<td>Oligopoly</td>
<td>Few producers; little or no difference in product</td>
<td>Steel, chemicals</td>
<td>Some</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Few producers; some differentiation of products</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Complete monopoly</td>
<td>Single producer; product without close substitutes</td>
<td>Local telephone, electricity, and gas utilities ("natural monopolies")</td>
<td>Considerable, but usually regulated</td>
<td>Advertising and service promotion</td>
</tr>
</tbody>
</table>

Table 11-1 Most industries are imperfectly competitive—a blend of monopoly and competition

the latter cannot survive. Thus when pervasive economies of scale exist, we may find few sellers.

Similarly, when a product receives patent protection (Polaroid), when a firm has a well-established brand image (Coke), or when regulatory barriers preclude competition (Duke Light and Power)—in such cases, imperfect competition may arise.

Let’s examine both sources of imperfection.

Cost Patterns and Structure of Market Imperfection

If every product could be made by every person at equal and constant costs, we would all be able to provide our entire basket of consumables, and we would have no need for giant industrial firms. But the world is not made that way. If you imagine how much time it would take you to build the simplest car or television—starting from nothing more than iron ore, copper, and sand—then you can quickly understand the importance of large-scale production, large firms, and imperfect competition.

Our first hint as to the reasons behind imperfect competition lies in the existence of economies of scale or declining average costs. The interaction between costs and markets is illustrated in Figure 11-2.

In Figure 11-2(a), the firm is shown to have average and marginal costs that fall forever. It displays perpetual increasing returns to scale. As q grows, the firm finds more elaborate ways of specializing its equipment; it organizes its work teams in larger and more efficient units; it can afford ever-larger boilers and machines, which display greater net efficiency. All this without end.

No matter how big is the demand for its product—
no matter how far out the industry demand curve (DD) happens to lie—the most efficient operating size for this one firm would be greater still. And so peaceful competitive coexistence of thousands of perfect competitors will be quite impossible. This is the case of natural monopoly (to be further analyzed later in this chapter).

A second case would occur when all the economies of scale have been used up and a firm’s cost curves level out or turn up; Figure 11-2(b) shows such a case. Note, however, that the AC curve did not turn up soon enough to avoid the breakdown of perfect competition; the industry total demand curve DD does not provide a big enough market to enable numerous firms to coexist at the efficient level of operation called for by the indicated cost curve. We shall still end up in a situation in which few sellers compete, which is called oligopoly.

In Figure 11-2(c) the outlook is more favorable for perfect competition. Why? This industry is characterized by a demand and cost structure in which the industry can support the large number of efficiently operating firms that are needed for perfect competition.

The relationship between scale economies and imperfections has been intensively studied by industrial organization economists over the last three decades. Table 11-2 shows the results of one particularly careful study of six U.S. industries. It suggests that economies of scale lie behind some of the concentration of industry today. But economies of scale are only part of the reason for the current concentration of American firms today; a large margin of imperfection is still unexplained by such studies.

Barriers to Competition

Although cost differences are the most important factor behind market structures, other forces enter as

Figure 11-2 To avoid monopoly or oligopoly, average costs must turn upward soon enough

Different cost and demand conditions lead to different market structures. When costs fall indefinitely, as in the case of natural monopoly in (a), one firm can expand to monopolize the industry. In (b), costs eventually turn up, but not soon enough relative to total industry demand DD. Coexistence of numerous perfect competitors is impossible; some kind of few-seller oligopoly is likely. In (c), total industry demand DD is so vast relative to efficient scale of any one seller as to permit viable coexistence of numerous perfect competitors. Here we have perfect competition. [What if firms contrive to differentiate their product in (c), fragmenting the market and moving DD far to the left? They may end up in some kind of imperfect competition—like (b) or (a).]
Table 11-2 Economies of scale drive many industries toward concentration

In a path-breaking study, a number of products were studied to see whether the nature of the technology could lie behind existing concentration patterns. Column (1) shows the estimate of the point where the long-run average cost curve begins to turn up, as a share of output. Compare this with the average market share of the top three firms in column (2). [Source: F. M. Scherer, Alan Becketstein, Erich Kaufer, and R. D. Murphy, The Economics of Multi-Plant Operation: An International Comparisons Study (Harvard University Press, Cambridge, Mass., 1975).]

well, particularly barriers to competition.¹ We can illustrate the point with reference to Table 11-2. According to those estimates, the top three cigarette firms would each need 6 to 12 percent of the national market to attain the minimum efficient scale of operation. But the actual market share of the top three firms was, on average, 23 percent of the national market. Aside from cost factors, what could account for the large actual share of the top firms?

One important answer lies in barriers to competition:

A barrier to competition arises when legal restrictions or product differentiation reduces the number of competitors below the number that would survive on the basis of efficient cost structures alone.

Legal Restrictions In many situations, governments undertake to restrict competition in certain industries. Important legal restrictions include patents, entry restrictions, and foreign-trade tariffs and quotas.

Patents are a very special form of legal restriction to entry. A patent is granted to an inventor to allow a temporary exclusive (or monopoly) use of the product or process that is patented. Thus Polaroid has an absolute monopoly over the market for instant cameras because of patent protection. Why would governments grant patent monopolies? Patents are granted to encourage inventive activity and are particularly beneficial to small firms and individuals. Without the prospect of monopoly protection, a lone inventor might despair of ever profiting from years devoted to the endless search for better products or processes.

¹ Another term often encountered is "barriers to entry." We have chosen to stress barriers to competition because the restrictions on the intensity of competition discussed below do not always relate to entry. The treatment here emphasizes the distinction between cost-based forces (declining average costs) and noneconomic (legal or psychological) factors leading to concentration of industry.
Governments also impose *entry or exit restrictions* on many industries. As we will see in section C below, franchise monopolies are often granted to local utilities in water, electricity, natural gas, and telephone. Governments believe that these franchises are useful in industries that have sharply falling average costs; in return for such a franchise monopoly, firms allow governments to regulate their prices and business operations. As in the case of patents, such restrictions may be a net plus for the economy, but they are undoubtedly very powerful barriers to competition and support concentration. Thus for many years AT&T used government-authorized entry barriers to prevent competitors from entering the long-distance telephone industry—a practice we will return to in next chapter’s discussion of antitrust.

The final example of legal restrictions has less economic rationale. Suppose an industry will support perfect competition, the case illustrated in Figure 11-2(c), but all governments impose high tariffs or quotas on foreign producers. Exclusion of many foreign suppliers and buyers from the market will prevent perfect competition from taking hold. The new industry DD curves in each country will reflect only domestic and not world markets, so the DD curves move far to the left. A protectionist regime moves us from Figure 11-2(c) to 11-2(b) or even to 11-2(a). American historians know this point well, as is shown by their saying, "The tariff is the mother of trusts." A classic example of broadening the market was the European Common Market, which lowered tariffs, encouraged market integration, and thereby promoted vigorous and effective competition.

This brief discussion just touches on a key topic in public policy. The concept of barriers to competition is widely used in areas outside economics, particularly modern antitrust practice.

Product Differentiation In addition to legally imposed barriers to competition, there are economic barriers as well. The major hurdle for potential competitors is the pervasive presence of product differentiation that we discussed above.

Consider as an example the case of automobiles. The major industrial countries currently have among them more than a dozen large companies producing automobiles. Moreover, because transportation costs are low relative to selling prices, we might expect nearly perfect competition in this market.

In fact, because of product differentiation, the barriers to competition are relatively high. Some sources of product differentiation are natural: British cars, with steering wheels on the right side, have a hard time attracting American drivers. Similarly, giant American cars sell poorly in countries with narrow streets and tiny parking spaces. Other sources of product differentiation appear quite contrived. In the 1950s, cars with enormous tail fins, boosted by advertising that associated horsepower with manliness and power, were the darling of consumers. Today, German luxury cars command a premium, as do their look-alikes.

How does product differentiation, whether natural or contrived, impose a barrier and increase the degree of monopoly? The impact is that the DD curves of Figure 11-2(c)’s model of perfect competition are contracted so far to the left as to become like those of the models of monopoly or oligopoly shown in Figure 11-2(a) and (b). That is, the total demand for a product like autos or soft drinks will be fragmented into many smaller markets for differentiated products. The demands for these differentiated products will be so small that they will not be able to support a large number of firms operating at the bottom of their U-shaped cost curves. Hence, differentiation, like tariffs, leads to greater concentration and more imperfect competition.

To summarize, when an industry shows pervasive economies of scale, so that the most efficient scale of a firm’s production comes at a significant fraction of industry demand, perfect competition is in peril. In such situations, a few firms will supply most of the industry’s output. Imperfections rising from declining costs are accentuated by barriers to competition, such as legal restrictions on competition or product differentiation.

Measuring Market Power

In terms of market organization, industries fall along a spectrum from perfect competition to pure monopoly. In many situations, particularly in assessing whether public-policy steps are needed to curb market power, it is useful to have a quantitative measure of
the extent of market power, or the degree of monopoly. Market power signifies the degree of control that a single firm or a small number of firms has over the price and production decisions in an industry.

Concentration Ratios The most commonly used measure of market power is the "concentration ratio" for an industry, illustrated in Figure 11-3. The four-firm concentration ratio is defined as the percent of total industry output (or shipments) that is accounted for by the largest four firms. Similarly, the eight-firm concentration ratio is the percent of output shipped by the top eight firms. In a pure monopoly, the four- or eight-firm concentration ratio would be 100 percent, while for perfect competition, both ratios would be close to zero.

How concentrated is American manufacturing? For 1977, data show that about one-fifth of manufacturing output takes place in highly concentrated industries (those with four-firm concentration ratios above 60 percent), while another fifth resides in unconcentrated industries (those with four-firm concentration ratios less than 20 percent).

Economists keep an eye on the historical trends in overall concentration. Data for the 1947–1972 period suggest that there has been a very slight increase in the average four-firm concentration ratio for domestic manufacturing output, from 37 percent in 1947 to 38 percent in 1972. These figures certainly overstate the trends in the growth of concentration, however, for they exclude the increasingly intense foreign competition in American markets. Recent studies of many industries indicate that, when foreign firms are included in concentration measures, concentration ratios have been declining in recent years.

The Herfindahl Index Some economists believe that the traditional concentration ratios do not adequately measure the impact of firm size on market

Figure 11-3 Numerous industries are dominated by a very few sellers: the case of oligopoly
For refrigerators, motor vehicles, and many other industries, a few firms get most of the business. Compare this with the ideal of perfect competition, in which each firm is too small to affect the market price. (Source: U.S. Bureau of the Census, 1982 data.)

\[^2\] Short courses may skip to the next section.
power. Suppose industry T, call it long-distance telecommunications, has a 100 percent four-firm concentration with one giant monopoly. A second industry, A, call it airlines, also has a 100 percent concentration ratio, but this is made up of four equally large firms. Most economists believe that the extent of market power would be much greater in industry T than in industry A.

A measure which attempts to reflect the effect of the size differences is the Herfindahl index, or H, which is equal to the sum of the squared market shares in percentage terms:

$$H = \sum_{i=1}^{n} s_i^2 = s_1^2 + s_2^2 + \cdots$$

where s_i is the percentage market share of the ith firm. When the industry is a pure monopoly, the Herfindahl index is $H = 100^2 = 10,000$, while if an industry is perfectly competitive, the Herfindahl index is $H = 0$. (In the example of the last paragraph, show that the Herfindahl index is much greater for the industry with one large firm than for the industry with four small firms. More precisely, the H-index for industry T is 10,000 while that of industry A is 2500.)

The Herfindahl index is sometimes used in examining the impacts of mergers and acquisitions. In 1982, the U.S. Department of Justice proposed a set of merger guidelines that depended heavily upon the Herfindahl index for determining whether a proposed merger was acceptable. We will discuss these rules further in section C of Chapter 12.

Although the measures of concentration discussed here are widely used in economic and legal analysis, they are not infallible indicators of market power. Such indexes are customarily applied to a narrow industry definition, such as microcomputers (personal computers). Sometimes, however, the industry definitions are inappropriate, and strong competition can come from other narrow industries, as when minicomputers compete with microcomputers. Sometimes the threat of entry of foreign competition will keep the firms in a concentrated industry from exercising market power. Care must therefore be used to interpret quantitative indexes of market power appropriately.

B. ANALYSIS OF MONOPOLY

Now that we have described the different species of imperfect competitors, this section analyzes the behavior of a monopolist—i.e., one that sells the entire output of an industry. In undertaking this analysis, we will find a new concept, marginal revenue, essential for describing the equilibrium output and price. But this new concept will also apply more broadly to the analysis of oligopoly in the next chapter, as well as to our understanding of public policies toward big business, such as regulation and antitrust laws.

Price, Quantity, and Total Revenue

Let's say that a firm finds itself in possession of a complete monopoly in an industry. The firm might be the fortunate owner of a patent for a new anticancer drug, or it might have an exclusive franchise to sell a service like cable television. If the monopolist wishes to maximize its profits, what price should it charge? What output level should it produce?

To answer these questions, we need to compare the costs of production with the revenues from production. More precisely, we need to calculate the change in profits that occurs when production increases; we will see that this calculation is made by comparing the marginal cost of additional output with the marginal revenue of additional sales.

As far as analysis of costs is concerned, we have developed all the relevant concepts in Chapter 9, where we met TC, AC, MC, and so forth. We now develop an analysis of the major revenue concepts. From the firm's demand curve, we know the relationship between price (P) and quantity sold (q): Table 11-3 shows the relationship for a hypothetical monopolist in column (2), while Figure 11-4 depicts, in black, the demand curve (dd) for the monopolist.

We now extend that analysis to estimate the impact of quantity sold on total revenue ($P \times q$). Column (3) of Table 11-3 shows how to calculate the total revenue (TR), which is simply P times q. Thus 0 units
<table>
<thead>
<tr>
<th>QUANTITY q</th>
<th>PRICE P = AR = TR/q</th>
<th>TOTAL REVENUE TR = P x q</th>
<th>MARGINAL REVENUE MR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>$200</td>
<td>$</td>
<td>+180</td>
</tr>
<tr>
<td>1</td>
<td>180</td>
<td>180</td>
<td>+140</td>
</tr>
<tr>
<td>2</td>
<td>160</td>
<td>320</td>
<td>+100</td>
</tr>
<tr>
<td>3</td>
<td>140</td>
<td>420</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>120</td>
<td>480</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>500</td>
<td>+20</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>480</td>
<td>-20</td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>320</td>
<td>-60</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>180</td>
<td>-100</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td>-180</td>
</tr>
<tr>
<td>10</td>
<td>0</td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Table 11-3 Marginal revenue numbers can be derived from demand-schedule P and q data.

First, total revenue comes from multiplying P times q. To get marginal revenue, we increase q by a unit and calculate the difference in total revenue it brings. Note MR is at first positive, but after demand turns inelastic, MR becomes negative even though price never becomes negative. MR lies below P because of loss due to the necessity to lower price on previous units if the new unit of q is to be sold. (Light red data of marginal revenue come from smoothed MR curve in Fig. 11-4(a).)

Bring in TR of 0; 1 unit brings in TR = $180 x 1 = $180; 2 units bring in $160 x 2 = $320; and so forth.

In this example of a straight-line or linear demand curve, total revenue at first rises with output, since the reduction in P needed to sell the extra q is moderate in this first elastic range of the demand curve. But when we reach the midpoint of the straight-line demand curve, TR reaches its maximum. This comes at q = 5, P = $100, with TR = $500. Increasing q beyond this point brings you into inelastic demand regions, and now the percentage cut in P needed to sell 1 percent more q is so much greater than 1 that a price cut lowers TR. Figure 11-4(b) shows TR to be dome-shaped, rising from zero to a maximum of $500 and falling back to zero when P has become vanishingly small.

Already Table 11-3 illustrates an important fallacy: "A firm out to maximize its profits will always charge what the traffic will bear. That means charging the highest possible price." This statement is incorrect. As a profit maximizer you may not be an altruist. But that does not mean you are a fool. To
charge the highest possible price is to sell no q at all and to get no revenue at all.

Even if we reinterpret this doctrine to mean charging the highest price at which anything at all can be sold, it is obvious that selling but 1 unit even at a high price is not the way to maximize your profit. If we neglect for a moment all costs, the correct interpretation of charging what the traffic will bear must mean that we find the best compromise between a high P and a high q.

Back in Table 11-3, it is at $q = 5$ that $P \times q = TR$ is at a maximum. This is the point where demand elasticity turns into demand inelasticity. Thus, if a monopolist had no costs of production, it would sell, not at the maximum price, but at the price where TR is maximal, or where the demand elasticity turns from greater than one to exactly one.

Before proceeding to introduce the important concept of marginal revenue, we can note the fact that the price per unit can be called average revenue (AR) to distinguish it from total revenue. Thus, we get $P = AR$ by dividing TR by q (just as we earlier got AC by dividing TC by q). Verify that if column (3) had been written down before column (2), we could then have filled in column (2) by division. To test your understanding, fill in the blanks of columns (2) and (3).
Marginal Revenue and Price

To find the highest-profit equilibrium of the monopolist, we need to measure the impact of selling an extra unit of output on total revenue. Marginal revenue is the convenient concept for this purpose.

Marginal revenue is the increment in total revenue (plus or minus) that comes when output increases by 1 unit.

The red numbers of marginal revenue are shown in column (4) of Table 11-3. Here is how they are calculated. Subtract the TR we get by selling q units from the TR we get by selling q + 1 units. The difference will be our extra revenue or MR. Thus, from q = 0 to q = 1, we get MR = $180 - 0. From q = 1 to q = 2, MR is $320 - $180 = $140.

MR is positive until we arrive at q = 5, and negative from then on. That does not mean you are giving goods away at a negative price. Actually, average revenue—which is another name for \(P \)—continues to be positive. It is merely that in order to sell the sixth unit of \(q \), you must reduce the price so much on the first 5 units as to end up getting less TR than before—which is what the negative MR is telling you.

This warns us not to confuse marginal revenue with average revenue or price. The table shows they are different. Scrutinize Figure 11-4(a) to note that the plotted red steps of MR definitely lie below the black dd curve of AR. In fact, MR will have already turned negative when AR is only partly down toward zero.

Let's review why MR is definitely less than \(P \) (or AR) for the imperfect competitor. True, I sell my last unit of output at \(P \). But what did I have to do to coax out that last unit of sale? Clearly, I had to lower my price, since I didn’t face a perfect competitor's horizontal demand curve. But in lowering my price for the last new buyer, I also had to lower the price for all the previous buyers. So my extra revenue, my MR, is evidently less than price by this loss on previous units from the price drop.

To summarize:

With demand sloping downward,

\[P > MR \quad (= P - \text{loss on all previous } q) \]

In column (4) of Table 11-3, the light red numbers of MR are also seen to be less than the Ps in column (2).

Only under perfect competition, where the sale of extra units will never depress price, is the term “loss on all previous \(q \)” equal to zero. Only then will price and marginal revenue be identical. Hence a perfect competitor's dd curve and its MR curve coincide as horizontal lines.

Elasticity and Marginal Revenue What is the relationship between the price elasticity of demand and marginal revenue?

Marginal revenue is positive when demand is elastic, zero when demand is unit-elastic, and negative when demand is inelastic.

This result is really a different way of restating the definition of elasticity we used in Chapter 5. Recall that demand is elastic when a price decrease leads to a revenue increase. In such a situation, a price decrease raises output demanded so much that revenues rise, so that marginal revenue is positive. For example, in Table 11-3, as price falls in the elastic region from \(P = $180 \) to \(P = $160 \), output demands rises sufficiently to raise total revenue, so marginal revenue is positive.

What happens when demand is unit-elastic? A price cut is then just matched by an increase in output so marginal revenue is zero. Can you see why marginal revenue is always negative in the inelastic range? Why is the marginal revenue for the perfect competitor's infinitely elastic demand curve always positive?

This completes our analysis of marginal revenue and equips us for the task of finding the maximum-profit equilibrium of the monopolist.

Point of Maximum Profit

Suppose that the monopolist wants to maximize its total profits (TP). By definition total profits = total revenues – total costs. In symbols, \(TP = TR - TC = (P \times q) - TC \).

To maximize its profits, the firm must find the equilibrium price and quantity, \(P^* \) and \(q^* \), that give the largest profit, or the largest difference between \(TR \) and \(TC \). Some reflection will tell us that this maximum profit will occur when output has expanded to just the point where the firm’s marginal revenue is equal to its marginal cost.
Summary of Firm's Maximum Profit

<table>
<thead>
<tr>
<th>QUANTITY q</th>
<th>PRICE P</th>
<th>TOTAL REVENUE TR</th>
<th>TOTAL COST TC</th>
<th>TOTAL PROFIT TP</th>
<th>MARGINAL REVENUE MR</th>
<th>MARGINAL COST MC</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>200</td>
<td>0</td>
<td>145</td>
<td>-145</td>
<td>+180</td>
<td>30</td>
</tr>
<tr>
<td>1</td>
<td>180</td>
<td>180</td>
<td>175</td>
<td>+5</td>
<td>+140</td>
<td>25</td>
</tr>
<tr>
<td>2</td>
<td>160</td>
<td>320</td>
<td>200</td>
<td>+120</td>
<td>+100</td>
<td>20</td>
</tr>
<tr>
<td>3</td>
<td>140</td>
<td>420</td>
<td>220</td>
<td>+200</td>
<td>+60</td>
<td>30</td>
</tr>
<tr>
<td>4*</td>
<td>120</td>
<td>480</td>
<td>250</td>
<td>+230</td>
<td>+40</td>
<td>40</td>
</tr>
<tr>
<td>5</td>
<td>100</td>
<td>500</td>
<td>300</td>
<td>+200</td>
<td>-20</td>
<td>70</td>
</tr>
<tr>
<td>6</td>
<td>80</td>
<td>480</td>
<td>370</td>
<td>+110</td>
<td>-60</td>
<td>90</td>
</tr>
<tr>
<td>7</td>
<td>60</td>
<td>420</td>
<td>460</td>
<td>-40</td>
<td>-100</td>
<td>110</td>
</tr>
<tr>
<td>8</td>
<td>40</td>
<td>320</td>
<td>570</td>
<td>-250</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*Maximum-profit equilibrium.

Table 11-4 Equating marginal cost to marginal revenue gives firm's maximum-profit q and P.

Total and marginal cost of production is now brought together with total and marginal revenue. The maximum-profit decision is where \(MR = MC \), with \(q^* = 4 \), \(P^* = $120 \), and maximum profit \(TP = $230 = ($120 \times 4) - $250 \). (Note: For convenience, the light \(MR \) and \(MC \) numbers are put in to give the smoothed instantaneous values at each \(q \) point itself.)

The first way to see this maximum-profit condition is in a table of costs and revenues, Table 11-4. What quantity and price will maximize total profit? The easiest way to solve this problem is to compute total profit in column (5). This column tells us that the optimal quantity, which is 4 units, requires a price of $120 per unit. This produces a total revenue of $480, and, after subtracting total costs of $250, we calculate total profit to be $230. A glance at other prices and quantities shows that no other combination has as high a level of total profit.

A second way of arriving at the same answer is to compare marginal revenue, column (6), and marginal cost, column (7). (Recall that \(MR \) is computed from the \(TR \) data in Table 11-3, while \(MC \) is calculated from \(TC \) in the manner shown in Chapter 9.)

As long as each additional unit of output provides more revenue than it costs—that is to say, as long as \(MR \) is greater than \(MC \)—the firm's profit is increasing. So the firm would continue to increase its output as long as \(MR \) is greater than \(MC \). By contrast, suppose that at a given level of output \(MR \) is less than \(MC \). This means that increasing output would lead to lower profits, so the profit-maximizing firm should at that point cut back on output. Clearly the best-profit point then comes at the point where marginal revenue exactly equals marginal cost, as is shown by the data in Table 11-4.

The maximum-profit price and quantity of a monopolist comes where its marginal revenue equals its marginal cost:

\[MR = MC, \] at the maximum-profit \(P^* \) and \(q^* \)

This second way of finding the optimum point, by
comparing marginal cost and marginal revenue, is neither better nor worse than the first way of examining total profits. They give exactly the same answer.

We see from the examples the logical correctness of the \(MC = MR \) rule as a guide to maximizing profits. What is the intuition? Look for a moment at Table 11-4 and suppose that the monopolist is producing \(q = 2 \). At that point, its \(MR \) for producing 1 full additional unit is +100, while its \(MC \) is 20. Thus, if it produced one additional unit, the firm would make additional profits of \(MR - MC = 100 - 20 = 80 \). And, indeed, if we look at column (5) of Table 11-4, we see just that same figure for the amount of extra profit gained by moving from 2 to 3 units.

Thus when \(MR \) exceeds \(MC \), additional profits can be made by increasing output; when \(MC \) exceeds \(MR \), additional profits can be made by decreasing \(q \). Only when \(MR = MC \) are there no potential profits to be made by changing output, so the firm is at the level of output that maximizes profits.

Graphical Depiction of Monopoly

We first derived the major tools needed for analysis of a monopolist’s behavior. Then we examined the conditions for profit maximization. Turn now to a graphical depiction of monopoly equilibrium.

Figure 11-5 shows monopoly equilibrium. In Figure 11-5(a), \(MC \) intersects \(MR \) at \(E \), the maximum-profit point, where \(q^* = 4 \). We run up vertically from \(E \) to the \(DD \) curve at \(G \), where \(P = $120 \). The fact that \(G \) lies above \(F \), the point on the \(AC \) curve at \(q^* = 4 \), guarantees a positive profit. [We cannot read directly the amount of total profit unless we calculate the red shaded area in Figure 11-5(a).]

The same story is told in Figure 11-5(b) with total curves. Total revenue is dome-shaped. Total cost is ever rising. The vertical difference between them is total profit, which begins negative and ends negative. In between, \(TP \) is positive, reaching its maximum of \($230 \) at \(q^* = 4 \), where the red slopes of \(TR \) and \(TC \) are equal and parallel. If these \(MR \) and \(MC \) slopes were pointing outward in a nonparallel fashion (as at \(q = 2 \)), we should gain a little extra profit by expanding \(q \). At \(q^* = 4 \), marginal cost and marginal revenue are balanced. At that point total profit (\(TP \)) reaches its maximum as an additional unit adds exactly equal amounts to costs and revenues.

In sum, a monopolist will maximize its profits by setting output at the point where \(MC = MR \). Because the monopolist has a downward-sloping demand curve, this means that \(P > MR \), reflecting the fact that, to sell the last unit, the monopolist had to lower the price on earlier units. In maximizing profits, the monopolist reduces output below the competitive level; price is therefore above marginal cost.

Perfect Competition as a Polar Case of Imperfect Competition

We have now completed our analysis of the concept of marginal revenue; we have seen that the equality of \(MC \) and \(MR \) is the key rule for a monopolist who desires to maximize profits.

Actually, this rule extends in importance far beyond the analysis of monopoly. A little thought shows that the \(MC = MR \) rule applies with equal validity to a profit-maximizing perfect competitor. Here is why:

For a perfect competitor, marginal revenue works out to be exactly the same thing as price. With no need to cut your \(P \) to sell an extra unit of \(q \), the marginal revenue it brings you is precisely the \(P \) received for that last unit, with no loss on previous units being subtracted. Hence, \(P = MR \) does lead to the special rule for profit maximizing by a perfect competitor:

Because a perfect competitor can sell all it wants at the market price,

\[P = MR \]

at the maximum-profit point.

You can see this result visually by redrawing Figure 11-5(a). If this applied to a perfect competitor, then the \(DD \) curve would be horizontal and it would coincide with the \(MR \) curve. Proceed to find the profit-maximizing \(MR = MC \) intersection, which would also come at \(P = MC \).

If you redraw Fig. 11-5(a) for a perfect competitor, make \(dd \) horizontal and coinciding with \(MR \). Then proceed to find the \(MR \) and \(MC \) intersection as usual (which gives the old \(MC \) supply story of Chapter 10). In this new version, Fig. 11-5(b)’s \(TR \) merely becomes a straight line, rising from the origin. But the slopes of \(TR \) and \(TC \) must still match at the maximum-profit equilibrium point.
Figure 11-5 Profit-maximizing equilibrium can be shown using either marginal or total curves
(a) At E, where MC intersects MR, equilibrium position of maximum profit is found. Any move from E will lose some profit. Price is at G above E, and since P is above AC, the maximized profit is a positive profit. (Can you understand why the shaded red rectangle measures total profit? And why the gray triangle of shading on either side of E shows the reduction in total profit that would come from a departure from $MR = MC$—i.e., the greater loss of extra revenue in comparison with extra cost?)
(b) This tells the same story of maximizing profit as above, but uses total concepts rather than marginal concepts. Total profit is given by vertical distance from TC up to TR. This is at a maximum where the two black total curves have equal and parallel slopes, $MR = MC$. This is necessary if red total profit curve is to be at a maximum, with its red slope horizontal as MR cancels out MC.

general rule for profit maximization applies to perfect as well as imperfect competitors.

Let Bygones Be Bygones

While economic theory doesn’t necessarily aim to make you a successful business executive, it does introduce you to some new ways of thinking. Here is one instance.

Economists stress the “extra,” or “marginal,” costs and benefits of a decision, saying:

Let bygones be bygones. Don’t look backward. Don’t mean about your sunk costs. Look forward. Make a hard-headed calculation of the extra costs you’ll incur by
any decision and weigh these against its extra advantages. Forget all the good things and bad things that will go on anyway, and make a decision based on future costs and benefits.

C. THE COST AND CONTROL OF MONOPOLY

Section B of this chapter examined the way that profit-maximizing monopolists set their prices and quantities. It showed that the ability to control the entire market would allow a monopolist to raise its price above marginal cost, thereby reducing output below the most efficient level.

We now turn to an assessment of the practical importance of monopoly in today’s economy. We begin by showing how monopoly distorts resource allocation and then provide quantitative estimates of the waste due to monopoly. We also review how public regulation of monopoly can control the price and quantity decisions of monopolists, and we conclude with a history and analysis of regulatory practices in America.

ECONOMIC COSTS OF MONOPOLY

Begin by recapitulating the major points about monopoly behavior. Monopolists face a downward-sloping demand curve and have no close competitors in the market they control. They set output at that level where the MC of production equals the MR from further sales. But MR is less than price, and so thus is MC. It is just because price exceeds MC that the monopolist will produce inefficiently—that the monopolist will not be led by an invisible hand to produce the optimal level of output. In this section, we describe in detail why a monopolist who sets price above MC causes economic inefficiency.

Deficient Output of Monopoly

To see how and why monopoly keeps q too low, imagine that all money votes are distributed properly while Monopoly Inc. is the only imperfect competitor in the system. All other industries are perfectly competitive, with MC equal to P. In this world, price is the correct economic standard or measure of scarcity; price measures both the marginal utility of consumption to households and the marginal cost of producing

*An important recent example of this principle related to nuclear power. In the late 1980s, about two dozen partially completed nuclear power plants dotted the landscape. Some had already absorbed billions of dollars of investment but were not yet ready to operate.

One particularly difficult case was the Shoreham plant on Long Island Sound, New York. By 1987 the owner had spent $5.5 billion on bricks, mortar, fuel rods, and interest, but the operating license had not been granted. You might ask, from a rational economic point of view, should the plant be opened? And, more particularly, how should the $5.5 billion of past investments be weighed?

The bygones principle would state that the $5.5 billion of past cost is irrelevant. From an economic point of view, the only relevant issue concerns future costs and benefits. That is, what are the economic benefits of the electricity that Shoreham would produce? And what are the opportunity costs of producing that electricity? (To skirt the safety issue, assume that all sources of power are equally risky.)

The key to observe in making this calculation is that the sunk cost of $5.5 billion is irrelevant to future costs and benefits. Studies indicated that, if the $5.5 billion were ignored, the future costs of the nuclear power plant would be slightly less than the next-best alternative, even though the total cost (with the $5.5 billion) was far higher than the alternative. A pure economic analysis (again ignoring safety questions) would conclude that the most efficient outcome would be to open the Shoreham nuclear power plant.
goods by firms. Costs, and particularly marginal costs, are the indicators of how much of society’s valuable resources each good utilizes. (If you are unsure on this, flip back to Figure 10-7 to refresh your understanding.)

Now the monopolist enters the picture. What is Monopoly Inc. doing? It is not a wicked firm—it does not force consumers to buy from it, nor does it rob old people. Rather, Monopoly Inc. exploits the fact that it is the sole seller of a good and faces a downward-sloping demand curve. It produces where \(MR = MC \), and consequently produces less output than where \(MC = P \).

In other words, Monopoly Inc. does not produce output up to the point where the social cost (as measured by \(MC \)) is equal to the value of the good to consumers (as measured by \(P = MU \)). Rather, the monopolist is keeping its output a little scarce. It does not produce up to the point of \(P = MC \) because to do so would require lowering \(P \) to all consumers, which would lose the monopolist some profit. So society does not get as much of the monopolist’s output as it wants in terms of the good’s marginal cost and marginal value to consumers.

Having seen qualitatively how monopolists impose economic costs, we next turn to an analysis of the quantitative measurement of these costs.

Measure of the Waste from Monopoly

Using the tools of this and earlier chapters, we can see graphically how large the efficiency losses from monopoly turn out to be. Figure 11-6 is a simplified version of our earlier Figure 11-5(a). If the industry could be competitive, then the equilibrium would be reached at the point where \(MC = P \), that is, at point \(E \). Under the strict conditions of universal perfect competition and identical consumers, this industry’s quantity would be 6 while the price was 100.

Now let a monopolist enter the scene, perhaps aided by tariffs, regulations, or an important patent. It would set \(MC = MR \) (not to industry \(P \)), displacing the equilibrium to \(Q = 3 \) and \(P = 150 \) in Figure 11-6. Thus, price is higher and quantity restricted relative to a perfectly competitive industry.

![Figure 11-6 Monopolists cause economic waste by restricting output](image)

This figure illustrates the economic loss from monopolistic pricing. Assume that all other industries and factor markets are perfectly competitive and that all consumers are alike.

Then at competitive output point \(E \), social \(MC \) equals social \(MU \), so welfare is maximized. At monopolist’s output at point \(B \) (\(Q^* = 3 \) and \(P^* = 150 \)), social \(MU \) is above social \(MC \), and consumer surplus is lost. Adding together all the consumer-surplus losses between \(Q = 3 \) and \(Q = 6 \) leads to economic waste from monopoly equal to the red shaded area \(ABE \).

Using our tools of consumer surplus (see Chapter 6), we can measure the loss from such an exercise of monopoly power. Recall that for each unit of quantity reduction below \(E \), the net social loss is the vertical distance between the demand curve and the \(MC \) curve. The total loss in consumer surplus in this case is the sum of all such losses, represented by the triangle \(ABE \) in Figure 11-6. Why? Because the \(DD \) curve represents consumers’ marginal utility at each level of output, while the \(MC \) curve represents the lost.
utility from not producing the goods of other industries. Thus at \(Q = 3 \), the vertical difference between \(B \) and \(A \) represents the utility that would be gained from a small increase in the output of \(Q \). Adding up all the lost social utility from \(Q = 3 \) to \(Q = 6 \) gives the shaded region \(ABE \).\(^4\)

Empirical Studies of Costs of Monopoly Not content to stop with purely theoretical exercises, economists have in recent years pushed on to attempt to measure the overall costs of imperfect competition in the United States. In essence, these studies try to estimate the size of the \(ABE \) area illustrated in Figure 11-6, which represents the deadweight or net losses to society from monopoly.

An early study by Arnold Harberger calculated the costs of monopoly in manufacturing by estimating \(a \) the difference between \(MC \) and \(P \) and \(b \) the output restriction. The welfare loss is given by the area \(ABE \), which is approximately \(\frac{1}{2} \times (P - MC) \times (Q \) change as a result of monopoly). By summing the triangular welfare losses across industries, Harberger obtained an estimate of the total welfare loss from monopoly power.\(^5\)

Harberger’s finding shocked the economics community. He found the welfare loss from monopoly was slightly less than 0.1 percent of GNP. In today’s economy, it would total about $5 billion. One economist quipped that, if we believe this study, economists would make a larger social contribution fighting fires and eradicating termites than attempting to curb monopolies.

Many studies have refined and criticized Harberger’s original findings. Economists have questioned whether the parameters of the supply and demand curves were correctly estimated. After reviewing all these subsequent analyses, a careful recent survey concludes:

It appears that the deadweight welfare loss attributable to monopolistic resource misallocation in the United States lies somewhere between 0.5 and 2 percent of gross national product, with the estimates nearer the lower bound inspiring more confidence than those on the high side.\(^6\)

In addition, some critics of Harberger’s approach argue that his estimates ignored the potential impact of market structure upon technical advance or “dynamic efficiency.” The deadweight efficiency loss measured in Figure 11-6 assumes that the cost curves are the same for competitors and for monopolists. But studies, such as those discussed in Chapters 8 and 23, show that most of the growth in living standards arises from dynamic invention and technological change. Are sheltered monopolists the geese that lay the golden eggs of invention? Or do monopolists stifle ingenious would-be inventors? We return to this central question in next chapter’s discussion of the Schumpeterian hypothesis. At this point, we simply foreshadow that discussion by observing that the impact of monopoly on dynamic innovation and technical change is likely to far outweigh any deadweight losses of the kind displayed in Figure 11-6 and analyzed by Harberger and others.

Excess Profit of Monopoly

A second aspect of imperfect competition arises because a monopolist may be earning more than it would if it were forced to compete like a perfect competitor. If so, is that excess profit a good or a bad thing? Is the monopolist more or less worthy than other firms?

When people think of the monopoly problem, they give most weight to the issue of monopoly profits—to the way that monopolists are supposed to enrich

\(^4\)The loss from monopoly must be used with caution, however. First, our calculations must recognize that consumers and monopolists have divergent interests. Second, in almost all cases, monopolies arise when perfect competition would not be viable, that is, when cost curves are falling and the minimum efficient scale of plant is a sizable fraction of industry output (see pages 224–225 above). Competition would thus not be viable. When an industry is subject to declining costs, then the comparison is not with perfect competition but with a regulated monopolist, discussed later in this chapter.

themselves at the expense of hapless consumers. The distortions of income arising from monopoly are thus the second major economic problem growing out of imperfect competition, along with distortion of prices and quantities.

INTERVENTION STRATEGIES

What are the possible ways that government can intervene to curtail the costs of monopoly? There are many, some effective, some not. The following are important approaches that have been used over the years:

1. **Taxes** have sometimes been used to alleviate the income-distribution effects. By taxing monopolies, a government can reduce monopoly profits, thereby softening some of the socially unacceptable effects of monopoly. But if taxation overcomes the objections to monopoly based on equity, it does little to reduce the distortion of output. Recall that monopolies tend to raise price too high and produce too little. A non-distorting tax drains profits but has no effect on output. If the tax is less than ideal, it is likely to push the monopolist even further from the efficient level of output—raising price and lowering output even more.

2. **Price controls** have been used in wartime (and by the Nixon administration during the early 1970s), partly as a way of containing inflation, partly as a way of keeping down prices in concentrated industries. Studies indicate that these controls are a very blunt instrument. During the 1970s, profit margins of large corporations did indeed shrink during the period of price controls. But most economists feel that numerous distortions and subterfuges undermined the overall impact of the price controls: the period of price controls during the 1970s witnessed shortages of gasoline when its price was set too low, and shortages also cropped up for beef, natural gas, and even indispensables like toilet paper. To place the entire economy under price controls to curtail a few monopolists is like destroying the entire garden to kill a few chinch bugs. Few economists today advocate general price controls to curtail the economic power of monopoly.

3. **Government ownership** of monopolies has been an approach widely used outside the United States, but infrequently used here. In some industries (telephone, water, gas, electricity), it is thought that efficient production can occur only when firms have a monopoly or near-monopoly. In such cases, the real dilemma is whether to impose government ownership or government regulation on such firms. Studies of these industries indicate that, in Western countries, both approaches work well—the quality of nationalized Swedish or Japanese telephone service approached that of the privately owned system in the United States before the breakup of the Bell System’s monopoly; and state-owned railroads in Western Europe are models of efficiency compared to private U.S. lines that are often run-down and behind schedule. The choice between regulation and public ownership, then, may depend more on a nation’s history and institutions than on clear economic advantage.

The first three approaches to the monopoly problem are rarely used in the United States. Instead, the United States has developed two particular forms of public policy: regulation and antitrust policy.

4. Over the last 100 years, American government has evolved a new tool for government control of industry in the form of regulation. Economic regulation allows specialized regulatory agencies to oversee the prices, outputs, entry, and exit of firms in regulated industries; it pervades public utilities, transportation, and financial markets. It is, in effect, government control without government ownership, socialism in capitalist garb. This very important tool for containing monopoly and for establishing government controls over many business decisions will be discussed in the final section of this chapter.

5. The final means by which government can curtail monopoly power is antitrust policy. Antitrust policies are laws that prohibit certain kinds of behavior (such as firms joining together to fix prices) or curb certain market structures (such as pure monopolies). Such laws are useful for curbing abuses not only of monop-
olies but also of the oligopolies that dominate the American economy. Unlike regulation, which tells business what to do and how to price products, anti-trust policies are passive in that they tell businesses what not to do. This important policy approach will be explored in section C of the next chapter.

THE NATURE OF REGULATION

The previous section outlined the major approaches that a mixed economy could follow in controlling the costs of imperfect competition. We now focus on a single one of these—government regulation. This discussion first outlines the scope and nature of government regulation, then turns to an analysis of the purpose and effect of economic regulation.

In attempting to control or influence economic activity, governments can use incentives or commands. Market incentives, such as tax or expenditure programs, coax people or firms to do the state’s will. Or governments can simply command people to undertake or desist from certain activities. The latter course is the function of regulation, to command and control economic activity.

Regulation consists of government rules or laws issued to alter or control the operations of economic enterprises.

It is customary today to distinguish between two forms of regulation. Economic regulation refers to the control of prices, kinds of products, entry and exit conditions, and standards of service in a particular industry. Prominent examples are regulation of public utilities (telephone, electricity, natural gas, or water) as well as a miscellany of regulations in utility-type industries (transportation, finance, radio, and TV). This is the species of regulation that will be examined in this chapter.

In addition, there is a newer form of regulation, arising from concerns about the health and safety of workers and consumers, so-called social regulation. This denotes rules aimed at correcting a wide variety of side effects or externalities that attend economic activity. Programs to clean our air and water, or to ensure the safety of nuclear power or drugs or cars or toys, are the most prominent examples of social regulation. These will be addressed in Chapter 19.

Economic Regulation of Imperfect Competition

Economic regulation of American industry goes back just a century to the founding of the Interstate Commerce Commission in 1887. The ICC was designed as much to prevent price wars and to guarantee service to small towns as it was to control monopoly. Since that time, federal regulation spread to banks in 1913, to electric power in 1920, and to communications, securities markets, labor, trucking, and air travel during the 1930s. There was little legislation authorizing further economic regulation after World War II.

How much of the private economy is under government economic regulation? At its peak, in 1978, industries under some kind of price or other economic regulation comprised somewhat more than 15 percent of national income. This percentage has declined since 1978 because of the deregulation movement we will discuss later in this chapter.

Why Regulate Industry?

Regulation restrains the unfettered market power of firms. What are the reasons that the land of free enterprise shackles the invisible hand? Two major reasons underlie traditional economic regulation: First, economists stress the importance of containing market power. A second reason, deriving from public-choice theories, is that the regulators are "captured" by the regulated. Let's look at each.

Containing Market Power The traditional economic view of regulation is normative: that regulatory measures should be taken to correct major market failures. More specifically, the targeted failures are breakdowns of competition or, in extreme cases, natural monopoly.

Natural monopoly arises when the entire output of an industry can be most efficiently produced by a single firm. This situation would occur when the technology of the industry has significant economies of scale, and average costs therefore decline at all levels of output. This case is shown in Figure 11-2(a). An important example of a natural monopoly is local telephone service. The cost of sending wires into every home and gathering the wires in a local telephone
exchange is sufficiently great that it would not pay to have more than one firm provide such local telephone service, so this is a natural monopoly.

Another source of natural monopoly is economies of scope, which occur when a number of different products can more efficiently be produced together than by separate firms. For example, transport equipment firms show economies of scope—a firm producing cars and trucks has a cost advantage in producing buses and tanks. Why? Because specialized knowledge and machinery is shared across the different products. These firms have economies of scope in production of ground-based transport systems.

We know from our discussion of declining costs in Chapter 10 that pervasive economies of scale are inconsistent with perfect competition; we will see oligopoly or monopoly in such cases. But the point here is even more extreme: When there are such powerful economies of scale or scope that only one firm can survive, we have a natural monopoly.

In this case, section B of this chapter shows how a monopolist could jack up its price, gain enormous monopoly profits, and induce economic waste. Just such a situation is what economic regulation of monopoly prices and output is intended to curb.

There are other reasons often tendered for economic regulation, but these are less easily justified on economic grounds. A traditional argument is that regulation is needed to prevent cutthroat competition. This was one argument for continued control over the railroads, trucks, airlines, and buses, as well as for regulating the level of agricultural production. Economists generally feel that these arguments are a smoke screen behind which vested interests can lobby to maintain their entrenched market power.

Interest-Group Theories of Regulation A second theory of regulation holds that economic regulation results from the interplay of political forces and economic interests in regulated industries. This view, first put forth by economists from the University of Chicago, runs as follows: Regulation creates an economic return for some firms or groups. This happens, for example, because regulators limit entry into the regulated industry, as when the FCC limited entry into the telecommunications market or when the government limited entry into the airline market. Limiting entry or otherwise controlling the terms of doing business raises the profits of those firms who are established in the regulated industry. Hence, once an industry is regulated, it becomes in the economic interest of the regulated to perpetuate regulation. Put differently, the vested interests of the regulated firms create a demand for regulation; this demand asks for legislated market power. In terms of our discussion in section A, established firms want to maintain regulatory barriers to keep out competitors, raise prices, and keep profits high.

What about the supply of regulation? The supply is provided by legislators or administrators who operate in the political marketplace; these suppliers want to gain votes or political support to maintain themselves in office. Sometimes the currency for supporting politicians is campaign contributions and sometimes it is support on other issues. As long as regulated firms outbid other interest groups, providing ample support for political decision makers, the latter will maintain the regulatory cartel.

In effect, the interest-group theorists say, "You may say that regulation is in the interest of consumers and is necessary for maintaining low prices and curbing monopoly power. Don't believe it. Rather, regulation is a political activity like paying veterans benefits or agricultural support payments. It is designed to boost the incomes of producers by limiting entry and preventing competition in the regulated industry."

While this theory may seem far-fetched, it is supported by numerous studies of economic regulation. It has been shown that regulation often held prices up (in trucking, in airlines, in brokerage firms, in insurance), while the economic rationale for regulation was to prevent monopoly pricing abuses by holding prices down. Moreover, these findings are consistent
with the burgeoning public-choice literature explored in Chapter 19.
At the same time, while consumers have often been poorly served by economic regulation, people generally voted to regulate industries out of a sincere belief that regulation was in the public interest. Legislators long on intuition and short on economic understanding often promoted a regulatory approach with a firm conviction that it would better prevent price discrimination among customers or would ensure universal or regular service. The road to waste is paved with good intentions.

Public-Utility Regulation of Natural Monopoly

A review of the reasons for regulation suggests that the major economic argument is to prevent monopoly pricing by natural monopolists. Let us see exactly how regulators control the activities of monopolists. Recall that a natural monopoly is an industry in which the most efficient way of organizing production is through a single firm. Figure 11-7 shows the way the \(AC, MC \), and industry demand curve might look for a typical natural monopoly. Note that the industry demand curve (\(DD \)) intersects the firm’s \(MC \) curve

![Figure 11-7 Cost curves for a natural monopolist](image)

For a typical natural monopolist, the \(AC \) curve is still falling at the point where it cuts the industry's \(DD \) curve. Thus efficient production at that level of output requires output to be concentrated in a single integrated firm. (Can you estimate from the diagram how much more expensive it would be if \(Q^* \) were to be produced by two firms each producing \(\frac{1}{2}Q^* \)?)

Figure 11-8 Degree of natural monopoly in different industries

This figure arrays several regulated and unregulated industries by their inherent degree of natural monopoly or of perfect competition. Perfectly competitive industries are ones in which the minimum efficient scale of firm is minuscule relative to the market, while a natural monopoly is one where \(AC \) is still falling sharply at the level of total industry output. Agriculture and mining are inherently quite competitive, while local telephone and electric utilities are close to polar natural monopolies. The asterisk (*) indicates industries where prices are significantly affected by government regulation.
where AC is falling. If two similar firms were to produce the industry output, the average cost for the two firms would be considerably higher than that for a single firm.

How prevalent are natural monopolies in today's American economy? Figure 11-8 shows some representative examples from regulated and unregulated industries. Note that many industries that are still regulated or were recently deregulated (airlines, trucks, banks) have a low degree of natural monopoly. This low degree of natural monopoly in many regulated industries lends support to the public-choice theory of economic regulation—that regulation has long outlived its usefulness for consumers and lives on because of political contributions from protected firms in regulated industries.

Suppose that the legislature decides to impose public-utility regulation on a particular industry. How would it proceed? It would first set up a public-utility commission to oversee prices, service, and entry into and exit from the industry. The most important decision would be to determine the pricing of the monopoly firm.

Traditionally, regulation imposes average cost pricing on regulated firms. For example, an electric utility would take all its costs (fixed as well as variable) and distribute them to each product sold (say, electricity and steam). Then each class of customer would be charged the fully distributed average cost of that type of service.

Figure 11-9 illustrates public-utility regulation. Point M (associated with output Q_M) is the unregulated profit-maximizing output of the monopolist—sky-high price, tiny quantity, and handsome profits (as shown by the difference between price and average cost).

In traditional regulation, the monopolist is allowed to charge a price only high enough to cover average cost. In this case, the firm will set its price where the demand curve DD intersects the AC curve. Hence, the equilibrium is at point R, with output Q_R in Figure 11-9.

How good is the solution? Economically speaking, it probably does represent something of an improvement over unregulated monopoly. First, the owners of the monopoly are presumably no more deserving, or poorer, than the consumers. So there is no reason to let them extract monopoly profits from consumers. By wiping out monopolistic profit, we may end up with what most people feel to be a more equitable distribution of income. (But beware that value judgments beyond technical economics are involved in such a conclusion.)

Second, the regulators have lowered the discrepancy between price and marginal cost in making the monopolist cut its price from P_M to P_R. Why is this deemed an improvement? Because the higher output is worth more to consumers in marginal utility than their extra or marginal cost. The proof of this proposition was given in Figure 11-6: there we showed that at the monopoly equilibrium the social valuation of a monopolist's Q was above the forgone leisure or output in other industries.
Ideally Regulated Pricing If \(P = MC \) is such a good thing, why shouldn’t the regulators go all the way and make the monopolist lower \(P \) until it is at the intersection point of the \(DD \) and \(MC \) curves (at \(I \))? Actually, requiring \(P = MC \) or marginal-cost pricing is the ideal target for economic efficiency. But one serious problem arises. A firm that has declining cost, and produces where price equals marginal cost, will be incurring a chronic loss. Why so? The reason is illustrated in Figure 11-7: If \(AC \) is falling, then \(MC < AC \), so setting \(P = MC \) implies having \(P < AC \). When price (or average revenue) is less than average cost, the firm is losing money.

Firms of course will not operate for long when they are running at a loss. Hence the ideal regulatory solution requires the government to subsidize the decreasing-cost producer, presumably by funneling tax revenues to the firm. The requirement to raise taxes to pay for the ideal regulatory solution has prevented this approach from becoming a popular one, and it is only rarely employed.

The Deregulation Movement

For the last two decades, many economists have argued that the regulatory process was in reality creating monopoly power rather than curbing it. This idea occurred to economists partly based on the public-choice view of regulation analyzed above. In addition, observers noted that economic regulation had spread far beyond the local natural monopolies. By the mid-1970s, regulators were issuing their orders to railroads and trucks, airlines and buses, radio and TV broadcasting, oil and natural gas, to pecans and milk, and to virtually all financial markets. Most of these industries were closer to the pole of perfect competition than of natural monopoly, as is suggested in Figure 11-8.

Economists thus argued that the time was ripe for dismantling most of the existing economic regulation, and since 1975 the federal government has loosened constraints on many regulated industries. The deregulation of the airlines is one of the most dramatic examples.

From its creation in the New Deal of the 1930s, the Civil Aeronautics Board (CAB) viewed its role as deterring competition. No new trunk air carriers were allowed to enter the interstate market from 1938 to 1978. When innovative, low-cost and no-frills airfares were proposed, they were slapped down. The CAB was (as the public-choice view of regulation predicted) devoted to keeping airfares up, not down.

In 1977, President Carter appointed Alfred Kahn chairman of the CAB. A distinguished economist and critic of regulation, Kahn set out to allow more competition by entry and fare flexibility.* In 1978, legislation was passed to allow free entry and exit on all air routes. Airlines were freed to set whatever fares the traffic would bear. Many noneconomists fretted that there would be massive layoffs and loss of service without regulation—a forecast that proved far from correct.

After several years of experience, it is clear that competition has changed the entire structure of the airline industry. Studies indicate that (after correcting for inflation) average fares fell sharply over the years after deregulation; that utilization of aircraft increased; that there was minimal loss of service to small communities, with many others experiencing better service by small airlines; and that airlines have become extraordinarily innovative in their design of pricing strategies. Moreover, the vision of vigorous competition has certainly been borne out, with four bankruptcies among major airlines in the first 8 years of deregulation. Economists can be justly proud of their accuracy in forecasting the effects of airline deregulation.

*Kahn is known for his wit as well as his wisdom. He once admitted to a group of airline executives that he knew nothing about the business, saying that for him an airplane was simply marginal cost with wings. In 1978, Kahn left the CAB to become President Carter’s chief inflation fighter. In that post he furthered deregulation of the trucking industry. Kahn also predicted that, without an effective anti-inflation policy, the economy would soon be in a deep recession. But because White House aides seemed allergic to the word, he relabeled the recession a “banana” and spoke of the need for “bananas” to fight inflation.
A similar history occurred in the oil industry after its complete deregulation in February 1981. Oil companies began to introduce new forms of marketing to compete for the dwindling gasoline market. Many companies expanded self-service, abolished use of credit cards, and introduced electronic high-speed pumps. These innovations forced the price margin between gasoline and crude oil to shrink sharply after early 1981. Instead of gouging consumers, oil companies were competing with one another.

Many specialists feel that the successes of airline and oil deregulation can be applied to ocean shipping, agriculture, natural gas production, electricity generation, railroads, and communications. Political obstacles often prevent deregulation, however, for regulated industries have often secured positions sheltered from competition and prefer to continue the easy, regulated life.

SUMMARY

A. Patterns of Imperfect Competition

1. Most market structures in the real world fall somewhere on a line between the limiting poles of perfect competition and natural monopoly. Under imperfect competition, a firm has some control over its price, a fact seen as a downward-sloping demand curve for the firm’s output.

2. Important kinds of market structure are (a) natural monopoly, where a single firm produces all the output in a given industry; (b) oligopoly, where a few sellers of a similar or differentiated product supply the industry; (c) monopolistic competition, where a large number of small firms supply related but somewhat differentiated products; and (d) perfect competition, where a large number of small firms supply an identical product. In the first three cases, firms in the industry face downward-sloping demand curves.

3. Economies of scale, or decreasing average costs, are the major source of imperfect competition. When firms can lower costs by expanding their output, this tends to destroy perfect competition, since one or a few companies can kill off the numerous sellers required for competition. When the minimum efficient size of plant is large relative to the national or regional market, then cost conditions produce imperfect competition.

4. In addition to declining costs, other forces leading to imperfections are barriers to competition in the form of legal restrictions (such as patents or government regulation) and natural or contrived product differentiation (such as left-versus right-hand drive in cars or similar products made to seem different by advertising).

5. Major measures of market power are concentration ratios (such as the four-firm measure which calculates what percent of the market is served by the four largest firms) and the Herfindahl index (which calculates the sum of the squares of market shares).

B. Analysis of Monopoly

6. From the firm’s demand curve, we can easily derive its total revenue curve. From the schedule or curve of total revenue, we can easily derive its marginal revenue—the extra revenue resulting from the sale of an extra unit of output. For the monopolist,
marginal revenue will fall short of price because of the loss on all previous units of output that will result when it is forced to drop its price in order to sell an extra unit of output.

7. A firm will find its maximum-profit position where the last unit it sells brings in extra revenue just equal to its extra cost. This same \(MR = MC \) result can be shown graphically by intersecting \(MR \) and \(MC \) curves, or by the equality of the slopes of the total revenue and total cost curves. In any case, marginal revenue = marginal cost must hold at the equilibrium position of maximum profit, always.

8. Economic reasoning leads to an emphasis upon marginal advantages and disadvantages—to a disregard of bygones and of activities that go on no matter how you make a decision.

C. The Cost and Control of Monopoly

9. Exercise of monopoly power leads to economic waste when price rises above marginal cost. Empirical studies indicate that the actual waste or efficiency losses from imperfect competition are small relative to national output.

10. There is a spectrum between perfect competition and natural monopoly. Natural monopoly occurs when average costs are falling for every level of output, so that the most efficient organization of the industry requires a single firm. Few industries come close to this condition today—perhaps only local utilities like telephone, water, or electricity.

11. In conditions of natural monopoly, the state has several strategies. Taxation, price controls, and nationalization are little used today in the United States. The two major tools in American policy are currently regulation and antitrust laws.

12. Regulation consists of government rules commanding firms to alter their business conduct. While control of natural monopoly is often the stated goal of economic regulation, a new view holds that regulation is desired by regulated firms whose interests are furthered by exclusion of potential rivals. Moreover, the actual experience of deregulation over the last decade supports the interest-group view.

CONCEPTS FOR REVIEW

- perfect versus imperfect competition
- monopoly, oligopoly, product differentiation (natural or contrived)
- marginal (or extra) revenue, \(MR \)
- \(MR = MC \) at maximum-profit output
- barriers to competition (costs, legal restrictions, product differentiation)
- economic vs. social regulation
- natural monopoly

- three price outcomes under monopoly
 - (unregulated, regulated, ideal)
- economic vs. interest-group theories of regulation
- \(P > MR = (P - \text{loss on previous units}) \)
 - for imperfect competition
- \(MR = P, \ P = MC \), for perfect competitor
- inefficiency of \(P > MC \)
QUESTIONS FOR DISCUSSION

1. List the distinguishing features of perfect and imperfect competition. What are the main varieties of imperfect competition? In which category would you place: General Motors? Your local telephone company? Sears? Farmer Jones? Your college or university?

2. "A corporation charges what the traffic will bear." Explain the error here, and suggest a correct statement in terms of marginal revenue and marginal cost.

3. What is MR's numerical value when dP has unitary elasticity?

4. Figure 11-5(a) and (b) describes the maximum-profit equilibrium position. Explain in detail that it really shows two different ways of describing exactly the same fact: namely, that a firm will stop expanding its production where the extra cost of further output just balances its extra revenue.

5. The market shares in the U.S. airline industry for 1986 were the following:

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>United</td>
<td>17 percent</td>
<td>Northwest</td>
</tr>
<tr>
<td>American</td>
<td>14</td>
<td>TWA</td>
</tr>
<tr>
<td>Delta</td>
<td>12</td>
<td>Pan Am</td>
</tr>
<tr>
<td>Eastern</td>
<td>12</td>
<td>Eight others</td>
</tr>
</tbody>
</table>

Source: U.S. Department of Transportation, Air Carrier Financial Statistics (December 1986).

Calculate the four-firm and eight-firm concentration ratios and the Herfindahl index. What would be the change in these indexes if Delta merged with United?

6. Pear Computer Company has fixed costs of production of $100,000, while each unit costs $600 of labor and $400 of materials and fuel. At a price of $3000, consumers would buy no Pear computers, but for each $10 reduction in price, sales of Pear computers increase by 1000 units. Calculate marginal cost and marginal revenue for Pear Computer, and determine its monopoly price and quantity.

7. Explain in words and with the use of diagrams why a monopolistic equilibrium leads to economic inefficiency relative to a perfect competitor. Why is the condition $MC = P = MU$ of Chapter 10 critical for this analysis?

8. Review the three pricing outcomes in Figure 11-9. Can you think of the difficulties of implementing the ideal regulated price? (HINT: Where does the country get the revenues? Is MC easy to measure?) Similarly, can you think of reasons why many economists would prefer the unregulated to the regulated outcome? (HINT: What if P_M is not much above P_R? What if you worried about the interest-group theories of regulation?)

9. Why is the interest-group theory of regulation’s analogy of votes and dollars only an imprecise one?

10. Make a list of the industries that you feel are candidates for the title of “natural monopoly.” Then review the different strategies for intervention. What would you do about each industry on your list?

11. Show that a profit-maximizing, unregulated monopolist will never operate in the price inelastic region of its demand curve. Show how regulation can force the monopolist onto the inelastic portion of its demand curve. What will be the impact of an
increase in the regulated price of a monopolist upon revenues and profits when it is operating on (a) the elastic portion of the demand curve, (b) the inelastic portion of the demand curve, and (c) the unit-elastic portion of the demand curve?

12. Advanced problem: Firm A has \(d \) demand function, \(P = 15 - 0.05q \), and hence \(TR = qP = 15q - 0.05q^2 \). Its \(TC = q + 0.02q^2 \). Verify: \(MR = \frac{d(TR)}{dq} = 15 - 0.1q \), \(MC = \frac{d(TC)}{dq} = 1 + 0.04q \). So \(\frac{d(\text{profit})}{dq} = 0 \) at \(MR = MC \) or at \(15 - 0.1q = 1 + 0.04q \) or at \(q^* = 100 \). Then \(P^* = 15 - 55 = 10 > MC^* = 5 \). You can show that maximum profit = \(1000 - (100 + 200) = 700 \). Can you show that a tax of \$1/unit will add 1q to TC, cutting \(q^* \) by 100/14 units and raising \(P \) by 5/14 units? Were A a perfect competitor, with horizontal \(d \) at \$5, its maximum profit on \(q^* = 100 \) would have been \$500 - \$300 = \$200; now a \$1/unit tax would cut competitor's \(q^* \) by more than monopolist's—namely, by 100/4 = 25 units. Show all this.
APPENDIX: 11
Economics of Risk and Uncertainty

We have seen that supply and demand are versatile tools for economic analysis. In Chapter 10's analysis of competitive markets and in Chapter 11's extension to monopoly, we examined the functioning of markets with no risk or uncertainty. In those discussions, costs and demands were known for certain, and every economic actor was able to foresee how other firms would behave.

The reality is that business life is rife with risk and uncertainty. Demand fluctuates from month to month; input prices of labor, land, machines, and fuels are often quite variable; the behavior of competitors cannot be seen in advance. In some businesses, like farming or oil and gas, people make investments now and produce the output in the future, putting their profits as hostage to future price movements. And all of us are subject to random catastrophic losses from fire, hurricanes, earthquakes, or illness. Life is a risky affair.

Modern economics has recently begun to incorporate uncertainty into the analysis of business and household behavior. Although some elements of the economics of uncertainty must be reserved for advanced treatments, this appendix presents the basic ingredients. We here examine the role of markets in spreading risks over space and time, present the theory of gambling and individual behavior under uncertainty, and provide the essential theory underlying insurance markets. These topics are but a brief glimpse into the fascinating world of risk and economic life.

THE ROLE OF SPECULATION

We begin our discussion by considering the role of speculators. Who are speculators? They are people who buy (or sell) a commodity with an eye to selling (or buying) it later for a profit. The commodity might be grain or eggs or foreign currencies or government securities. Speculators are not interested in using the product or making something with it. Rather, they want to buy low and sell high, and the last thing they want is to see the egg truck roll up to their door.

You might wonder what kind of benefit this activity brings. Surprisingly, as we will see, even though speculators never once see a carton of eggs or a bushel of wheat, they may help even out the price differences among regions, or over time, or even between good and bad harvests.

Arbitrage and Geographical Price Patterns

Begin with the case of arbitrage between regional price differences. Arbitrage, which is closely related to speculation, occurs when a commodity is simultaneously bought in one market and sold in another market at a higher price. Let's say that the price of wheat is 50 cents a bushel higher in Chicago than in Kansas City. Further say that it costs 10 cents a bushel to insure and ship the wheat from one market to another. Then
an arbitrager (a person engaged in arbitrage) can purchase wheat in Kansas City, ship it to Chicago, and make a profit of 40 cents a bushel. As a result of arbitrage, the price differential between Chicago and Kansas City must always be less than 10 cents a bushel.

The frenzied activities of arbitrages—talking on the phone simultaneously to several brokers in several markets, searching out price differentials, trying to eke out a tiny profit every time they can buy cheap and sell high—tend to align the prices of identical products in different markets. Once again, we see the invisible hand at work, with the lure of profit acting to smooth out price differentials across markets and make markets function more effectively.

Nobody legislates prices to be equal in different markets. That follows from supply and demand.

SPECULATION AND PRICE BEHAVIOR OVER TIME

In an ideal competitive market there tends to be a definite pattern of prices over time just as there is over space. But the difficulties of predicting the future make this pattern a less perfect one: we have an equilibrium that is constantly being disturbed but is always in the process of re-forming itself—rather like a lake’s surface under the play of the winds.

Stabilizing Seasonal Patterns

Consider the simplest case of a grain, like corn, that is harvested at one period of the year. This crop must be made to last all year long if shortages are to be avoided. Since no one passes a law regulating the storage of grain, how is this desirable state of affairs brought about? Through the attempts of speculators to make a profit.

A well-informed speculator who is a specialist in this grain realizes that if all the grain is thrown on the market in the autumn, it will fetch a very low price because there will be a glut on the market. On the other hand, months later, with almost no grain coming on the market, price will tend to skyrocket. Speculators realize that by (1) purchasing some of the autumn crop while it is cheap, (2) withholding it in storage, and (3) selling it later when the price has risen, they can make a profit. This they do. But in doing so, they increase the autumn price, and they increase the spring supply of grain and lower its spring price. At the same time that they are equalizing the price over the year, they are also equalizing the supply coming on the market in each month—which is as it should be.

Moreover, if there is brisk competition among speculators, none of them will make an excessive profit over the costs that they incur (including, of course, the wages necessary to keep them in this line of activity). The speculators themselves may never touch a kernel of corn or a bag of cocoa, nor need know anything about storage, warehouses, or delivery. They merely buy and sell bits of paper. But the effect is exactly as described.

Now there is one and only one monthly price pattern that will result in neither profits
nor losses. A little thought will show that it will not be a pattern of constant prices. Rather, the ideal price pattern will produce lowest prices in the autumn glut; then prices gradually rise until the peak is reached just before the new corn comes in. The price must rise from month to month to compensate for the storage and interest costs of carrying the crop in storage—in exactly the same way that the price must rise over space from one mile to the next to compensate for the cost of transportation. Figure 11A-1 shows the behavior of prices over an idealized yearly cycle.

Spreading of Risks, or Hedging

In addition to their help in stabilizing prices, speculators have another important function. They can take risk on their own shoulders, thereby enabling others to avoid unwanted risks.

For example, the owner of a warehouse must carry large inventories of grain in the course of her business. If the price of grain rises, she makes a large windfall gain, but if grain prices fall, she incurs a large and unwelcome loss. But the warehouse owner might want to earn her living by storing grain; she has no interest in speculating on the price of grain. She can avoid grain-price risk by a process of **hedging**.

What is **hedging**? This is the process of avoiding a risk by making a counteracting sale or investment. In our warehouse example, the firm hedges by selling today the amount of grain that is in the warehouse but will not be shipped for a number of days or months.

To get a notion of how the process of hedging works out, here is a simplified example. Suppose I am buying and storing corn in the late fall. I am a specialist in running a warehouse and wish to stick to my job rather than become involved in the risky business of making speculative bets as to whether the price of corn will change between now and next spring, when I expect to stop storing corn and to sell it. In effect, I would really like to sell it now for an agreed-upon price that will compensate me for my storage expenses between now and later delivery time (amounting, let’s say, to 15 cents per bushel). If a speculative market exists, that is precisely what I can do by the device of hedging.
Here is where the speculator enters: He agrees to buy the corn now for future delivery. (Technically, the speculator might in September buy a 5000-bushel May corn-future contract from me at, say, $4 a bushel.) Now I am hedged. No matter what happens to the price of corn over the next few months, I have netted the same amount and I bear no corn-price risk. The hedge protects me from all corn-price fluctuations, for the speculator who bought my future corn took the price risk off my shoulders.

UNCERTAINTY AND DIMINISHING MARGINAL UTILITY

Moralists often attack speculators, charging that they are simply riverboat gamblers, no better than people who bet on the horses or enjoy cockfights.

Defenders of speculation resent these charges. They emphasize that an uncertain world necessarily involves risk and that someone must bear these risks. They claim that the knowledge and the venturesomeness of the speculator are chained to a socially useful purpose, thereby reducing fluctuations and risks to others.

Chance and the Law of Diminishing Marginal Utility

To understand the way that speculators (or, later in this appendix, insurance) can spread risks and raise economic welfare, we must return to the concepts of utility and marginal utility. Why is it that I, as a grain merchant or a farmer or a worker, find that large uncertainties about prices or about my consumption might be economically harmful?

One answer is to be found in the widely held belief that the gain in utility achieved by an extra $1000 of income is not so great as the loss in utility of forgoing $1000 of income. Where that is the case, a bet at fair odds involves an economic loss. The money you stand to win balances the money you may lose, but the satisfaction you stand to win is less than the satisfaction you stand to lose.

For example, as a farmer, I must contend not only with the risks of the weather on my farm; I must, as well, contend with price risks. Let's say that I expect that the price will be $4 per bushel, but this expectation arises from two equally likely outcomes with prices of $3 and $5 per bushel. In essence, unless I can shed the price risk, I am forced into a lottery where I can sell my 10,000-bushel crop for either $30,000 or $50,000.

But by the principle of diminishing marginal utility, I would far prefer a sure thing—to be able to hedge my price risk by selling my grain for the expected-value price of $4, yielding $40,000. Why? Because the loss of $10,000 is more painful than the gain of $10,000 is pleasant. If my income is cut to $30,000, I will have to cut back on important consumption, like my daughter's first-choice college or the family food budget. On the other hand, the extra $10,000 may only go into a new set of furniture or a second tractor.

Thus activities that reduce the uncertainty or risk about people's consumption lead to improvements in economic welfare.

1 This discussion leans on and illustrates our earlier discussion of marginal utility (Chapter 6).
WHY STABILIZATION BY SPECULATORS CAN INCREASE UTILITY

We can now use the tools of marginal utility to show how ideal speculation would maximize total utility over time. Suppose every consumer has a utility schedule that holds for each year independently of any other year. Now suppose that in the first of 2 years there was a big crop—say, 3 units per person—and in the second a small crop of only 1 unit per person. If this crop deficiency could be foreseen, how should the consumption of the 2-year 4-unit total be spread over the 2 years?

Agree, for simplicity, to neglect all storage, interest, and insurance costs and all questions of the interpersonal and intertemporal comparison of utility. Then we can prove this:

Total utility for the 2 years together will be maximized only if consumption is equal in each year.

Why is uniform consumption better than any other division of the available total? Because of the law of diminishing marginal utility. Here is the reasoning: "Suppose I consume more in the first year than in the second. My last unit's marginal utility in the first year will be low, and then in the second it will be high. So if I carry some crop from the first to the second year, I shall be switching from low to high marginal utilities—and that will maximize my total utility."

But is not that exactly what the ideal speculation pattern would accomplish? Yes, it is. If speculators can neglect interest, storage, and insurance charges and happen to forecast accurately next year's low crop, what will they do? They will figure it pays to carry goods over from this year's low price resulting from the bumper crop, hoping instead to sell at next year's higher price. But as each speculator subtracts from this year's supply and adds to next year's, what must finally happen? Equilibrium can be reached only when the two prices have been equalized. Then there will be no further incentive to carry over more crop. (Of course, a small payment for the speculator's effort might have to be included—but we can ignore all costs just to keep the example simple.)

A graph can illuminate this argument. If utility could be measured in dollars, with each dollar always denoting the same marginal utility, the demand curves would look just like the marginal utility schedule of Figure 6-1 on page 102. The two curves of Figure 11A-2(a) show what would happen if there were no carryover—with price first determined at A_1, where S_1S_1 intersects DD, and second at A_2, where the lower supply S_2S_2 intersects DD. Total utility of the red shaded areas would add up only to $(4 + 3 + 2) + 4$, or 13 per head.

But with optimal carryover to the second year of 1 unit by speculators, as shown in Figure 11A-2(b), Ps and Qs will be equalized at E_1 and E_2, and now the total utility of the shaded areas will add up to $(4 + 3) + (4 + 3)$, or 14 per head. A little analysis can show that the gain in utility of $\$1$ is measured by E_2's dark block, which represents the excess of the second unit's marginal utility over that of the third. Hence, one can show that equality of marginal utilities is optimal.

We thus see that ideal speculation serves the very important function of reducing the variation in consumptions, and (in a world with individuals who display diminishing marginal utility) increases total utility.
The red areas measure total utility enjoyed each year. Carrying 1 unit to the second year equalizes Q and also P, and increases total utility by amount of dark red block. This diagram will, as the next section shows, apply equally to a number of situations. It could be labelled "(a) without insurance" and "(b) with insurance." Or equally "(a) without arbitrage across regional markets" and "(b) with arbitrage across markets." Some would even propose an extension by assuming all individuals are the same, so that it could be labelled "(a) without redistributive taxation" and "(b) with redistributive taxation."

The example in Figure 11A-2 assumed perfect foresight about future events. Moreover, to the extent that flesh-and-blood speculators forecast accurately, they perform a useful stabilizing function, as do government agencies that help collect and disseminate data on which these intelligent private forecasts are made. And even if a few forecasters are pigheadedly using astrological data for their million-dollar bets, they will get eliminated as fast as their capital is depleted.

Speculative Bubbles: Having seen how ideal speculation can increase economic welfare, we must note the possibility of less happy outcomes. From time to time, investors lose sight of fundamentals and fall prey to rumors, hopes, and fears. Sometimes, speculation gets caught in the grip of a mass contagion, like the inexplicable dancing crazes that swept medieval villages. Like the Dutch tulip mania that sent the price of a single bulb higher than that of a house, like the South Sea Bubble in which companies sold stock at fabulous prices for enterprises which would "later be revealed."

While economic science may have difficulty explaining why "rational" investors would buy into such speculative bubbles, history documents numerous cases. Moreover, such destabilizing speculation serves the economy poorly; it is as if speculators take consumers from the "with carryover" to "without carryover" phases of Figure 11A-2. Destabilizing speculation leads to a deterioration in economic welfare.

ECONOMICS OF INSURANCE

We are now in a position to see why insurance, which appears to be just another form of gambling, actually has exactly opposite effects. For the same reasons that introduc-
ing useless risks or destabilizing speculation is bad, insurance is economically advantageous. Whereas the weather creates risks, insurance helps to lessen and spread risks.

In buying fire insurance on their house, the owners seem to be betting with the insurance company that the house will burn down. If it does not—and the odds are heavily in favor of it not burning—the owners forfeit the small premium charge. If it does burn down, the company must reimburse the owners to the tune of the agreed-upon loss. (For the obvious reason of removing temptation from hard-up homeowners who like fire engines and excitement, or technically to avoid such a "moral hazard," the face values of the insurance policies are often somewhat less than the money value of the property insured.) What is true of fire insurance is equally true of life, accident, automobile, or any other kind of insurance.

The function of the insurance company is to spread risks. It does this by pooling many different risks (millions of houses or lives or cars, thousands of factories or hotels). Note that what is unpredictable and subject to chance for the individual is highly predictable and uniform in the mass. Whether Joan Brown, age 50 and in good health, will live for 30 more years is a matter of chance. But Chapter 1's law of large numbers guarantees that out of 100,000-odd 50-year-old females in good health, one definite proportion will still be alive at the end of the period. The life-insurance company can easily set a premium which will earn the company a profit and at the same time lead to a gain in the prospective utility of individuals.

Where does the gain come from? It arises from the law of diminishing marginal utility, which holds that the gain from winning is less valued than the pain from an equal-sized loss.²

UNINSURABLE EVENTS AND SOCIAL INSURANCE

While insurance is undoubtedly a useful device for spreading risks across the population, the fact is that we cannot buy insurance for all the risks of life. The reason for incompleteness of insurance markets lies in the stringent conditions that must be met before insurance can be profitably marketed.

What are these conditions? First, there must be a large number of events. Only then will companies be able to pool different events and rely upon the law of large numbers. Moreover, the events must be relatively independent. No prudent insurance company would sell all its fire-insurance policies in the same building or sell only earthquake insurance in Palo Alto. Rather, insurance companies strive to spread their coverage around to different and independent risks. Finally, the insurance must not be contaminated by excessive moral hazard, which occurs when the insured individual can markedly affect the likelihood of the insured event. When all these conditions are met—when there are many risks, all more or less independent, and where the probabilities can be accurately gauged—in such conditions private-market insurance will flourish.

² Figure 11A-2 can show why risk spreading is economically advantageous. Label the left-hand pair of diagrams "without insurance" and the right-hand set "with insurance." Without insurance, people are faced with very different supplies of housing (or cars or health). Because of diminishing marginal utility, this will lower their total expected utility relative to a situation where they pay a fair insurance premium to be assured the same level of housing (or cars or health) no matter how the dice of life turn up.
Social Insurance But what about cases where the conditions for private insurance do not hold? In that situation, there may be a role for social insurance. Many important contingencies are ones for which insurance either is unavailable or is priced at unfavorable terms because of moral hazard or selection problems (the latter arise, for example, when health insurance is bought predominantly by sick people, thus driving the cost of insurance for healthy people way above its expected value). Market failures arise in unemployment insurance, health insurance, and to some extent old-age annuities.

In these circumstances, the government may be able to step in and provide broader coverage. The huge financial reserves of government, plus the ability to avoid selection bias through universal coverage, may make government insurance a welfare-improving measure.

SUMMARY TO APPENDIX

1. The intelligent profit-seeking action of speculators and arbitragers tends to create certain definite equilibrium patterns of price over space and time. To the extent that speculators moderate price and consumption instability, they perform a socially useful purpose. To the extent that they provide a market and permit others to hedge against risk, they also help to spread out social risk. But to the extent that speculators cause great fluctuations in stock and commodity prices (or in foreign exchange rates) they do social damage.

2. The economic principle of diminishing marginal utility shows why the stability of consumption is economically beneficial, and why insurance is sound: when consumption is equalized across different uncertain states, the average of expected level of utility rises. But all events are not insurable, and many risks remain.

CONCEPTS FOR REVIEW

- spatial P equality
- ideal seasonal price pattern
- law of diminishing marginal utility
- speculation, hedging
- consumption stability vs. instability
- arbitrage
- insurable and uninsurable risks
- social vs. private insurance

QUESTIONS FOR DISCUSSION

1. How does ideal speculation stabilize seasonal prices?
2. Early social reformers believed that people had essentially the same utility functions. Assuming that the parts of Figure 11A-2 represent different individuals before and after income redistribution, explain how equalization of incomes would lead to the maximum total utility.
3. List some important differences between private and social insurance.
4. In the early nineteenth century, markets for agricultural crops carried little of the
nation's agricultural output. Transport costs were very high. What would you expect to have been the degree of variation of prices across regions and across time?

5. Assume that a single risky event is undertaken by a firm (say, introduction of a $1 million minisupercomputer). Can you see how the widely diversified ownership of this firm could allow near-perfect risk spreading on the computer investment?

6. In the late 1980s, arbitragers who became rich upon the illegal use of inside information gave a bad name to speculation and arbitrage. Say that arbitrage were made a criminal offense. Explain the economic damage that could ensue.

7. Advanced problem for students of statistics: Suppose each of four cab companies faces accidents "normally distributed," with a standard deviation, \(\sigma = 3000 \), around a mean loss of $50,000. Let them now pool risks through mutual reinsurance. Show that this gives a total mean loss of $200,000 [or still $50,000 for each one's fair share; but now total variance is only \(4 \times (3000)^2 \), or \(\sigma^2 = 4\sigma^2 = 36,000,000 = (6000)^2 \)]. So each ends up with a standard deviation of only $1500 = $6000/4—halving the risk through quadrupling the size. Can you use the same reasoning to see the following? (a) Diversifying your wealth into four independent stocks, each with the same mean return and same (independent) variability, will halve the expected variability of your portfolio. (b) Pooling the independent peak-load demand of two utility systems will reduce the need to have twice the stand-by capacity. (c) A company's needed inventory tends to grow only like the square root of the number of its independent customers. Hence, a firm four times as big has only half the inventory cost per unit of sales.
Both monopolistic and competitive forces combine in the determination of most prices.

Edward H. Chamberlin

Earlier chapters surveyed the poles of monopoly and perfect competition. But many industries in today's American economy lie between these two extremes. Most markets exhibit imperfect competition among a handful of firms. We see such oligopolistic markets in manufacturing industries like automobiles, computers, and aircraft; in communications industries like telephone or TV broadcasting; in transportation areas like railroads and airlines; and so forth. So in this final chapter on product-market structures, we focus on the world of competition among the few.

Section A begins the survey by examining different theories of imperfect competition, with particular attention to markets with collusion, with a single dominant firm, and with many firms selling slightly differentiated products. Section B then explores the behavior of the giant corporation, moving beyond marginal revenue and cost curves to examine exactly how large companies affect our economy. We want to know just what motivates big firms. Do they finetune their prices so as to equate marginal cost and marginal revenue, or are they more likely to follow
rules of thumb? And is there a relation between the size of a firm and its inventiveness?

Finally, section C provides an introduction to the antitrust laws of the United States. These pages give a brief history and analysis of these laws—which are so important for maintaining competition and curbing the anticompetitive behavior of large firms.

A. PATTERNS OF IMPERFECT COMPETITION

A modern industrial economy like the United States contains many varieties of market structures. Glance back at Table 11-1, which shows the following major species:

* **Perfect competition** is found when a large number of firms produce an identical product—so many firms, indeed, that none of them can affect the market price. This species thrives mainly on farms.

* **Monopoly**, in which a single firm produces the entire output of an industry, was analyzed in depth in the last chapter. Such cases are rare in American capitalism today.

* Between the two poles lie intermediate forms of imperfect competition. In this chapter we first investigate oligopoly, in which an industry is dominated by a few firms, and then turn to monopolistic competition, in which a large number of firms produce slightly differentiated products.

Salient Characteristics

Different market structures exhibit different patterns of behavior. Table 12-1 selects four groups of industries (those with high, moderate, and low concentration along with perfect competition) and examines historical data on major characteristics. What do these data show?

As we see in column (3), there is little relationship between the degree of concentration and an industry's rate of profit: more concentrated industries tend to have only slightly higher profits than unconcentrated ones. This finding has been a surprise to critics of capitalism, who expect supernormal monopoly profits in giant firms.

Concentrated industries tend to have much higher levels of advertising and research and development (R&D) spending per unit of sales. In perfect competition, by contrast, advertising and research are absent.

Column (6) in Table 12-1 displays the degree of price flexibility in different market structures. From studies of individual firms, we know that firms in concentrated industries tend to be price setters, who engage in administered pricing. Administered pricing occurs when firms set or administer the prices of their goods and then hold those prices fixed for weeks or even months. For example, automobile manufacturers set the sticker prices on new cars at the beginning of the model year and adjust them only infrequently during the next 12 months. The price setting by oligopolists contrasts with auction pricing in perfectly competitive markets—markets like those for wheat or corn, where prices are determined by the hurly-burly of auctions and sometimes fluctuate more in an hour than administered prices change in a month.

OLIGOPOLY: COMPETITION AMONG THE FEW

An economic theory of oligopoly must account for the patterns of behavior shown in Table 12-1. In devising explanations for the origins and behavior of oligopolistic markets, economists stress three key factors: cost conditions, barriers to competition, and collusion.

Costs

The major factors determining market structure are the cost conditions and underlying technology of an
Characteristics of Market Structures

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>High concentration (motor vehicles, tobacco, non-ferrous metals)</td>
<td>79</td>
<td>13</td>
<td>2.7</td>
<td>2.3</td>
<td>38</td>
</tr>
<tr>
<td>Moderate concentration (paper, stone, clay, glass, chemicals)</td>
<td>42</td>
<td>12</td>
<td>2.1</td>
<td>2.2</td>
<td>25</td>
</tr>
<tr>
<td>Low concentration (apparel, printing, furniture)</td>
<td>26</td>
<td>11</td>
<td>0.6</td>
<td>1.3</td>
<td>14</td>
</tr>
<tr>
<td>Perfectly competitive (corn and wheat farming)</td>
<td>~0.01</td>
<td>Not available</td>
<td>~0</td>
<td>~0</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 12-1 Different patterns of research, advertising, and price flexibility are found in different market structures

We can distinguish four major groupings: industries with high, moderate, and low levels of concentration, and perfectly competitive industries. In each category, a small number of important representative industries have been selected.

The table suggests some key characteristics: (1) profit rates are only slightly higher in more concentrated industries; (2) research and development and advertising are more prevalent in concentrated industries; and (3) more concentrated industries tend to have much stickier prices than competitive industries that sell their products in auction markets. (Sources: U.S. Bureau of the Census, Census of Manufacturing; National Science Foundation; Federal Trade Commission, Quarterly Financial Report; Economic Report of the President; Internal Revenue Service, Corporation Income Tax, 1982.)

industry. We saw above (recall page 226 and Table 11-2) that the technology of many industries dictates that the point of minimum average cost occurs at a sizable fraction—10 or 20 or even 50 percent—of industry output. When an efficient plant for petroleum refining, automobiles, or aircraft manufacturing must produce a large fraction of market output, that industry will tend to be oligopolistic, with but a few large producers.

Barriers to Competition

The last chapter analyzed the role of barriers to competition, which are forces that prevent the full force of rivalry among firms from operating in an industry. Important barriers are legal restrictions (like patents on inventions, tariffs and quotas on foreign trade, and government regulation) and product differentiation (arising from natural effects like linguistic barriers,
from trademarks, and from perceived differences in quality of products). When such barriers are high, an industry may have few firms and limited rivalry.

Because of economies of scale and barriers to competition, oligopoly is the norm in manufacturing. In petroleum refining, the smallest efficient plant would cost almost $1 billion, while an automobile manufacturer would need to produce at least 300,000 units per year to attain an efficient scale of production. It is in the same manufacturing industries that we meet the highest concentration ratios in Germany and Japan and the United States.

Collusion

A final factor influencing a market's structure is the extent to which firms engage in collusion, which occurs when two or more firms jointly set their prices or outputs, divide the market, or make other business decisions.

The impetus to collude arises when firms realize that their prices and profits are closely interrelated. Each oligopolist learns from experience that, when it cuts its price, its rivals tend to meet or to exceed its price cut. Keen price rivalry and occasional economic warfare tend to lower everyone's prices, and everyone's profits as well. Sooner or later, the few sellers realize that they are in the same boat.

During the early years of American capitalism, oligopolists often merged or formed a trust or cartel. A cartel is an organization of producers in an industry who gather jointly to make business decisions, set prices, or divide up the market. Meeting at celebrated dinners, such as those that Judge Gary of U.S. Steel held around 1910, the sellers' cartel would engage in explicit collusion. This practice involved setting price well above the competitive level, sometimes attempting to drive it up to or near the monopoly price.

Today, however, it is strictly illegal in the United States and most other advanced market economies for companies to collude by jointly setting prices or dividing markets. (The antitrust laws pertaining to such behavior are discussed in section C of this chapter.) Nonetheless, if there are but a few large firms in an industry, they may engage in tacit collusion; setting prices at inflated levels or dividing markets among oligopolists through implicit agreement, by refraining from competitive measures, and without leaving any traces of meetings or joint actions or decisions. Under tacit collusion, firms refrain from using prices as a competitive tool and tend to quote rather similar prices—prices which come nowhere near the competitive level of price equal to MC.

MODELS OF IMPERFECT COMPETITION

There are myriad possible combinations of cost differences, barriers to competition, and degrees of tacit or explicit collusion. To describe them all would require an advanced treatise on industrial organization. For an introductory taste, we will serve up three of the most important cases of imperfect competition—collusive oligopoly, dominant-firm oligopoly, and monopolistic competition. This appetizer will just hint at the great richness of the subject of industrial organization.

Collusive Oligopoly

The simplest case of oligopoly arises when all the rivals sell similar products and fully recognize that they are all in the same boat. They realize that their fortunes depend on the extent to which joint decisions on prices and outputs drive prices down to unprofitable levels or allow a comfortable monopoly profit. In this case, oligopolists are sure to recognize their mutual dependence. They will see that any initial advantage A gets in undercutting B's price will be lost when B is induced to cut its price in return.

When a few firms produce a very similar product, therefore, they soon learn that the prices of all firms in the industry are likely to end up at the same level. For industrial chemicals, sold in open markets between sophisticated buyers and sellers, no major price differences can long persist, so we see products like petrochemicals or bulk acids quoted at identical prices by different sellers. To examine these kinds of markets analytically, assume that there are four firms of equal size—call them A, B, C, and D—each taking
In this case, firms may decide to cooperate and seek the collusive oligopoly equilibrium, a situation in which firms collude to set the monopoly price and maximize their joint or collective profits. What is the maximum-profit equilibrium for the collusive oligopolist? It is shown in Figure 12-1 at point E, the intersection of the firm’s MC curve with the MR curve derived from the DA DA demand curve (i.e., the demand curve with mutual dependence recognized). The price for the collusive oligopolist is shown at point G on DA DA, just above point E. Note that the price is well above MC, just as it is for the monopolist, indicating that output will be depressed below the efficient level where \(P = MC \).

Thus when oligopolists can collude completely and maximize their joint profits, taking into account their mutual interdependence, the price and quantity will be close to that of a single monopolist.

While a successful collusive oligopolist would raise price and lower output much as would a monopolist, in reality many obstacles hinder effective collusion. First, collusion is illegal, as we will see in section C of this chapter. Second, firms can “cheat” on the other members of an agreement by cutting their price to selected customers and thereby increasing their market share. This outcome is particularly prevalent in markets where prices are secret, where goods are differentiated, where there is more than a handful of firms, or where the technology is changing rapidly. Moreover, once the trust among rivals breaks down, it is as hard to put back together again as was Humpty-Dumpty, and non-collusive behavior is likely to take over.

How prevalent, then, is collusive oligopoly? According to Adam Smith, writing in 1776:

> People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends in a conspiracy against the public, or in some contrivance to raise prices.

Undoubtedly Smith exaggerated—but only a bit. An examination found that of 1043 major corporations, 94 have recently admitted to or been convicted of illegal price fixing.

On the other hand, we should avoid seeing conspiring businesses behind every bush. Most industries

Figure 12-1 When oligopolists collude or recognize interdependence, outcome is much like monopoly

After experience with disastrous price wars, each of the few rivals that dominate a given market is almost sure to recognize that each price cut is canceled by competitors’ price cuts. So oligopolist A may estimate its demand curve \(D_A \) by assuming others will be charging similar prices. In the extreme, firms may illegally collude to set a jointly profit-maximizing price. In both cases, the price will be very close to the level that a single monopolist would choose.

1 Why is a collusive oligopolist’s demand curve about as inelastic as the industry demand curve? Recall from Fig. 10-1 that when firm A takes other firms’ prices as given, then A’s demand responds powerfully to a change in A’s price. If firm A’s price is a little above other firms’ prices, it will get none of the market; if firm A undercuts other firms, it gets all the market. Thus demand looks much more elastic to the firm in the non-collusive than in the collusive case. (Indeed, can you see why if there are \(n \) equal-sized competitive firms, demand to the firm looks \(n \) times more elastic than to the industry?)
experience vigorous competition from both domestic and foreign firms. Moreover, the attempt to raise prices does not always succeed. And the low rates of profit of concentrated industries shown in Table 12-1 suggest that, however much rivals would like to behave collusively, successes are the exception rather than the rule.

Two failures at collusion can be cited. First, the Organization of Petroleum Exporting Countries (OPEC) has again and again attempted to set a monopoly price for oil. This would require member countries to curtail production to keep prices high. On several occasions, however, countries inside and outside OPEC have refused to cut production. The most dramatic collapse of collusion for the oil cartel came temporarily in 1986, when an outbreak of price cutting by Saudi Arabia drove oil prices from $28 per barrel down to below $10.

An even more dramatic example is the following tape-recorded conversation between the heads of Braniff and American Airlines (with expletives deleted):

Putnam (Braniff): Do you have a suggestion for me?

Crandall (American): Yes, I have a suggestion for you. Raise your... fares 20 percent. I'll raise mine the next morning... You'll make more money and I will, too.

Putnam: We can't talk about pricing.

No one knows how frequent are such abortive attempts to rig prices.*

*Business life is full of strategic bargaining like that between Putnam and Crandall. A century of theorizing by economists about what mind A thinks mind B will do if B thinks A will do such-and-such culminated in the pathbreaking work by J. von Neumann and O. Morganstern, *The Theory of Games and Economic Behavior*, 3d ed. (Princeton University Press, Princeton, N.J., 1953). While this mathematical theory cannot clear up all the philosophical problems of how two omniscient minds will act against each other in an interdependent world, it does offer many facetious insights for political warfare as well as economics. Some examples of game theory at work are: A teacher picks quiz questions at random from a book of test questions. A security guard makes rounds at random, not in a discernible pattern. Facing you as a smart rival, I work hard to maximize my most vulnerable defense, knowing you will find out the weakest link in my chain. I bluff at poker, not simply to win a pot with a weak hand but rather, to ensure that all players do not drop out when I bet high on a good hand.

Game theory is also key to understanding the dynamics of the arms race. It can help us understand why, when the United States develops a new weapons system (A-bomb, H-bomb, cruise missile, Star Wars), the military advantage is only temporary. Why? Because the Soviet Union reacts to minimize the potential damage from each new weapons system or to imitate the system itself.

The principles of game theory, along with applications to economic behavior, are sketched in the appendix to this chapter.

Dominant-Firm Oligopoly

Often an industry is composed of one large and dominant firm surrounded by a number of smaller rivals. Early in this century this pattern was exemplified by Standard Oil, U.S. Steel, and Alcoa. More recently IBM, Xerox, General Motors, and AT&T dominated their markets.

Where the largest firm controls 60 to 80 percent of the market, that firm has a number of possible strategies. The most profitable is often to cede part of the market to the competitive fringe and then to behave as a monopolist for the remaining 60 or 80 percent of the market that the firm controls. Such a market is called a dominant-firm oligopoly, which is illustrated in Figure 12-2. Here, the demand curve for the entire industry is shown as the black DD curve, while the demand for the dominant firm is dd.

Consider first the competitive fringe. We have not shown the competitors’ supply curve directly; rather, we show the competitive firms’ supply as the horizontal distance from the black DD curve to the dominant firm’s red dd curve. Thus way up at price P*, the competitive fringe is supplying all the industry demand. Similarly at price P0, the competitive fringe supplies the quantity between L and C (or Q* on the horizontal axis).

The key to understanding how prices are set in dominant-firm markets is the derivation of the dominant firm’s demand curve, which is the red dd curve. How is this derived? We find the dominant firm’s dd curve by subtracting the competitive fringe’s supply from market demand. Hence, at the price P0, the
market demand is shown by the segment NC, while
the competitive fringe is supplying LC, so the demand
for the dominant firm’s product is NL. By calculating
at each price the difference between the market de-
mand and the competitive fringe’s supply, we derive
the dominant firm’s dd demand curve. Note that at
every price the dominant firm’s demand curve is
somewhat flatter and more elastic than the market DD
demand curve—the difference reflecting the fact
that, as the dominant firm’s price rises, the firm will
lose more and more business to the competitive
fringe.

We can understand price and output decisions in
this market by examining cost and demand conditions
for the dominant firm. In Figure 12-2, red dd is its
demand curve, of which red MR is the applicable
marginal revenue curve. In addition, red MC is the
dominant firm’s marginal cost curve. The profit-
maximizing price is found by applying our monopoly
analysis to the dominant firm’s MC and MR curves.
Equilibrium occurs at the intersection of the dominant
firm’s marginal cost and marginal revenue schedules
at point A. At equilibrium price PD, the dominant
firm is supplying Q^D (from point N to point L), while
the competitive fringe is supplying Q^C (from point L to
point C).

The price and quantity under dominant-firm oligo-
opoly will differ markedly from either the monopo-
listic or the competitive outcomes. If the dominant
firm were to behave competitively, it would set its
output where its marginal cost intersects its demand
curve, at point G, leading to total industry output at
point E on the demand curve. Note how much lower
is price and how much higher is output in the competi-
tive case.

What if the industry were suddenly monopolized
and the dominant firm wiped out the competitive
fringe? Elimination of the fringe would present the
dominant firm with a different MR curve (the new
monopoly MR curve would be derived from the total
market demand curve, DD). Drawing in such an MR
curve will help show that the monopoly equilibrium
without the fringe will come way up the DD demand
curve at point M of Figure 12-2, with a higher price
and lower quantity than the dominant-firm oligopoly
equilibrium.

For most of its history, OPEC has behaved as a
dominant-firm monopolist. Saudi Arabia and its close
neighbors (Kuwait and smaller Gulf countries) con-
trol approximately 60 percent of the productive ca-
pacity of OPEC. The Saudi group has been unable to
persuade some of its members to limit production as a
way of maintaining OPEC’s control on world oil mar-
kets. Since 1982 (with the exception of the 1986 price
war) Saudi Arabia has allowed the other countries to produce a given amount, while Saudi production was set in order to maintain the cartel’s official price.

In terms of Figure 12-2, then, OPEC has agreed upon the price \(p^D \). Shifts in market demand (\(DD \)) and the competitive fringe’s supply (\(DD \) minus \(dd \)) were absorbed by changes in the output of the dominant producer (Saudi Arabia).

There are variants of the dominant-firm model. One important case is price leadership by the dominant firm. Here the largest firm performs a signaling role, showing other firms what it thinks the collusive oligopoly price should be. Steel, cigarettes, automobiles, and cereals were industries in which a dominant firm at times during past decades acted like a pilot, attempting to steer prices upward from competitive levels.

As a result of price leadership, an oligopoly might well have high prices without a telephone call like that of American Airlines’ Crandall. Collusion can be tacit. But the increased pressure of foreign competition and deregulation has probably made tacit collusion more difficult during the last decade or so. As a result we may have witnessed a sharp reduction in the power of dominant firms to be price leaders. The reduced rate of profit in American industry since the 1960s may indicate the extent to which increased domestic and foreign competition has eroded dominant-firm profit margins.\(^2\)

Monopolistic Competition

A third important type of imperfect competition occurs when many firms sell similar but not identical products. This variety, first analyzed by Edward Chamberlin, is called monopolistic competition.

Monopolistic competition resembles perfect competition in three ways: there are many buyers and sellers, entry and exit is easy, and each firm takes other firms’ prices as given. What is the difference? The distinction is that products are identical under perfect competition (as, for example, the red winter wheat sold in the Chicago Board of Trade), while products are differentiated under monopolistic competition.

\(^2\)Another important approach is the “limit pricing model.” This is exploited in question 9 at the end of this chapter.

![Figure 12-3](image)

Figure 12-3 Free entry of numerous monopolistic competitors wipes out profit

The typical seller’s original profitable \(d’d’ \) curve will be shifted downward and leftward by entry of new rivals. Entry ceases only when each seller has been forced into a long-run, no-profit tangency such as at \(G \). At long-run equilibrium, price remains above \(MC \), and each producer is on the left-hand declining branch of its long-run \(AC \) curve.

Examples of such differentiated products are different brands of gasoline or soft drinks or prescription drugs or apartments. Within each product group, products or services are closely related but different in some way. (What are the similarities and differences among some colleges that you know?)

The sources of product differentiation are not important at this point. What is important is that product differentiation leads to a downward slope in each seller’s demand curve.

Figure 12-3 shows a grocery store in short-run equilibrium at \(G’ \). Its \(d’d’ \) demand curve is sloped because its product is a little different from anyone else’s. Price is at \(G’ \), and the firm is making a handsome profit (because price at \(G’ \) is above \(AC \)).

But our grocery store has no monopoly on land or lettuce. Entry is free, so new firms can produce their own differentiated products. For simplicity, assume that costs are the same for new and existing firms (so all firms have the same \(AC \) curve). Since the industry is profitable, new firms are drawn into the market.
These new entrants cut into the demand curve of old firms, and our firm’s $d'd'$ curve moves leftward to dd.

What is the ultimate economic outcome? Grocery stores will continue to enter the market until all economic profits have been beaten down to zero. Thus, final long-run equilibrium for the typical seller ends up at the tangency point G where the dd curve just touches (but never goes above) the firm’s AC curve. Point G is a long-run equilibrium for the industry because profits are zero and no one is tempted to enter or forced to exit the industry.

The monopolistic competition model describes many important features of American capitalism. The first feature, noted at the beginning of this chapter in Table 12-1, is that the rate of profit in many concentrated industries seems low relative to what a monopolist, or even a crafty oligopolist, should be able to earn. Figure 12-3 suggests that monopoly profits will be competed away as new firms create new differentiated products—Pepsi competes with Coke, Newport with Kools, Hondas and Toyotas drive down prices of Fords and Chevrolets.

Some economists go on to a second point, that monopolistic competition is inherently inefficient. Look back at the long-run equilibrium point G of Figure 12-3. At that point, price is above marginal cost; hence, output is reduced below the ideal competitive level.

In light of its inefficiency, critics of monopolistic competition go on to a third point: “These industries are the quintessence of what capitalism doesn’t need. We have hundreds of thousands of retail outlets, hundreds of virtually identical soaps or aspirins—all selling at prices well above marginal costs. If we could somehow get rid of a quarter or a half of these products, and standardize on just a few designs, wouldn’t the economy gain enormously?”

Modern analysts find that the answer to this question is not clear-cut. They respond: “By decimating the monopolistic competitors, you might well lower prices. But you might also lower ultimate consumer welfare as people would no longer have the desired diversity of goods. The efficiency losses from too high prices are small, while people appear willing to pay a great deal for diversity rather than all going around in identical gray shirts or box-like cars.”

Where can we look to see an illustration of monopolistic competition in action? Perhaps the most familiar example is the retail gasoline market. There are 140,000 gasoline stations in the United States, each selling to an infinitesimal part of the national market. But each one has a little bit of market power, or slope to its demand curve. Its product differentiation comes from location (being near one’s normal travel route), the type of gasoline sold, cleanliness of the station, and ancillary services (like windshield cleaning or a convenience store at the same location).

You might think that with a bit of slope to their demand curve, gasoline stations would make a profit over the normal return to capital and management. In fact, they don’t. Entry and exit tend to regulate the level of profits so that, over the long run, gas stations earn but a normal economic return on their invested capital.

Again and again the same story is told—how in markets like retailing or wholesale trade, where barriers to entry are low and products are differentiated, numerous firms produce inefficiently small quantities and have no economic profits to show for their efforts.

B. BEHAVIOR OF LARGE CORPORATIONS

The first part of this chapter presented the major elements of the theory of imperfect competition—describing how the price and quantity in oligopolistic markets depend upon the number of firms and upon the degree of their successful collusion.

We now turn to a discussion of three of the central controversies surrounding large firms. We begin by asking whether firms really maximize profits. A careful review of principles of markup pricing will suggest limitations on firms’ profit-seeking tendencies.
We then examine the Schumpeterian defense of monopoly as the major source of innovation of new products and processes. We conclude by summarizing the pros and cons of imperfect competition.

Do Firms Maximize Profits?

To what degree do business firms actually try to maximize their profits? To what extent do they succeed when they try?

We cannot give a precise answer to these questions, but this much is certainly true: If a firm is reckless in making its cost, revenue, and profit decisions, then competitive forces will eventually eliminate that firm, or its managers, from the scene. And these forces operate more powerfully in more competitive markets. Hence, to survive, a firm must pay some attention to the profitability of its actions.

But this does not necessarily mean that every oligopolist or monopolist is seeking desperately to squeeze the last ounce of profit from every transaction. As soon as a firm gains some market power, it begins to have the ability to seek other objectives than pure profit maximization. For example, if a dominant firm decides to set its price a bit below the profit-maximizing level, it can sell more output without going bankrupt. Or if its price is set a bit above the profit-maximizing price, it will still sell enough output to make a tidy profit.

Why might a firm deviate from pure profit maximization? There are two general classes of reasons—bounded rationality and alternative goals.

Bounded rationality denotes behavior in which firms or consumers do not attempt to squeeze the last drop of profit or utility out of their actions. Why not? In reality, people have limited time, resources, and information and are therefore forced to make imperfect decisions. Consumers cannot spend all day looking for the lowest-priced head of lettuce. Searching for low prices or for the absolute optimum requires scarce time and resources. And decision making, like all other valuable commodities, must be rationed out.

Because perfect rationality is too costly, people and firms must settle for fairly good decisions. Moreover, in some repetitive situations, the use of a "rule of thumb"—or simplified decision rule—is a way of making decisions that greatly economizes on time. Markup pricing, to be discussed in a moment, is an example of a rule of thumb that has its roots in bounded rationality.

A second reason that firms do not single-mindedly maximize profits is that they sometimes pursue alternative goals. We saw in Chapter 7 that ownership is separated from control in today's giant corporations. Won't managers therefore have different incentives from shareholders? Shareholders are mainly interested in high dividends and stock-price increases. But managers may be motivated by the desire to run a large firm—much as kings want large empires. Further, they may shun risky investments for fear that if the firm loses money on some project the managers may lose their jobs. And directors may want to siphon large salaries and bonuses out of stockholders' earnings.

While some alternative goals may be innocuous, one particular conflict between management and owners raises a serious economic concern. If firms avoid worthwhile but risky investments because their managers fear the possibility of large losses, the pace of invention and innovation could be slowed. On a large scale, excessive aversion to risk could retard productivity growth and thereby hurt a nation's living standard. The best way to guarantee adequate investment and risk taking is to encourage the coexistence of different varieties of firms—small firms, foreign firms, and privately held firms—that are waiting in the wings to pounce on a market should the leaders show excessive caution or technical sloth.

Markup Pricing

One of the classical instances where firms deviate from pure profit maximization is in their price setting. Observation shows that firms rarely sit down to calculate marginal revenues and marginal costs and set price on that basis. Most firms have only a vague idea of the shape of their demand curve or of the price elasticity for their products. They cannot determine their optimum price and output with near exactitude. Yet prices must be set.

Here is where average cost plays an important role. If you were to discuss pricing with a management consultant, she might tell you the following:
Put yourself in the seat of the president of a company producing hundreds of products. You have a rough forecast of this year’s sales and costs, but only a hazy idea of the demand elasticities for your various products.

You might start with your sales forecasts. Then you turn to the cost experts to determine the average cost of producing each product in question at some standard or normal level of sales. There will be plenty of headaches in arriving at any sort of figure, but the accountants provide an estimate of the average costs.

Here is where the surprise comes:

Armed with the information about sales and costs, you will almost surely never set your price by an MR and MC comparison. Rather, you will generally take the calculated average cost of a product and mark it up by adding a fixed percentage—5 or 10 or 20 or 40 percent of the average cost. This cost-plus-markup figure then becomes the selling price. Note that if all goes as planned, the price will cover all direct and overhead costs and allow the firm a solid profit.

Investigators of actual business pricing policies have testified that corporations often do follow the above-described practice of quoting prices on a “cost-plus-markup” basis. Case after case shows that markup pricing is the norm in imperfectly competitive markets.

However realistic, this analysis is incomplete. It stops tantalizingly short of telling us why the average markup is 40 percent in one industry and 5 percent in another. It cannot tell us why the average markup in 1984 was 13 percent in pharmaceuticals and minus 1 percent in metals. To explain the level of the markup requires an analysis of the market structure, along with demand and costs.

Does the prevalence of markup pricing suggest that firms do not maximize profits? Or, worse, that managers are simply inert slugs who follow the same markup pricing rules that their predecessors used? In a few cases, this conclusion is probably warranted. More often, however, markup pricing should be seen as a rule of thumb—a management tool produced by the requirements of bounded rationality. In a large company producing tens of thousands of products, it is simply not possible to set every price every day. By the use of markup pricing, and adjustment of markups from time to time, firms can move in steps toward their desired profit-maximizing outcome. Just as a baseball pitcher may not calculate the equations of motion for every pitch, so managers in search of excellence may not always have MC and MR in mind as markups are adjusted up and down in the search for higher profits.

Markup pricing is only one example of how we can better understand seemingly irrational economic behavior when we remember the principle of bounded rationality—that decision makers’ time is scarce and information is imperfect.

The Schumpeterian Hypothesis

The last chapter has contained a litany of complaints about imperfect competitors. They tend to set prices too high and quantities too low, they may earn supernormal profits, and so on. But we must now turn to one point of defense—and a powerful one. In a line of argument originating with Joseph Schumpeter, many have argued that the wellspring of innovation and technical change is found in giant corporations and in imperfect competition. While it is true that imperfect competitors cause inefficiencies because their prices lie above marginal costs, Schumpeter thought monopolies to be the engines of dynamic invention and technological growth in a capitalist economy.

We have already seen in Table 12-1 that research and development (R&D) is more intensively pursued in concentrated than in competitive industries. The classical case in point is the Bell Telephone Labs. This giant research organization operated with the support of the world’s largest monopoly—AT&T. Over the four decades before the breakup of the Bell System, Bell Labs invented or made major contributions to transistors and semiconductors, microwave and fiber optics, bubble memory and programming languages, satellites and electronic switching. Over the 1970s fully 10 percent of all American industrial basic research was conducted by Bell Labs.

Powerful R&D efforts have shown similar results in du Pont, RCA, IBM, GE, GM, and many other large companies.
Where does the imperfection of competition enter? R&D and invention are quite distinct from other economic activities. They are important examples of externalities, which, as Chapter 3 described, arise when firms or people impose costs or benefits on others without paying the appropriate costs or receiving the proper benefits. When Bell Labs invented the transistor, the benefits (in terms of new, improved, or cheaper products) spread widely around the globe. Japanese TVs, German cars, American microcomputers, everyone’s digital watches—all these goods benefited enormously from transistors and semiconductors. But the inventor, Bell Labs, received only a tiny monetary reward in the form of royalties on the inventions. Most of the benefit from these inventions flowed to consumers in the form of less expensive and higher-quality goods and services.

The inability of firms to capture the full monetary value of their inventions is called inappropriability. The example of the transistor, where the inventor reaped but a tiny fraction of the value of the invention, is quite typical. Careful studies by Edwin Mansfield and others have found that the social return to invention (that is, the value of inventions to all consumers and producers) has been around 3 times the private return to invention (that is, the monetary value to the inventor alone).

To the extent that the rewards to invention are inappropriable, we would expect that private research and development is underfunded and that the nation invests too little in industrial R&D. Moreover, the most significant underinvestment is likely to lie in basic research, and this tendency has led most governments to subsidize most basic research in health and science.

The inappropriability of invention also explains why large firms are much more likely to undertake R&D than are small firms. If IBM sells 65 percent of the nation’s computers, then any computer invention is likely to benefit IBM in a major way. It has a strong incentive to invest in R&D. Small inventors have a much smaller incentive: if I were to invent a new disk drive, since I sell only a negligible fraction of the nation’s computers it would be much more difficult for me to profit from my invention. Moreover, only if I can receive an enforceable patent can I as an individual or small firm collect the fruits of my inventive activity. Finally, only large firms can afford the substantial development and marketing costs for new products, thereby gaining a head start on the competition in the race for a large market share.

It was just this view that led Joseph Schumpeter to advance his bold hypothesis.

The modern standard of life of the masses evolved during the period of relatively unfettered “big business.” If we list the items that enter the modern workman’s budget and, from 1899 on, observe the course of their prices not in terms of money but in terms of the hours of labor that will buy them—i.e., each year’s money prices divided by each year’s hourly wage rates—we cannot fail to be struck by the rate of the advance which, considering the spectacular improvement in qualities, seems to have been greater and not smaller than it ever was before.

Nor is this all. As soon as we go into details and inquire into the individual items in which progress was most conspicuous, the trail leads not to the doors of those firms that work under conditions of comparatively free competition but precisely to the doors of the large concerns—which, as in the case of agricultural machinery, also account for much of the progress in the competitive sector—and a shocking suspicion dawns upon us that big business may have had more to do with creating that standard of life than keeping it down.

An even greater enthusiasm was expressed by J. K. Galbraith:

A benign Providence . . . has made the modern industry of a few large firms an almost perfect instrument for inducing technical change. . . . There is no more pleasant fiction than that technical change is the product of the matchless ingenuity of the small man forced by competition to employ his wits to better his neighbor. Unhappily,

4Countries have long recognized the need for public protection for inventions. Today, the United States awards patents to the inventor of an original product or process. The holder of a patent has the monopoly right to use or profit from the patented invention for 17 years. By award of such a monopoly in well-defined circumstances, the government increases the degree of appropriability for the invention and thus increases the incentive to invent, especially for small inventors. Examples of successful patents include those for the telephone, the Xerox machine, and the Polaroid camera.

it is a fiction. Technical development has long since become the preserve of the scientist and the engineer. Most of the cheap and simple inventions have, to put it bluntly, been made.6

Because economists had been taught about the evils of monopoly and the wastes of imperfect competition, this bold pronouncement of the Schumpeterian hypothesis came as a profound shock to the economics profession. Perhaps imperfect competition is the major source of our high living standards rather than an impediment to rapid economic growth.

This hypothesis has been subject to careful scrutiny for over four decades. How well have these views survived in the academic marketplace? To begin with, everyone grants the basic truth in the Schumpeterian hypothesis. We hardly see our local grocery store, gasoline station, or tomato farmer supporting a large R&D establishment. Thus, in 1982, firms with more than 5000 employees accounted for 87 percent of privately financed R&D. In the quarter-million manufacturing firms with less than 1000 workers, only 4 percent had a formal R&D program, as compared to 91 percent of the large firms.

While most will concede that tiny firms do little research, some will go no further. Skeptics concerning the Schumpeterian hypothesis note that many firms with low market shares have substantial and successful R&D programs. Moreover, when John Jewkes and his colleagues traced the history of the most important inventions of this century, they found that less than half came from the laboratories of large corporations. The importance of small inventors has been confirmed in recent years as major new products seem to arise from nowhere—as occurred when Apple Computer, Inc. launched the microcomputer revolution in the early 1980s.

To summarize, the relationship between innovation and market power is complex. Because large firms have made a major contribution to research and innovation, we should be cautious about claims that bigness is unmitigated badness or about plans to subdivide firms into tiny establishments. At the same time, we must recognize that small businesses and individuals have made some of the most revolutionary technological breakthroughs. To promote rapid inno-

vation, a nation must preserve a variety of approaches and organizations.

A Balance Sheet on Imperfect Competition

Now that we have completed our survey of the major theories and key controversial issues of monopoly and oligopoly, let us sum up the positive and negative points about imperfect competition.

- Output restrictions Imperfect competitors produce economic waste when they set prices too high relative to marginal cost. Thus consumers in the monopolistic or oligopolistic industry are paying more than the good is costing in terms of goods forgone in other industries.

- Economies of scale In many industries, there are pervasive economies of scale. To make the car or steel or aircraft industries atomistic would be to push firms far up their average cost curves. Where concentration of industry is driven by scale economies, consumers may face prices above marginal costs—but prices are probably still far below what they would be in an economy where every town had its own steel mill and every state its aircraft manufacturer.

- Dynamic research and development Similarly, the Schumpeterian hypothesis argues that monopolies and oligopolies are the major source of innovation and technological progress. If we atomized our large firms, dividing them into many small firms, we might at the same time pulverize the nation’s great private R&D laboratories.

Policies toward Large Firms

In weighing this assessment of the strengths and weaknesses of markets characterized by imperfect competition, experts point to three important conclusions for economic policy:

- Keep barriers low Barriers to competition should be at a minimum. Nothing slows the pace of innovation as quickly as walling off firms and markets from actual or potential rivalry. Remember that “the tariff is the mother of trusts.” When rivals are
present, they will drive prices down and quality up and increase the pace of introduction of better products.

* Respect scale economies Many technologies exhibit significant economies of scale or scope. In these industries, efficiency may require large firms that produce a sizable share of the entire market. The best policy here is to allow large firms to compete vigorously and to keep regulatory or trade barriers as low as possible.

C. ANTITRUST POLICY

Large firms have long been viewed as unwelcome agglomerations of economic power and undesirable sources of economic inefficiency. Just a century ago, legislatures began to pass antitrust laws that attempted to contain monopolies. Antitrust policies attack anticompetitive abuses in two different ways: first, by prohibiting certain kinds of business conduct, such as price fixing, and second by curbing some market structures, such as monopolies, that are thought most likely to restrict commerce and to abuse their power in other ways.

This area of public policy has been a fruitful arena for interactions of law and economics for decades. So as we turn to the study of antitrust policy, we will examine one of the most critical parts of business law, and at the same time see how the tools of microeconomic analysis extend beyond the textbooks into economic life itself.

A study of American antitrust policy must include the following:

* The history of legislative acts—e.g., the Sherman Act (1890), the Clayton Act (1914), and the Federal Trade Commission Act (1914), plus later amendments.
* The evolution of case law on structure and conduct—the definition of different forms of illegal conduct, changing views on the role of size and structure in finding antitrust violations, and the outcomes of the major antitrust cases from Standard Oil in 1911 to IBM in 1982.
* The new approach to antitrust of the 1980s—one that stresses the intrinsic rivalry of oligopolists and is skeptical of the ability of government to use antitrust policies to improve the performance of large multinational enterprises.

Curb collusion Remember that firms may be tempted to collude in raising prices or dividing markets; firms with market power may also engage in predatory or exclusionary activities. No serious economic defense has been made of these collusive practices, and most governments today condemn anticompetitive practices.

The goal of preventing anticompetitive collusive practices is the subject of antitrust policy, to which we now turn.

THE FRAMEWORK STATUTES

Antitrust law is like a huge forest that has grown from a handful of seeds. The statutes on which the law is based are so straightforward that they are shown in Table 12-2; it is astounding how much law has grown from so few words.

Sherman Act (1890)

Monopolies had long been illegal under the common law. But these laws proved ineffective against the mergers and trusts that began to grow in the 1880s. Populist sentiments then led to the Sherman Act.

The Sherman Act made it illegal to “monopolize trade” and outlawed all “combination or conspiracy in restraint of trade.” But beyond an antipathy toward “monopolizing,” there is no evidence that anyone had clear notions as to which actions were to be regarded as legal or illegal.

Clayton Act (1914)

To spell out the vague intent of the Sherman Act and to strengthen it, the Clayton Act was passed. It outlawed tying contracts (in which a customer is forced to buy product B if she wants product A); is ruled
The Clayton Act emphasized prevention before the fact as well as punishment after. In contrast to the early common law, which had been used particularly against organized labor, the Clayton Act specifically provided antitrust immunity to labor unions.

Federal Trade Commission

In 1914 the Federal Trade Commission (FTC) was established. The FTC's primary functions are to prohibit "unfair methods of competition" and to warn against anticompetitive mergers. In 1938, the FTC also acquired one of its most important functions—the power to ban false and deceptive advertising. In order to enforce these powers, the FTC is empowered to investigate, hold hearings, and issue cease-and-desist orders.

BASIC ISSUES IN ANTITRUST: CONDUCT, STRUCTURE, AND MERGERS

In the century since passage of the Sherman Act, economists and jurists have developed a body of thinking about the proper role of large enterprises. Modern antitrust theory emphasizes the role of structure and conduct in analyzing market structures.

Illegal Conduct

Among the earliest antitrust decisions were those concerning illegal behavior. The courts have ruled that certain kinds of collusive behavior are illegal per se (in themselves); these acts are illegal in that no defense is permitted. The offenders cannot defend themselves by pointing to some worthy objective (such as product quality) or mitigating circumstance (such as low profits).

The most important set of per se illegal conduct is agreements among competing firms that fix prices, restrict output, or divide markets. Such actions have the effect of raising prices and lowering output. Even the severest critics of antitrust policy can find no redeeming virtue in price fixing.

Other forms of conduct have also been limited by antitrust laws. These include:

THE ANTITRUST LAWS

Sherman Antitrust Act (1890, as amended)

§1. Every contract, combination in the form of trust or otherwise, or conspiracy, in restraint of trade or commerce among the several States, or with foreign nations, is declared to be illegal.

§2. Every person who shall monopolize, or attempt to monopolize, or combine or conspire with any other person or persons, to monopolize any part of the trade or commerce among the several States, or with foreign nations, shall be deemed guilty of a felony. . . .

Clayton Antitrust Act (1914, as amended)

§2. It shall be unlawful . . . to discriminate in price between different purchasers of commodities of like grade and quality . . . where the effect of such discrimination may be substantially to lessen competition or tend to create a monopoly in any line of commerce. . . . Provided. That nothing herein contained shall prevent differentials which make only due allowance for differences in the cost. . . .

§3. That it shall be unlawful for any person . . . to lease or make a sale or contract . . . on the condition, agreement, or understanding that the lessee or purchaser thereof shall not use or deal in the . . . commodities of a competitor . . . where the effect . . . may be to substantially lessen competition or tend to create a monopoly in any line of commerce.

§7. No corporation . . . shall acquire . . . the whole or any part . . . of another corporation . . . where . . . the effect of such an acquisition may be substantially to lessen competition, or to tend to create a monopoly.

Federal Trade Commission Act (1914, as amended)

§5. Unfair methods of competition . . . and unfair or deceptive acts or practices . . . are declared unlawful.

Table 12-2 The basis of American antitrust law is contained in these statutes

| Price discrimination and exclusive dealings illegal; it banned interlocking directorates and mergers formed by acquiring common stock of competitors. In each case, such actions were illegal when they might substantially lessen competition. |

The Clayton Act emphasized prevention before the fact as well as punishment after. In contrast to the early common law, which had been used particularly against organized labor, the Clayton Act specifically provided antitrust immunity to labor unions.
Retail price maintenance, where retailers agree not to sell below or above a price specified by manufacturers.

Predatory pricing, in which a firm sells its goods for less than production costs (usually interpreted as marginal cost or average variable cost).

Tying contracts or arrangements, where a firm will sell product A only when the purchaser buys product B.

Price discrimination, is which a firm sells the same product to different customers at different prices for reasons not related to cost or meeting competition.

As you read over this list, as well as the previous paragraph, note again that these practices relate to a firm’s conduct. They might take place in monopolies or in smaller firms, but it is the acts that are illegal and not the size of the firm that undertakes them.

Although conduct-related cases receive less public attention than structural cases, they are an important part of antitrust. Perhaps the most celebrated example is the great electric-equipment conspiracy.

In 1961, the electric-equipment industry was found guilty of collusive price agreements. Executives of the largest companies—such as GE and Westinghouse—conspired to raise prices and covered their tracks, in a manner reminiscent of a spy novel, by meeting in out-of-the-way hunting lodges, using code names, and making telephone calls from public phone booths. Although the top executives in these companies apparently were unaware of what the vice-presidents just below them were doing, they had put much pressure on the vice-presidents for increased sales. The companies agreed to pay extensive damages to their customers for overcharges; some of the executives involved spent time in jail on criminal charges.

While extreme, such practices are not infrequent. There are on average 50 federal cases and hundreds of private cases each year that attack price fixing and other illegal behavior.

Structure: Is Bigness Badness?

The most visible antitrust cases were those relating not to conduct but to structure. These come either as attempts to break up large firms, or in anticipatory cases brought against the proposed mergers of large firms. We will review each of these two themes.

The early 1900s witnessed the first surge of activity under the Sherman Act. In 1911, the Supreme Court ordered the American Tobacco Company and Standard Oil to be broken up into many separate companies.

In condemning these flagrant monopolies, the Supreme Court enunciated the important “rule of reason”: Only unreasonable restraints of trade (mergers, agreements, and the like) came within the scope of the Sherman Act and were considered illegal.

The rule-of-reason doctrine virtually repealed the antitrust law’s attack on monopolistic mergers, as shown by the U.S. Steel case (1920). Although J. P. Morgan had put this giant together by merger, and it did in the beginning enjoy 60 percent of the market, the court held that mere size per se was no offense. Courts in that period, as today, focused more on anticompetitive conduct than on pure monopoly structure as the legal offense.

The New Deal and Alcoa Congress passes laws. But nothing happens unless private parties or the Department of Justice brings suit to enforce them. During the roaring twenties, antitrust went into hibernation. Not until the late 1930s, when F. D. Roosevelt put Thurman Arnold in charge of antitrust, was there a real burst of federal prosecutions in this area. Arnold tackled the building industries, glass, cigarettes, cement, and many others.

The Alcoa case (1945) represents the culmination of New Deal activism, as well as the furthest boundary of trust-busting judicial findings. Alcoa had gained a 90 percent market share, but by means that were not in themselves illegal: installing capacity ahead of demand, keeping prices low to prevent potential competition, and so forth. The court nonetheless found Alcoa had violated the Sherman Act. Monopoly power, even if lawfully acquired, could constitute an evil and be condemned. This period was one in which the courts came to emphasize market structure along with market conduct: monopoly power, even without otherwise illegal conduct, was declared illegal.
Recent Developments

Since the high-water mark in 1945, the pattern of judicial findings and economic theory has steadily retreated from the hostility to market power seen in the Alcoa case. Only two major structural cases (brought under section 2 of the Sherman Act) have been pursued in the last two decades: the IBM and the AT&T cases, to be discussed in detail below, ended in 1982. Since 1982, federal antitrust policy has lain dormant, with the late 1980s marking the first time in a half-century that no major government antitrust case was being conducted.

A review of the latest two cases will reveal some of the flavor of modern thinking about antitrust policy.

The AT&T Case Until 1983 AT&T had a virtual monopoly on the telecommunications market. It provided more than 95 percent of all long-distance calls and 85 percent of all local lines and sold most of the nation’s telephone equipment. The complex of companies owned by AT&T included Bell Telephone Labs, Western Electric Company, and 23 Bell Operating Companies. This complex was often called the Bell System.

Since the invention of the telephone in 1876, the company Alexander Graham Bell founded has spent almost as many years fighting antitrust suits as making telephones. Two earlier government antitrust suits had had limited effect on the company.

In 1974, the Department of Justice filed yet another and more far-reaching suit. It complained that AT&T had (a) prevented competing long-distance carriers (like MCI) from connecting to local exchanges, and (b) obstructed other equipment manufacturers from selling telecommunications equipment to subscribers or to Bell Operating Companies. The important legal and economic argument was that Bell had used its local telephone monopoly to project monopoly into the long-distance and the telephone-equipment markets.

Bell took two lines of defense. It first (as defendants often do) denied many factual charges or rebutted their relevance. Its second rebuttal was that the U.S. telephone system was the best in the world precisely because Bell owned and operated virtually the entire U.S. telephone system. In a line of argument similar to the Schumpeterian hypothesis, AT&T argued that the size and scope of the Bell System made its monopoly a "reasonable" way to conduct the telephone business.

The result was bizarre and surprised everyone. Fearful of the outcome of the case and hoping to be freed to compete more effectively, Bell’s management settled with the government in a consent decree that essentially met every point of the government’s proposed remedy. Bell’s local telephone operating companies were divested (or legally separated) from AT&T and in 1984 were regrouped into seven large regional telephone holding companies. AT&T held on to its long-distance operations as well as Bell Labs (the research organization) and Western Electric (the equipment manufacturer). But its size, in terms of assets, was reduced by 80 percent.

In some respects, the AT&T settlement is a victory for competition. Local telephone companies are free to select their equipment. Consumers are free to choose among alternative long-distance providers. AT&T is no longer able to take advantage of its local franchise monopoly to block the entry of rival companies.

But many economists raised questions about the wisdom of the consent decree. What will happen to the quality of telephone service in a more fragmented industry? Will Bell Labs maintain its technological virtuosity? In a world where many companies are responsible for the electric and acoustic properties of telecommunications, will cross talk and buzz return to the levels of the 1920s and 1930s, as “everybody’s business becomes nobody’s business”? These questions, and that of the overall economic wisdom of the outcome, will be answered only in the years to come.

The IBM Case The second major antitrust case in recent years was the government suit to dismember IBM. The government filed suit in 1969, charging that IBM “has attempted to monopolize and has monopolized . . . general purpose digital computers.” The government charged that IBM had a dominant market share, with 76 percent of the market in 1967. Moreover, the government claimed that IBM had used many devices to prevent others from competing; the listed anticompetitive steps included tie-in pric-
ing, such low prices as to discourage entry, and introduction of new products that tended to reduce the attractiveness of the products of other companies.

IBM contested the government case (along with a host of private cases) with tenacity and vigor. The government case dragged on for 13 years. IBM’s major defense was that the government was penalizing success rather than anticompetitive behavior. The fundamental dilemma in such cases was crisply stated in the Alcoa case: “the successful competitor having been urged to compete must not be turned on when he wins.” IBM claimed that the government was doing just that—penalizing the firm that had accurately foreseen the enormous potential in the computer revolution and had dominated the industry through its “superior skill, foresight, and industry.” The case was dragging along inconclusively when the Reagan administration’s antitrust chief, William Baxter, undertook a careful review and then landed a bombshell on the legal community. In 1982, the government dismissed the case as “without merit.” The government’s reasoning was that the computer industry, unlike the telecommunications industry, was unregulated and subject to the full force of market competition. Relying on the Chicago view of antitrust (see below), Baxter held that this industry was intrinsically competitive and that government attempts to restructure the computer market were more likely to harm than promote economic efficiency.

Private Antitrust Up to now we have considered government antitrust actions. One of the remarkable developments in recent years has been the privatization of antitrust enforcement. Under the law, private parties can bring damages suits. If the private party wins, it gets triple damages plus reasonable costs.

Spurred by the gains from triple damages, private parties have been increasingly active in bringing antitrust suits. In the first decades of this century, the number of government and private antitrust suits were approximately equal. But by the late 1970s, private parties were bringing more than a thousand cases a year, compared to the government’s fifty or so. Awards as high as $1.8 billion (in a preliminary judgment against AT&T) have made this a lucrative hill to mine.

The issues raised by the privatization of antitrust law are just beginning to be debated. On the one hand, the prospect of a billion-dollar lawsuit must surely give pause to a potential conspiracy—so in this respect the antitrust laws are probably better enforced. But to the extent that the present antitrust laws are inefficiently designed, as many economists now believe, the army of private litigators will only help enforce poorly designed laws more strictly. Some thoughtful scholars now think that the reward of triple damages is too powerful and should be reduced.

Mergers: Law and Practice

Companies can gain market power through growth (plowing back earnings and building new plants). But a much easier way to gain market share, or simply to get bigger, is to merge with another company.

Horizontal mergers—in which companies in the same industry combine—are forbidden under the Clayton Act when the effect may be to reduce competition substantially. Case law and the Department of Justice’s 1982 and 1984 merger guidelines clarified the meaning of this vague statutory language. Thus, under the guidelines, industries are divided into unconcentrated, moderately concentrated, and highly concentrated. Mergers in the latter two types of industries will be challenged even in cases where the firms involved have small market shares. For example, in a highly concentrated industry, if a firm with a market share of 10 percent acquires one with a share of 2.5 percent or more, the Department of Justice is “likely to challenge” the merger.7

Vertical mergers occur when two firms at different stages of the production process come together. In recent decades, the courts took a hard line toward vertical mergers. They looked mainly at the fact that a merger might lead to exclusive dealings; they worried less about whether vertical integration was driven by true efficiencies of joint operations.

As part of its changes in antitrust policy (discussed more fully in the next section), the Reagan administration changed the guidelines on mergers in 1982 and 1984. The guidelines greatly relaxed enforcement with respect to both vertical and horizontal mergers.

7Question 12 at the end of this chapter provides an illustration of how such guidelines operate in practice.
Many believe that these changes brought on the great wave of mergers and acquisitions of the 1980s.

Yet a third kind of combination, called conglomerate mergers, involves unrelated businesses. In a conglomerate merger, a chemical or steel company might buy an oil company, or a firm (like ITT) that has many lines of business might add yet more strings to its bow (hotels, rental cars, or whatever).

The critics of conglomerates make two points. First, they note that, in part because of merger activity, the concentration of assets in the top companies has grown steadily over this century. Figure 12-4 shows an estimate of the share of assets accounted for by the 200 largest corporations. While incomplete, the data show that the asset share of the top 200 has apparently risen from about one-third around 1910 to 61 percent in 1984. The increasing trend in asset concentration alarms many economists and policymakers, as evidenced by the Federal Trade Commission, which wrote a few years ago that "the giant corporations will ultimately take over the country." In every era when a large number of conglomerate mergers occur, critics in Congress and elsewhere propose a moratorium on further acquisition.

The data shown in Figure 12-4 can mislead casual observers. The rise in concentration of assets depicted...
there does not necessarily imply that the degree of effective monopoly power is also increasing; the asset share may increase as large firms poach in other firms' markets. When du Pont acquired the large oil firm, Conoco, or when the cigarette firm Philip Morris acquired General Foods, the concentration of assets increased but the degree of effective competition rose in the affected industries. The data in Figure 12-4 do indicate, however, that fewer people are making the central decisions for American industry, and this centralization of power and decision making distresses many analysts.

The second point made by the critics of conglomerates is that these combinations serve no economic purpose. They are simply a brand of boardroom poker to entertain managers bored with supervising their tiresome steel or chemical operations. And, indeed, there is a point here: What does the airplane business have in common with meat-packing? Or typewriters with birth-control pills? Or computer leasing with passenger-bus operations?9

Conglomerates are not without defenders, who argue that conglomerates bring good modern management to backward firms and that takeovers, like bankruptcy, represent the economy's way of eliminating deadwood in the economic struggle for survival. Economists have reached no consensus on the merits or demerits of conglomerate mergers. No study has found major gains or costs, so perhaps the best policy is to keep a watchful eye.

ANTITRUST LAWS AND EFFICIENCY

The dismissal of the federal antitrust case against IBM and the revision of merger guidelines of the early 1980s marked a new chapter in American antitrust policy. With these steps, antitrust law has shed most of its early populist concern "to put an end to great aggregations of capital because of the helplessness of the individual before them" (to quote from the 1945 Alcoa decision). Under the Reagan administration, the antitrust laws were directed solely toward the goal of improving economic efficiency. If big is efficient, big shall reign.

What led to the changing attitude toward antitrust policy? In part, the change grew out of technical developments in economics proper. Economists found that performance was not always closely associated with structure. Some large firms (IBM, AT&T, Boeing) and some highly concentrated markets (computers, telecommunications, aircraft manufacture) proved to be among the industries with the highest performance with respect to innovation and productivity growth. Whereas economic theory held that monopoly keeps prices high, these industries had prices declining relative to less concentrated industries. At the same time, some ununconcentrated industries, such as agriculture, exhibited outstanding performance. No iron law could be found linking structure and performance.

How can we explain this paradox? Some economists invoke the Schumpeterian hypothesis: Firms in concentrated industries garner monopoly profits only to reinvest them in research and development, thereby attaining a more rapid rate of cost reduction. If, as Schumpeter claimed, technological change originates in large firms, then it would be foolish to slay these giant geese who lay such golden eggs. This view has been well expressed by Lester Thurow, dean of the MIT Sloan School of Management: "The millions spent on the IBM [antitrust] case would have been better spent if they had been plowed back into research and development on keeping America No. 1 in computers."

A second buttress of the new antitrust policy arose from revised views of the nature of competition. Considering both experimental evidence and observation, many economists have come to believe that intense rivalry will spring up even in highly concentrated markets, as long as collusion is precluded. Indeed, in the words of one scholar (now federal judge), Chicago's Richard Posner:

The only truly unilateral acts by which firms can get or keep monopoly power are practices like committing fraud on the Patent Office or blowing up a competitor's plant, and fraud and force are in general adequately punished under other statutes.9

In this view, the only valid purpose of the antitrust laws should be to replace existing statutes with a simple prohibition against agreements—explicit or tacit—that unreasonably restrict competition.

Third, the swing of the pendulum against strict antitrust enforcement came from the movement toward laissez-faire economic views, stemming particularly from proponents of the Chicago School, during the Reagan era. This school held that monopoly power is derivative of government interventions. The major pools of monopoly power, in this view, lie in areas protected by government fiat: important examples include the exemption of labor unions from antitrust laws, government regulation of interstate trucking rates, barriers to entry into the professions, rate setting and restrictions in medical care, and state limitations on the cable television or the taxicab industry. Advocates of the laissez-faire view, including FTC chief James Miller, who often wore an Asiam Smith necktie, argued that relaxing government regulation would enhance competition.

The new approach to antitrust was largely adopted by the Reagan administration during the 1981–1988 period. The major items included dismissal of the IBM case, with its attack on a large unregulated firm, promulgation of a set of permissive merger guidelines, failure to challenge a single conglomerate merger, and a sharp drop in the number of litigated cases.

In addition, in 1986, the Reagan administration proposed the biggest overhaul of the antitrust laws in decades. The major provisions included: (1) removing restrictions on interlocking directorates of large corporations, (2) removing jurisdiction of American courts over antitrust violations that take place outside the United States, (3) removing triple damages for antitrust violations, (4) putting into legislative form the Reagan merger guidelines, and (5) exempting from the antitrust laws distressed industries (defined as ones seriously injured by increased imports).

Will the relaxation of antitrust policies persist beyond the Reagan era? No one can predict the direction of future attitudes toward big business. Nonetheless, because many of the arguments supporting the efficiency-oriented view are shared by economists and lawyers across the political spectrum, a quick return to the trust-busting fervor of earlier years appears unlikely in the near future.

SUMMARY

A. Patterns of Imperfect Competition

1. Between the polar extremes of pure monopoly and perfect competition lies a variety of species of imperfect competition. Which of these species thrives in a particular location will depend on three central factors: (a) the production and cost structure of the market; (b) the barriers to competition; and (c) the extent to which firms in the market collude.

2. If barriers to competition are high and complete collusion exists, we have the collusive oligopoly outcome: this market structure produces a price and quantity relation similar to that in a monopolistic industry.

3. A more common pattern is dominant-firm oligopoly. Here, a single large firm maximizes its profits assuming that the competitive fringe of firms will each individually seek non-collusively to maximize profits. This structure produces a lower price and larger output than the pure-monopoly equilibrium.

4. A final pattern is the monopolistic competition characterizing many retail indus-
tries. Here we see many small firms, with slight differences in the quality of products (such as different kinds of gasoline or cigarettes). The existence of product differentiation leads each firm to face a downward-sloping \(d_d \) demand curve. In the long run, free entry extinguishes profits as these industries show an equilibrium in which firms' \(AC \) curves are tangent to their \(d_d \) demand curves. In this tangency equilibrium, prices are above marginal costs but the industry exhibits greater diversity than under perfect competition.

B. Behavior of Large Corporations

5. A careful study of the actual behavior of oligopolists shows certain kinds of behavior at variance with standard economic assumptions. Firms are assumed to maximize profits. Moreover, under perfect competition, those who stray from competitive pricing will be eliminated. But under imperfect competition, there is elbow room for greater discretion.

One limit on profit maximization is bounded rationality. This principle recognizes that it is costly to make decisions, so managers may make less-than-perfect decisions, often employing "rules of thumb," to economize on their time. In addition, large corporations may pursue goals other than profits, and a divergence may therefore appear between the interests of owners and of managers. The latter may be averse to large risks or may desire to expand their empires, earn large managerial bonuses, or simply live the good life at the expense of profits.

6. An important example of an action that appears not to maximize profits is the process of markup pricing. Firms seldom explicitly calculate prices on the basis of \(MC \) and \(MR \). Rather, they use markup pricing—a rule of thumb that adds a percentage increase on top of costs of production.

7. While monopoly and oligopoly lead to price above marginal cost, and thus to short-run economic inefficiency, the Schumpeterian hypothesis holds that this traditional theory ignores the dynamics of technological change. Monopolies and oligopolies are the chief source of innovation and growth in living standards; to break up large firms, in this view, might lower prices in the short run but would risk raising prices in the long run as the fragmentation of industry slowed technological progress.

C. Antitrust Policy

8. Antitrust policy is the primary way that public policy limits possible abuses by large firms. This policy grew out of legislation like the Sherman Act (1890) and the Clayton Act (1914). The primary purposes of antitrust are: (a) To prohibit anticompetitive activities. These include agreements to fix prices or divide up territories; price discrimination; and tie-in agreements. (b) To break up monopoly structures. These structures are, in today's legal theory, ones that both have excessive market power (a large share of the market) and engage in anticompetitive acts like excluding competitors.

9. In addition to limiting the behavior of existing firms, antitrust law prevents mergers that would lessen competition. Today, horizontal mergers (between firms in the same
industry) are the main source of concern. While vertical and conglomerate mergers tend to be tolerated.

10. Antitrust policy has been heavily influenced by economic thinking during the last two decades. As a result, antitrust policy during the 1980s focused almost exclusively on improving efficiency, while ignoring earlier populist concerns with bigness itself. Moreover, in today’s economy—with intense competition from foreign producers and in deregulated industries—many believe that antitrust policy should be focused mainly on preventing collusive agreements like price fixing.

CONCEPTS FOR REVIEW

- imperfect competition:
 - collusive oligopoly
 - dominant-firm oligopoly
 - monopolistic competition
- barriers to competition
- tacit and explicit collusion
- no-profit equilibrium in monopolistic competition
- markup pricing
- Schumpeterian hypothesis
- limits on profit maximization:
 - bounded rationality
 - alternative goals
 - Sherman, Clayton Acts
- mergers:
 - vertical
 - horizontal
 - conglomerate
 - efficiency-oriented antitrust policy

QUESTIONS FOR DISCUSSION

1. Review the three theories of oligopoly analyzed in the first section of this chapter. Draw up a table that compares perfect competition, monopoly, and the three oligopoly theories with respect to the following characteristics: (a) number of firms; (b) extent of collusion; (c) price vs. marginal cost; (d) price vs. long-run average cost; (e) efficiency.

2. Suppose you ran a computer company. How could you go about maximizing profits? Would you use a "marginal approach" (trying to estimate your MC and MR)? Or would you lean to "markup pricing" (setting price as average cost plus a percentage markup)? Outline the strengths and weaknesses of each approach.

3. "The tragedy of most industries characterized by monopolistic competition is not at all excessive profits. Rather, there are no profits, and prices are excessive as resources are frittered away in low levels of production." Explain what this writer might mean in terms of the long-run equilibrium shown in Figure 12-3. Defend monopolistic competition by showing how it might lead to greater diversity of products.

4. "It is naive to try to break up monopolies into even a few effectively competing units, because the basic cause of monopoly is the law of decreasing cost with mass production, and, in any case, a few competitors are not enough to duplicate the pricing patterns of perfect competition." Discuss both parts of this statement.

5. "IBM is not bad just because it is big." Discuss, particularly with reference to the Schumpeterian hypothesis.
6. Explain the following statements:
 (a) In the retail drug-store business, each store has a little market power but fails to
 earn any economic profit on its activities.
 (b) According to the theory of bounded rationality, it is truly efficient for IBM not
 to adjust the price of its computers so that \(MC = MR \) each and every day.
 (c) The purpose of antitrust policy is to prevent oligopoly from functioning like
 monopoly.

7. Firms often lobby for tariffs or quotas to provide relief from import competition.
 Suppose that the dominant firm in Figure 12-2 was the sole domestic supplier of a
 good, while the competitive fringe was composed entirely of foreign firms (a case that
 held for aluminum before World War II). What would be the effect on the price and
 quantity if a prohibitive tariff were levied on the foreign good? (A prohibitive tariff is
 one that is so high as to effectively wall out all imports.) Use your analysis to explain
 the statement, "The tariff is the mother of trusts."

8. The Justice Department attempted to prosecute Mr. Crandall of American Airlines
 for his proposal to raise prices (page 263). It failed because his attempt was unsuccessful
 and prices were not raised. Do you agree that only successful price-fixing conspiracies
 (and not aborted ones) should be illegal?

9. Often, established oligopolists or monopolists must keep an eye on potential as well
 as actual rivals. The following problem will show how such considerations may impose
 constraints on monopoly. Figure 12-5 below is a conventional monopoly problem, in
 which the solution without rivals would be with a price of \(P_M \) and a quantity of \(Q_M \).

 Now assume that potential entrants could produce and sell with constant costs at a
 price \(P_L \). Can you see how that would affect the net demand for the monopolist's
 output (the \(dd \) curve in Figure 12-2)? What is the profit-maximizing price for the
 monopolist, given the threat of entry? Or, put differently, is there a limit price to or
 above which the monopolist dare not go for fear of losing every penny of profits? Why
 will the monopolist keep price below \(P_L \) and output above \(Q_L \)?

LIMIT PRICE MODEL

Figure 12-5

![Diagram showing the concept of limit price model with demand (D), marginal cost (MC), average cost (AC), marginal revenue (MR), profit-maximizing price (PM), and limit price (PL).]
10. Two important approaches to antitrust are "structure" and "conduct." The former looks only at the structure of the industry (such as the concentration of firms); the latter at firm conduct (e.g., price fixing).

Review the various statutes and cases to see which are related to conduct and which to structure. What about the new merger guidelines?

What are the advantages and disadvantages of each approach?

11. In long-run equilibrium, both perfectly competitive and monopolistically competitive markets achieve a tangency between the firm's demand curve and its average cost curve. Figure 12-3 shows the tangency for a monopolistic competitor, while Figure 12-6 below displays the tangency for the perfect competitor. Discuss the similarities or differences in the two situations with respect to:

(a) The elasticity of the demand curve for the firm's product.
(b) The extent of divergence between price and marginal cost.
(c) Profits.
(d) Economic efficiency.

![Perfect Competition Diagram](image)

Figure 12-6

12. According to the 1982 guidelines, mergers may be challenged if they significantly decrease competition in moderately concentrated or highly concentrated industries. The Antitrust Division of the Justice Department has adopted the Herfindahl index of concentration for merger policy (see page 228 and question 5 in Chapter 11 for an explanation of the Herfindahl index). The Antitrust Division is "likely to challenge" a merger if it adds more than 100 points to the Herfindahl index when the Herfindahl index is between 1000 and 1800 and is also likely to challenge if a merger adds more than 50 points to the index for an industry whose index is more than 1800.

Consider an industry with a Herfindahl index of 1400 before a merger. Four firms are considering possible combinations of mergers: American with a market share of 20 percent; United with 10 percent; Continental with share of 6 percent; and Piddly with share of 4 percent. Which pairs of companies could merge without running the risk of an antitrust challenge?
Economic life is filled with situations in which two or more people or firms or countries jockey for dominance. The oligopolies that we analyzed in the body of this chapter sometimes break out into economic warfare. Such rivalry was seen in the last century when Vanderbilt and Drew used to cut and recut shipping rates on their parallel railroads. In recent years, Continental Air tried to lure customers from its bigger rivals by offering fares far under prevailing levels. And the larger airlines like American or United had to decide how to react, and how Continental would react when they reacted, and so forth. These situations typify an area of economic analysis known as game theory.

Game theory analyzes the way that two or more entities, who interact in a structure such as a market, choose actions or strategies that jointly affect each participant. This theory, which may sound frivolous in its terminology borrowed from chess, bridge, and war, is in fact fraught with significance and was largely developed by John von Neumann (1903–1957), a Hungarian-born mathematical genius. Here we can only sketch the general notions involved in game theory. Let's begin by analyzing the dynamics of price cutting, shown in Figure 12A-1.

The New York-based department store Macy's used to advertise, "We sell for 10 percent less." But its rival, Gimbel's, advertised, "We will not be undersold." The

Figure 12A-1 What happens when two firms insist on undercutting each other?

You can trace through the steps by which dynamic price cutting leads to ever-lower prices for two rivals.
vertical red arrows show Macy’s price cuts; the black horizontal arrows show Gimbel’s responding strategy of matching each price cut.

By tracing through the pattern of reaction and counterreaction, you can see that this kind of rivalry will end in mutual ruin, at a zero price. Why? Because the only price compatible with both strategies is a price of zero: 90 percent of zero is zero.

But finally Macy’s gets wise and realizes that when it cuts its P_1, Gimbel’s P_2 will not stay constant but will follow it downward. Only if it is shortsighted does it think it can undercut its rival for long. Soon Macy’s will realize that the two firms are sharing a market. Indeed, if there were but two sellers and no antitrust laws to worry about, the two might collusively raise price to the monopoly level that maximized joint profits.

Once firms begin to worry about the effects their actions will have on the other firms, we have entered the realm of game theory.

Basic Concepts

A useful way of representing the interaction between two firms or people is shown by a two-way table known as a payoff matrix, shown in Figure 12A-2. Red picks her price strategy by selecting a row. Black’s price strategy involves his choosing a column. Then in each of the four cells A, B, C, D, the red number represents Red’s payoff at those prices and the black number gives Black’s profit or payoff. For example, in cell A, joint profits $6 + 6$ (thousand dollars) are maximized at the common monopoly price, $S20 = P_1 = P_2$. But A is not “stable,” in that if Red knew Black would really stay in his first column, Red would gain by cutting P_2 down to $S10$ in cell C, getting the lion’s share of the business there with profit of 9. But, of course, Black will now prefer to match Red’s P_2 of $S10$, taking us from cell C to D.
In cell D, where the profits are just zero, the competitive solution is stable. Technically, it is called a Nash equilibrium (after economist John Nash). A Nash equilibrium has the characteristic that, given Red’s strategy Black can do no better, and given Black’s strategy Red can do no better.¹

That is, 0 is the largest red number in the column Black has picked, and 0 is the largest black number in the row Red has picked. Verify that this red dot cell is a Nash equilibrium.

But note a very important fact. A competitive solution or Nash equilibrium may lead to an efficient zero-profit outcome. Moreover, it is stable against non-collusive moves by a single player or firm. But it is not stable when the two players collude and decide to move to cell A. This might come about by overt agreement or by tacit agreement. Or if Black were reluctant to follow suit, Red might threaten him by promising mutual ruin through cutting P far below any cost levels. The only safe guarantee of competition is thus the potential pressure of numerous sellers.

Applications. Game theory brings insights to many areas of economics. Our price-cutting example suggests the instabilities that can be generated by myopic rules like, “I will always have a lower price or a better quality than my rival.” Game theory can also explain the dangers of trade wars (see question 4 at the end of this appendix) as well as the risks of an arms race (see question 1 at the end of this appendix). Some believe as well that the phenomenon of “sticky” prices may be rooted in game theory: according to this theory, firms have reached a kind of tacit agreement about the prevailing level of price (say, in the auto or steel industry). Once this agreement has been reached, firms are reluctant to change prices lest other firms interpret this as a declaration of economic war.

Game theory can also suggest why foreign competition may lead to greater price competition. What happens when a Japanese or European firm enters a market which had earlier reached a tacit agreement on the oligopolistic price? The foreign firms may “refuse to play the game.” They did not agree to the rules, so they may cut prices to gain market shares. Collusion may break down.

The Prisoner’s Dilemma

Game theory can also shed light on the need for cooperation in economic life. Looking back to our price-cutting game in Figure 12A-2, we saw that competition among firms led to cell D, the competitive outcome with low prices. Moreover, we have learned that, by an almost miraculous accident of economic life, Adam Smith’s invisible hand produces in perfectly competitive markets a kind of social optimum out of individual utility or profit maximization.

But the lucky outcome of the invisible hand is unlikely to arise in all social circum-

¹More precisely, let player Red pick strategy \(P_1 \) while player Black picks strategy \(P_3 \). Then the pair of strategies \((P_1^*, P_3^*)\) is a Nash equilibrium if no player can find a better strategy to play under the assumption that the other player sticks to his or her original strategy. That is, as long as Black sticks to strategy \(P_3^* \), Red cannot do better than to stick with strategy \(P_2^* \) and similarly for Black.
stances. The case of the "prisoner's dilemma" illustrates this basic truth in game-theoretic language. Figure 12A-3 is like Figure 12A-2; here it refers to prisoners Red and Black, who have been caught in a joint crime. The district attorney interviews each separately, saying, "I have enough on both of you to send you to jail for a year. But if you alone will confess to the 10-year crime, I'll make a deal with you: you'll get off with a 3-month sentence, while your partner will serve 10 years. If you both confess, you'll both get 5 years."

What should Red do? Should she confess and hope to get a really short sentence? That's better than the year she gets from not confessing. But wait. There is an even better reason for confessing. For suppose Red doesn't confess and, unknown to her, Black does confess. Red stands to get 10 years! Better than that is to confess and get no worse than 5 years.

Black is in the same dilemma: if only he knew what Red is thinking, or what Red thinks Black thinks Red is thinking.

The important result here is that when both prisoners act selfishly by confessing, they both end up in cell D with long prison terms. Only when they act collusively and altruistically will they end up in cell A with short prison terms.

We see many social and economic situations that resemble the prisoner's dilemma. Replace "confess" with "pollute" each place it appears in Figure 12A-3. This would then be much like a world of unregulated air pollution. In such a world, if a firm is the sole altruist who cleans up every particle of its sulfur or waste, that firm will soon go bankrupt. Pressure to move down to cell D can lead to social and economic ills in the many cases where the invisible-hand mechanism of efficient perfect competition breaks down. In these cases, the role of government is to get firms cooperatively to move to cell A, the "not-pollute/not-pollute" world.
Can Benevolence Survive?

The prisoner’s dilemma and similar games show how self-interest may lead to a world of noncooperation, pollution, and militarism—a nasty, brutish, and short life.

But how can we account for the high degree of benevolence and cooperation within families as well as among friends, communities, and even nations? What happens when a prisoner’s dilemma game like that in Figure 12-3 is played again and again? Studies indicate that people are well-advised to cooperate (and often do cooperate) in repeated prisoner’s dilemma games.

How might cooperation evolve? Let’s say one player plays a tit for tat strategy, saying in effect, “If you’re nice to me, I’ll be nice to you. If you’re nasty to me, I’ll return the nastiness.” In the game shown in Figure 12A-3, this means that Red will always start by cooperating. If Black cooperates by not confessing, Red will continue to play the cooperative strategy of not confessing. If Black double-crosses Red by confessing, the next time they play, Red will sting Black by confessing.

Recent studies show that cooperative strategies like tit for tat are the most profitable selfish strategies in many repeated prisoner’s dilemma games. This suggests that a watchful golden rule may serve people well in many situations: “Do unto others what you would have them do unto you, but only as long as they act as you do.”

But cooperation can also be harmful to society. Tit for tat may lead to tacit collusion in otherwise-competitive markets when firms play a game that says, “Don’t invade my market and I won’t invade yours.” Cooperation among firms may hurt consumers. (The way that collusion can sometimes be harmful was shown in Figure 12A-2, where collusion raised profits; its helpful side was seen in Figure 12A-3, where pollution was reduced by collusion.)

These few examples provide a small tasting from the wide variety of fruits produced by the theory of games. This area has been enormously useful in helping economists and other social scientists think about situations where small numbers of people are well informed and interact in markets, politics, or military affairs.

CONCEPTS FOR REVIEW

game theory
economic warfare, price cutting
payoff matrix
payoff from different strategies
non-collusive and collusive strategies
Nash equilibrium (or stable point)
prisoner’s dilemma
competition vs. altruism
tit for tat
QUESTIONS FOR DISCUSSION

1. Superpower A wants superiority over superpower R; R wants parity with A. Hence, A in year \(t \) installs 10 percent more missiles than R had in year \(t - 1 \); while the next year R matches A’s missiles. Show how such a strategy leads to an endless arms race, using an approach like that of Figure 12A-1. What is the function of an arms-control agreement that limits each side to 1000 missiles? Show graphically how an arms-control agreement changes the picture.

2. “In a world with no spillovers or externalities, collusion harms the public interest. In a world full of pollution, crime, and pestilence, cooperation is essential.” Interpret in light of Figures 12A-2 and 12A-3.

3. Show that for the prisoner’s dilemma shown in Figure 12A-3, the outcome in cell D is a Nash equilibrium. Also show that it is the only Nash equilibrium.

4. Consider the payoff matrix in Figure 12A-4, which gives total real national incomes of two regions as a function of foreign-trade policies. The red numbers are Japan’s real incomes while the black numbers are America’s real incomes.
 (a) List the four outcomes and calculate each region’s national income and world income.
 (b) Show how countries acting uncooperatively (without agreements and in their own selfish national interest) will be led to a trade war at the Nash equilibrium at D in the lower right-hand corner of the matrix. What is the effect of the trade war on total world income?

Figure 12A-4 Countries gain from trade, lose from trade wars
(c) What is the impact on incomes of a trade agreement that abolishes all trade restrictions and produces free trade? Relate this result to the prisoner's dilemma.
(d) Is there an incentive for each country to "cheat" on the trade agreement? What happens if the cheating leads to retaliation and to the high-tariff outcome?
PART THREE
WAGES, RENT
AND PROFITS:
THE DISTRIBUTION
OF INCOME
HAVING STUDIED THE WAY that output is produced and priced, we want to understand who enjoys the fruits of economic activity. This question, which concerns the distribution of income, has fascinated economists since classical days. David Ricardo first analyzed the distribution of income among classes:

The produce of the earth... is divided among three classes of the community; namely, the proprietor of the land, the owner of we... capital necessary for its cultivation, and the laborers by whose industry it is cultivated.

In the coming pages we will examine the classical questions posed by Ricardo and his followers: What are the sources of the wages of labor, the rents of land, and the interest and profits of capital? Why are some people paid a million dollars a year, while others have trouble landing a job at the minimum wage? Why are the rents on Manhattan real estate worth hundreds of dollars a square foot, while land in the desert may sell for but a few dollars an acre? And what is the source of the billions of dollars of profits earned by giant enterprises like Ford or Exxon?
These are the topics discussed in the following chapters. We begin by sketching how income and wealth are distributed today. The next chapters analyze the prices of factors of production, with applications to labor, land (including natural resources), and capital.

Economists call these topics the theory of distribution. Distribution deals with the problem of for whom goods are produced. More precisely, distribution theory analyzes the pricing of factors of production by supply and demand; once the prices of factors of production are determined, it is possible to understand people’s incomes.

Issues surrounding the distribution of income are among the most controversial in all economics. Some argue that high incomes are the result of market power—boosted by the monopoly power of labor unions or large firms. Others think that wages and profits are simply the result of the workings of competitive markets. And many would say that, whoever is right, the state should exercise its power to redistribute incomes from the rich to the poor by taxes and transfers.

The purpose of this chapter is to present the essential facts; to explain what is meant by income and inequality; to examine the major sources of income and wealth; and to see how the social pie gets divided among different people, here and abroad.

This is not the last time we shall meet these issues. After we have mastered the analytical questions involved in income distribution, we return to a discussion of the causes of and remedies for poverty, along with the conflict between equity and efficiency, in Chapter 21.

A. MEASUREMENT OF INCOMES AND INEQUALITY

The centuries before the Industrial Revolution experienced very slow changes in income levels and in class divisions in most areas of the world for which we have statistical records. The advent of technological and social changes associated with the Industrial Revolution brought, starting around 1770, sharp changes in wages and the division of society along clear class lines between capitalists and workers.

This phenomenon was identified by many early critics of capitalism, particularly by Karl Marx. He and Friedrich Engels wrote in 1848:

The modern laborer . . . , instead of rising with the progress of industry, sinks deeper and deeper below the condition of his own class. He becomes a pauper, and pauperism develops more rapidly than population and wealth. 1

While some of Marx’s predictions about the future of industrial capitalism were proven correct in the intervening years, his prediction about the fortunes of the working class proved to be wrong. His assertion that the rich would become richer and the poor poorer cannot be sustained by careful historical and statistical research.

In Europe and America, there has definitely been a steady, long-term improvement in minimum standards of living, when measured by the consumption of food, clothing, and housing, as well as by the health and longevity of the population. This fact about industrial market economies is clear from statistics presented below. The highlights are shown graphically in Figure 13-1.

The Fruits of Industrialization

Historians sometimes dwell on the evils of the Industrial Revolution and on the poverty-ridden condition of the masses in polluted cities. In point of fact, no Dickens novel did full justice to the dismal conditions of child labor, length of the working day, workplace dangers, and poor sanitation in early nineteenth-century factories. A workweek of 84 hours was the prevailing rule, with time out for breakfast and sometimes supper. A good deal of work could be squeezed out of a 6-year-old child, and if a woman lost two fingers in a loom, she still had eight left.

Such a lurid picture often led people to believe that the Industrial Revolution was a step backward for the working class. Weren’t people better off on the farms than in the factories? Probably not. Poverty was simply more visible in the cities. The idyllic picture of the healthful, jolly countryside peopled by stout yeomen and happy peasantry is a mirage in most parts of the world. Even today, New York’s Hell’s Kitchen or Harlem, Roxbury, or Los Angeles’ Watts district hardly overshadow the poverty and squalor of our rural slums: the Tobacco Road of the upper south, border towns of the southwest, hill towns of Appalachia, or Indian reservations of Arizona and New Mexico.

Modern historians therefore emphasize that the conditions of the industrial present, inadequate as they may seem, are nevertheless great improvements in living standards over earlier centuries of agrarian feudalism or unregulated laissez-faire. Real wages tended to meander up and down for the four centuries before the Industrial Revolution; since that time, wages have shown enormous gains. Today’s average wage earner commands a volume and variety of goods that would dazzle the princes and princesses of medieval times.

Income and Wealth

In measuring a person’s economic status, the two yardsticks most often used are income and wealth. Before turning to the shape of economic inequality, therefore, we define these two key concepts and examine the components of income and wealth.

Income refers to the total amount of money re-
<table>
<thead>
<tr>
<th>TYPE OF INCOME</th>
<th>AVERAGE INCOME PER HOUSEHOLD, BEFORE TAXES, 1988</th>
<th>EXAMPLES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wages and supplements</td>
<td>$26,700</td>
<td>Autoworker’s wages</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teacher’s salary</td>
</tr>
<tr>
<td>Other labor income</td>
<td>2,400</td>
<td>GM’s contribution to pension fund</td>
</tr>
<tr>
<td>Proprietors’ income</td>
<td>3,700</td>
<td>Lawyer’s share of partnership earnings</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Farmer’s net income</td>
</tr>
<tr>
<td>Property income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rent</td>
<td>200</td>
<td>Landlord’s rental from apartments</td>
</tr>
<tr>
<td>Dividend</td>
<td>1,000</td>
<td>Dividend from IBM</td>
</tr>
<tr>
<td>Interest</td>
<td>6,000</td>
<td>Interest paid on savings account</td>
</tr>
<tr>
<td>Transfer payments</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Government</td>
<td>3,200</td>
<td>Social security</td>
</tr>
<tr>
<td></td>
<td>3,100</td>
<td>Other (unemployment insurance, welfare, etc.)</td>
</tr>
<tr>
<td>Total</td>
<td>$46,300</td>
<td></td>
</tr>
</tbody>
</table>

Table 13-1 Major sources of personal income, 1988

American households earn most of their incomes from wages and salaries, but property income and government transfers are supplements especially for the rich and the poor, respectively. (Source: U.S. Department of Commerce, Bureau of the Census, Current Population Reports, Series P-60.)

received by a person or household during a given time period (usually a year). Income consists of wages or labor earnings; property income such as rents, interest, and dividends; and transfer payments, or receipts from the government, such as social security or unemployment insurance.

Table 13-1 (above) shows the average income of Americans, or more precisely the total personal income for the United States divided by the number of households, for the year 1988. Labor income constitutes about two-thirds of personal income, while property income is particularly important for high-income groups. The poorer tenth of the population benefits substantially from government transfer payments such as social security and welfare payments.

Wealth consists of the net dollar value of assets owned at a point in time. Note that wealth is a stock of dollars (like a lake) while income is a flow of dollars (like a stream). We generally include in a household’s wealth its tangible items (like houses, cars and other consumer durable goods, and land) and its financial assets (like cash, savings accounts, bonds, and stocks). The total items that are of value are called assets, while those that are owed are called liabilities, and the difference between assets and liabilities is called wealth or net worth.

Table 13-2 presents a breakdown of the wealthholdings of Americans. The single most important asset of most households is the family home: 65 percent of families own houses, as compared with 55 percent a generation ago. Most households own a
modest amount of financial wealth, such as savings accounts and corporate stocks. As we will see below, the ownership of the nation's financial wealth is concentrated in the hands of a small fraction of the population.

MEASUREMENT OF INEQUALITY

Having defined income and wealth, we now review the extent of inequality of economic status.

Distribution of Income in the United States

A poll of students will show that many are not very sure what their own family incomes really are. Usually it turns out they have a slightly exaggerated notion of their parents' earnings. Indeed, some people are so casual with their financial records that they do not themselves know how much they make.

In the absence of statistical knowledge, it is understandable that one should form an impression of the American standard of living from TV commercials showing a healthy white family standing in front of a split-level house, both parents about to rush off to work in their brand-new luxury compacts, with a garage full of boats and power lawn mowers in the background. Actually, this sort of picture is highly unrepresentative of the kind of life that 90 percent of Americans lead.

The Sober Truth What are the facts? In reality, during the moderately prosperous year of 1988, the per capita disposable income of Americans was approximately $265 per week. **Disposable income** (or total income after taxes and transfer payments) equals the personal income shown in Table 13-1 less taxes paid.

But of course the nation's income is unevenly distributed. To understand the *distribution of income*, consider the following experiment. Suppose each member of a group—or of the entire nation—writes down his or her yearly family income on an index card. We can then sort these cards into income *classes*. Some of the cards will go into the lowest class, the group with under $5000 of income. Some go into the next class. A few go into the income class over $75,000.

The actual distribution of income for the United States in 1985 is shown in Table 13-3. Column (1) shows the different income-class intervals. Column (2) shows the percentage of families in each income class. Column (3) shows the percentage of the total of all income that goes to the people in the given income class.

Columns (4) and (5) are computed from (2) and (3), respectively. Column (4) shows what percentage of the total number of families belongs to each income class or below. Column (5) shows what per-
Table 13-3 Distribution of total incomes of American households, 1985

This table shows how total incomes were distributed among households. Half of households received less than the median income of $26,400 while half received more. (Source: U.S. Bureau of the Census, "Money Income of Households, Families, and Persons in the U.S., 1985," Current Population Report, 1987.)

<table>
<thead>
<tr>
<th>INCOME CLASS</th>
<th>PERCENTAGE OF ALL FAMILIES IN THIS CLASS</th>
<th>PERCENTAGE OF TOTAL INCOME RECEIVED BY FAMILIES IN THIS CLASS</th>
<th>PERCENTAGE OF FAMILIES IN THIS CLASS AND LOWER ONES</th>
<th>PERCENTAGE OF INCOME RECEIVED BY THIS CLASS AND LOWER ONES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Under $5,000</td>
<td>4.8</td>
<td>0.4</td>
<td>4.8</td>
<td>0.4</td>
</tr>
<tr>
<td>$5,000–$9,999</td>
<td>8.5</td>
<td>2.0</td>
<td>13.3</td>
<td>2.4</td>
</tr>
<tr>
<td>$10,000–$14,999</td>
<td>10.2</td>
<td>3.9</td>
<td>23.5</td>
<td>6.3</td>
</tr>
<tr>
<td>$15,000–$19,999</td>
<td>10.5</td>
<td>5.5</td>
<td>34.0</td>
<td>11.8</td>
</tr>
<tr>
<td>$20,000–$24,999</td>
<td>10.3</td>
<td>7.0</td>
<td>44.3</td>
<td>18.8</td>
</tr>
<tr>
<td>$25,000–$49,999</td>
<td>37.4</td>
<td>40.4</td>
<td>81.7</td>
<td>59.2</td>
</tr>
<tr>
<td>$50,000–$59,999</td>
<td>7.2</td>
<td>11.8</td>
<td>88.9</td>
<td>71.0</td>
</tr>
<tr>
<td>$60,000–$74,999</td>
<td>5.5</td>
<td>11.1</td>
<td>94.4</td>
<td>82.1</td>
</tr>
<tr>
<td>$75,000 and over</td>
<td>5.6</td>
<td>17.9</td>
<td>100.0</td>
<td>100.0</td>
</tr>
<tr>
<td>Total</td>
<td>100.0</td>
<td>100.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

A glance at the income distribution in the United States shows the wide spread of incomes. "There's always room at the top" because it is hard to get there, not because it is easy. If we made an income pyramid out of a child’s blocks, with each layer portraying $500 of income, the peak would be far higher than Mt. Everest, but most people would be within a few feet of the ground.

How to Measure Inequality among Income Classes

How great is the dispersion of disposable incomes, and how shall we measure the degree of inequality of income distribution? A useful way to analyze inequality is to ask: What percent of all income goes to the lowest 10 percent of the population? What to the lowest 20 percent? The lowest 50 percent? The lowest 95 percent? And so forth. Such data can be derived from the data underlying Table 13-3.

At one pole, if incomes were absolutely equally distributed, the lowest 20 percent of the population would receive exactly 20 percent of the total income; the lowest 80 percent would receive 80 percent of the income; and the highest 20 percent would also get only 20 percent of the income.

The actual degree of inequality, shown in the first two columns of Table 13-4, indicates that the lowest 20 percent of the families get only 4.6 percent of the total income; the most affluent 20 percent of the families get 43 percent. The second-lowest 20 percent get only 11 percent of income, and the third 20 percent only 17 percent. But the fourth 20 percent get 24 percent, and the upper 5 percent get no less than 17 percent—more than what the bottom two-fifths of the population get all together.

In order to plot the degree of inequality, we use a diagram known as the Lorenz curve. This shows graphically in Figure 13-2 the amount of inequality listed in the columns of Table 13-4; that is, it contrasts the patterns of (a) absolute equality, (b) absolute inequality, and (c) actual 1985 American inequality.

Absolute equality is depicted by the gray column of numbers in column (4) of Table 13-4. When they are plotted, these become the diagonal line of Figure 13-2's Lorenz diagram (shown as a broken line).
<table>
<thead>
<tr>
<th>FAMILY INCOME BY RANK</th>
<th>PERCENT SHARE OF 1985 INCOME</th>
<th>CUMULATIVE PERCENTAGE OF PEOPLE</th>
<th>CUMULATIVE PERCENTAGE OF INCOME</th>
<th>CUMULATIVE PERCENTAGE OF INCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lowest fifth</td>
<td>4.6</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Second fifth</td>
<td>10.9</td>
<td>20</td>
<td>0</td>
<td>4.6</td>
</tr>
<tr>
<td>Third fifth</td>
<td>16.9</td>
<td>40</td>
<td>0</td>
<td>14.4</td>
</tr>
<tr>
<td>Fourth fifth</td>
<td>24.2</td>
<td>60</td>
<td>0</td>
<td>32.4</td>
</tr>
<tr>
<td>Highest fifth*</td>
<td>43.4</td>
<td>80</td>
<td>0</td>
<td>56.6</td>
</tr>
</tbody>
</table>

*Top 5 percent receive 17 percent of total income.

Table 13-4 By grouping the population into fifths, we can compare actual and polar cases of inequality
We group the population into the fifth with the lowest income, the fifth with the second-lowest income, and so forth. Column (2) shows what fraction of total income each fifth receives. Then, by cumulating the income of each quintile (or fifth), we can compare the actual distribution with polar extremes of complete inequality and equality. (Source: U.S. Bureau of the Census, “Money Income of Households, Families, and Persons in the U.S., 1985,” Current Population Report, 1987.)

Figure 13-2 Lorenz curve measures degree of income inequality between opposite polar cases
By plotting from Table 13-4’s column (6), we see that the red actual distribution-of-income curve lies between the two extremes of absolute equality and absolute inequality. The shaded area of this Lorenz chart (as a percentage of the triangle’s area) measures relative inequality of income. (How would the curve have looked back in the roaring 1920s when inequality was greater? In a Utopia where all have equal inheritances and opportunities?)
At the other extreme, we have the hypothetical case of absolute inequality, where everybody (say, 99 out of 100 people) has no income, except for 'one person, who has all the income. This is shown in column (5) of Table 13-4. What lies behind the numbers shown there? The zeroes reflect the assumption in this case that the lowest 0, 20, 80, and 99 people have no income at all. But the lowest 100 do include the last person, and all the people have all the income. The lowest curve on the Lorenz diagram—the dashed, right-angled line—gives this limit of absolute inequality.

Any actual income distribution, such as that of 1985, must fall between these extremes. The red column in Table 13-4 presents the data derived from the first two columns in a form suitable for plotting as an actual Lorenz curve. This actual Lorenz curve is given in Figure 13-2 by the solid red intermediate curve, with the shaded area indicating the deviation from absolute equality, hence giving us a measure of the degree of inequality of income distribution.2

This concludes our discussion of the Lorenz curve. This useful device is widely used in analyzing income and wealth inequality and will be used many times in economic studies.3

Trends of Inequality

What is happening to the degree of inequality of incomes in modern industrial economies like the United States? Is it getting greater, as the Cassandras of the last century believed? By calculating Lorenz and other curves, scholars find that inequality has definitely declined since the beginning of this century.

But there appears to have been a turn toward greater inequality and poverty over the last decade. Between the mid-1970s and 1986, the share of income going to the upper-income groups increased, while the lowest-income group lost ground.

The trends in inequality can be gauged as follows: According to historical studies, the share of total income going to the poorest fifth (or quintile) of the households stood around 3.6 or 3.8 percent in the late 1920s. The share of the bottom quintile rose to 5.0 percent after World War II, as many people from low-income agricultural jobs migrated into industry. There was some increase in the income share of the bottom fifth of households until the mid-1970s, after which this share declined sharply in the 1980s. (A graphical display of several indexes of inequality and poverty is provided in Figure 21-1.)

What lay behind the changing extent of inequality? In part, inequality has been substantially reduced by government actions. Government programs like welfare and food stamps for the indigent, social security for the elderly, and unemployment insurance take the worst edge off abject poverty. Moreover, our income-tax system tends to tax high incomes more heavily than low incomes, thereby tending to reduce the degree of inequality.

The rising inequality over the last decade has several sources. Among the important ones are a rise in female-headed households, an increase in low-wage jobs, and an erosion of government transfer programs—all of which depressed the incomes of the poorest part of the population. In addition, rising interest rates and lower income-tax rates at the top raised the relative incomes of the richest groups.

Inequality in Different Regions Which countries show great, which less, inequality? Lorenz curves of four countries are shown in Figure 13-3(a). We see that Britain and Sweden have less income inequality than does the United States. The reason for this lies partly in the high levels of redistributive taxation in the European countries. In addition, the United States has larger proportions of its population in low-income minority groups and larger numbers of single-headed households.

It is extremely difficult to compare the inequality in
the Soviet Union or China with that of advanced economies. If we confine ourselves to the ad-

Our survey of different economic systems in Chapter 22 finds that the distribution of earnings in the Soviet Union looks about as unequal as that in the United States (see Chapter 22). Top scientists or composers in the Soviet Union probably make about as much as similar persons in the United States. Government officials in communist countries probably have a higher economic status than do leaders of democracies, although the exact earnings and economic privileges of Soviet party chiefs, military leaders, and ministers are not susceptible to precise numerical measurement.

Even if the structure of wages were similar in communist and capitalist countries, one major difference remains: in capitalist countries, perhaps a tenth of national income goes to upper-income groups as property income (interest, dividends, capital gains, etc.). In the Soviet Union or China, by contrast, there are no Rockefellers or Gettys.

Inequality differs in different societies, and is greater for wealth than for income

(a) Advanced economies show less inequality of income distribution than do industrializing economies. Contrary to predictions of many socialists that the rich get richer and the poor get poorer under capitalism, the mixed economy shows increasing equality over time.

Effects of Industrialization on Equality Historians have examined the patterns of inequality as nations follow the road from isolated traditional societies through the first phases of development into advanced industrialized countries. What does the fragmentary evidence indicate?

Firsthand reports suggest a pattern first of greater, then of lesser inequality. The extremes of inequality—with conspicuous opulence appearing alongside
the most abject poverty—occur in industrializing countries.

Recent studies by the World Bank and scholars confirm this casual observation. Those countries with the greatest inequality tend to be the middle-income countries—particularly Latin American countries like Peru, Panama, Brazil, or Venezuela. In these countries, it is not uncommon for the bottom fifth to gain only 2 percent of total income, while the top 10 percent may get 40 or even 50 percent of income.

These data suggest that economic development itself temporarily increases original inequality. Then, as the share of labor rises in the mixed economy, inequality is reduced.

Distribution of Wealth

Up to now we have seen how incomes differ across income classes and nations. One important determinant of differences in income lies in differences in wealth. By *wealth* we mean the net ownership of financial claims or tangible property, assets minus liabilities. In terms of our accounting definitions in the appendix of Chapter 7, wealth strictly means the net worth of a household.

One of the sources of inequality of income lies in inequality of ownership of wealth. Those who are fabulously wealthy—whether because of inheritance, skill, or luck—start with incomes far above the average household. Those with no wealth start with an income handicap.

By and large, wealth is much more unequally distributed in market economies than is income, as Figure 13-3 shows. In the United States, 1 percent of the people own about 19 percent of all wealth, and the richest 1 percent own fully 14 percent of the nation’s wealth. To take the latest year for which extensive data are available, 1983, American households owned a total of approximately $5700 billion of net worth. The top 1 percent owned $1001 billion of assets, representing one-sixth of total household net worth. The distribution of wealth in the United Kingdom is even more lopsided than in the United States. In part this is because certain peers and tycoons in Britain own tremendous amounts of land and other property. But study of the data shows that much of the difference comes from the fact that many Americans of quite modest incomes have positive net worth (i.e., assets in excess of liabilities), whereas this is less common among the lower-income British.

The visible differences in ownership of wealth have spurred levellers over the ages to propose heavy taxation of property incomes, wealth, or inheritances, and radicals have agitated for expropriation by the state of great accumulations of property. In recent years, however, increased emphasis on private capital accumulation for economic growth has muted the call to increase the tax burden on high-income or wealthy individuals.

We have now concluded the discussion of the measurement of income and wealth inequality in the United States and other countries. The balance of this chapter discusses the roots of economic inequality.

B. THE SOURCES OF INEQUALITY

One of the most profound aspirations of a modern democracy is to promote equality—equality of opportunity, of education, and of political freedoms. Direct attempts to reduce inequality of income prove much more controversial. People disagree strongly about whether taxation should be used to redistribute incomes and whether government welfare programs should do more than prevent starvation. Philosophers debate whether it is ethically right that those who earn the most should keep most of their earnings.

Economics can provide no right answers to these normative questions; they must be answered by our political institutions. However, we must explore the facts before informed choices can be made. What are the sources of poverty and wealth? Are the poor lazy or unlucky? Does most wealth come from hard work and thrift or from inheritance? How do savings and work respond to the tax system? The answers to such questions will inevitably influence our attitudes toward political steps to reduce inequality.
In this section we review the roots of inequality of incomes in a market economy. Because we determined that labor incomes and property incomes are the two major categories of income, we focus on these sources of inequality.

INEQUALITY IN LABOR INCOME

Labor earnings constitute 80 percent of factor incomes. Even if property incomes were equally distributed, much inequality would remain. Let us begin then by examining the factors that produce inequalities in earnings: differences in abilities and skills of labor, differences in occupation and intensity of work, differences in level of education, and finally the effect of discrimination.

Abilities and Skills

People differ enormously in their abilities; such differences lead to different skills of workers and hence to different wage rates or salaries. The differing abilities may be physical, mental, or temperamental. They may be associated with biological inheritance or, as scientific evidence increasingly shows, with social and economic environment.

However, these personal differences provide us with very little of the answer to the puzzle of income dispersion. Physical traits (such as strength or height or girth) and measured mental traits (such as intelligence quotient or tone perception) appear to be less varied among people than the differences in income distribution.

This paradox is illustrated in Figure 13-4. The bell-shaped red curve shows how commonly measured abilities are distributed. The much flatter black curve shows how much more unequally distributed are incomes.

This difference between the distribution of measured abilities and of incomes suggests that superficial traits like strength or measured IQ can easily be overemphasized in trying to explain income differences. Instead, the important sources of income differences should be sought in peculiar talents, risk taking, luck, strokes of genius, and hard work—none of which tend to turn up in standardized tests.

![Diagram of Spread of Incomes and Abilities](image)

Intensity of Work

The intensity of work differs enormously among individuals. The workaholic may log 70 hours a week on the job, never take a vacation, and forgo retirement. Those who enjoy leisure might work just enough to pay for life’s material necessities. The difference in incomes might be a factor of 2 or 3 from effort alone, yet no one would say that economic opportunity was therefore genuinely unequal.

Differences among Occupations

One important source of income inequality lies in people’s occupations. At the low end of the scale we find domestic servants, fast-food personnel, and similar service workers. A full-time, year-round job at McDonald’s or at a car wash might earn $8000 a year in 1988.

At the other extreme are the high-earning professionals. What single profession seems to make the most money? In recent years it has without question
been doctors. Physicians working in medical corporations had median earnings of $155,000 in 1988. Doctors have forged well ahead of lawyers, who had median earnings of $52,000 in 1988.

Dentists, engineers, and schoolteachers are estimated to have 1988 median incomes of $80,000, $48,000 and $27,000, respectively. University teachers as a class have an average salary of about $38,000 for a 9-month academic year. Full professors at the largest universities get about twice that amount; professors of computer science and finance average higher incomes than do professors of education and English; supply and demand decrees that medical school professors average the highest salaries of all.

Figure 13-5 shows how professions differ in their inequality of earnings. What is the source of such vast differences among occupations? Part of the difference comes from the years of training needed to become a doctor or lawyer (this point is developed in the discussion of human capital in the next section). Abilities also play a role, for example, in limiting engineering jobs to those who have some quantitative skills. Some jobs pay more because they are dangerous or unpleasant. And in most cases (recall Chapter 5's discussion of limiting the number of doctors), limiting the supply of its members drives up the income potential of a profession.

Differences in Education (Is College Worthwhile?)

How do education and training affect lifetime incomes? Are they worth the cost? This question is addressed by the study of human capital, which represents investments of time and money in improving the quality of workers through training and education. We are used to the idea of tangible investments in housing or equipment, but investment in improving human skills, as economists like Chicago's Theodore Schultz and Gary Becker have emphasized, may benefit society and individuals just as much as new steel mills.

Figure 13-5 Lawyers and doctors show more inequality than salaried professors or army officers

5Top New York law firms bill their giant corporate clients at more than $500 per hour. In 1988, top graduates of the best law schools started out with the big New York firms at $80,000 per year.

How does such an investment occur? When a student goes to college, he or she might pay $10,000 in tuition and $15,000 in opportunity costs of earnings forgone. In return for this substantial investment, the earnings of the college graduate might be a job paying $10,000 per year more than a high school graduate could land. The higher earnings are the return on the investment in human capital.

Does college actually pay off? The evidence suggests that it does, but college is not as profitable an investment as it used to be. Those who never finished high school had median incomes of $16,800 in 1988. Those who completed 12 years of schooling earned $29,000 in 1988. By contrast, college graduates had a median income of $44,000 in 1988, earning 52 per-
cent more than those who only finished high school. Moreover, the unemployment rate of college graduates tends to be about one-half that of less educated groups. How does education affect the incomes of men versus women and of minority groups? Studies indicate that the earnings of women and minorities are lower than those of white males, but the relative contribution of education to earnings is similar for all groups.

Even if you have to borrow at 10 percent interest, put off years of gainful employment, live away from home, and pay for food and books, your lifetime earnings in the professions that are open only to college graduates will probably more than compensate you for the costs.

Recent data show that an 18-year-old male who goes on to graduate from college will earn about $3,100,000 (at 1988 price and income levels) before the age of 65. Those of the same generation who only graduate from high school will earn about $2,100,000. Those who do not finish high school will earn an average of only $1,500,000. What about postgraduate education? Going on to graduate or professional schools adds an average of 10 percent to earnings, thus paying a modest return.

Other Factors

In addition to ability, occupation, and education, other factors affect the inequality of wage earnings. We will see in Chapter 15 that discrimination and exclusion from certain occupations have played an important role in keeping down the incomes of many minority groups. And we should not underestimate the role of pure chance or luck in affecting our economic circumstances.

INEQUALITIES IN PROPERTY INCOME

While the differences in incomes among wage earners are large, it is the disparities in wealth and in property incomes that have produced the most vitriolic attacks from capitalism’s critics. “Property is theft!” wrote the nineteenth-century socialist Proudhon. Before deciding whether to agree, however, let’s examine the statistics.

By comparison to income, the ownership of wealth is extremely concentrated. In 1983, the top 1 percent of wealthholders owned 23 percent of all personal wealth; the top $ percent owned 18 percent. While the average person in thebottom 99 percent had net worth of around $52,000, the top $ percent averaged $2.3 million per household.

What are the sources of this vast gulf between the super-rich and the poor? Have the rich become kings of the mountain by their own virtue, saving, and risk taking? Or by their ancestors’ virtue? Or by sheer luck?

Inheritance

Many wealthy people inherited a great deal of their property from their parents or grandparents. The progeny of the tycoons of an earlier era—Rockefeller, Ford, Getty, and du Pont—are among today’s top wealthholders. According to surveys, two-thirds of the top 1 percent of wealthholders in America inherited a substantial fraction of their property.

Saving and Risk Taking

Economic mythology spins tales of modern-day Horatio Alger, poor children who toil, take risks, save their entire earnings, and end up in a fabulous San Francisco penthouse. To what extent, in fact, does America’s accumulated wealth result from people saving over their working lives (the so-called life-cycle model of saving behavior)?

A recent study by Laurence Kotlikoff and Lawrence Summers suggests that only a small fraction of personal wealth, perhaps 20 percent, can be explained by life-cycle savings. The balance, it appears, is gained from other sources, such as inheritances or gifts.

Another theory is that today’s wealth is the reward for yesterday’s risk taking. We cannot expect someone to drill a 25,000-foot oil well, to spend years hunting for the genetically engineered cure for cancer, to slave for years over the word processor hoping to write a best-selling Gothic novel—without some lure of exceptional reward.
AMERICA'S 100 RICHEST PEOPLE

<table>
<thead>
<tr>
<th>SOURCE OF WEALTH</th>
<th>NUMBER OF PERSONS</th>
<th>AMOUNT OF NET WORTH (billions of $)</th>
<th>(percent)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inheritance</td>
<td>37</td>
<td>48.7</td>
<td>35</td>
</tr>
<tr>
<td>Financial acumen</td>
<td>7</td>
<td>9.6</td>
<td>7</td>
</tr>
<tr>
<td>Entrepreneurship</td>
<td>56</td>
<td>80.7</td>
<td>58</td>
</tr>
<tr>
<td>Of which:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil</td>
<td>9</td>
<td>11.8</td>
<td>9</td>
</tr>
<tr>
<td>Real estate</td>
<td>12</td>
<td>13.0</td>
<td>9</td>
</tr>
<tr>
<td>Retailing</td>
<td>9</td>
<td>17.1</td>
<td>12</td>
</tr>
<tr>
<td>Electronics</td>
<td>4</td>
<td>8.5</td>
<td>6</td>
</tr>
<tr>
<td>Candy</td>
<td>4</td>
<td>4.6</td>
<td>3</td>
</tr>
<tr>
<td>Other</td>
<td>18</td>
<td>25.7</td>
<td>19</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>139.0</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 13-5 How did the richest Americans reach the summit?

In 1987, 100 Americans had net worth of at least $740 million, according to Forbes magazine. Most gained their wealth by entrepreneurship—putting together shopping centers, oil-drilling schemes, computer companies, or even candy-bar firms. A minority represent the beneficiaries of earlier entrepreneurship (like the Rockefellers). A tiny fraction gained wealth by stock market speculation or by inventing radically new products. [Source: Forbes (October 26, 1987).]

And markets do reward such risk taking with higher-than-average returns. No one has succeeded in quantifying how much of the inequality of wealth is due to such extraordinary risk taking, but data on top wealthholders indicate that much of the great inequality of wealth is due to the fact that very few are destined to make the innovations upon which great fortunes are built.

What is the relative importance of inheritance and other factors for the very wealthy? Table 13-5 displays the experience of the top 100 wealthholders in 1987 (as collected by Forbes magazine). These data suggest that entrepreneurship has been the surest route to great wealth. Those who put together new organizations—oil-drilling companies, shopping center complexes, even candy-bar firms—most often gained great wealth; somewhat more than one third of the 100 wealthiest got there by birth; while a handful were financial wizards.

Markets and Inequality

After this brief review of the forces leading to inequality of income, the next chapter starts the more complete analysis of the determination of wages, rents, and interest rates. As we turn to that subject, the central properties of markets should be kept in mind. Remember that competitive markets are particularly adept at solving the what and how problems—questions about allocation of resources among industries and choice of the best technique for producing particular commodities. But markets have no particular talent for finding the best solution to the for whom question. The most efficient economy in the world
may produce a distribution of wages and property that would offend even the staunchest defender of free markets.

We can therefore shout two cheers for the market but not three. We can reserve our judgment about the way markets solve the for whom question until Chapter 21, where we will trace the incidence of poverty in America and see how a society might tackle the problem of reducing inequality while preserving the remarkable efficiency properties of markets.

SUMMARY

A. Measurement of Incomes and Inequality

1. Distribution theory refers to the way that income and wealth are distributed in an economy—to the initial allocation of factors of production (land, labor, and capital), and to the prices that these factors receive in markets. The major concepts studied are income (the flow of wages, salaries, property returns, and transfers received during a period) and wealth (the net stock of assets owned at a point in time).
2. The view that the poor are becoming poorer in modern industrial nations will not stand up under careful factual examination. Since the Industrial Revolution, living standards in Western Europe and America have shown a rising long-term trend.
3. The Lorenz curve is a convenient device for measuring the spread or inequalities of income distribution. It shows what percentage of total income goes to the poorest 1 percent of the population, to the poorest 10 percent, to the poorest 95 percent, and so forth. The distribution of American income today appears to be less unequal than in the early part of this century or than in less developed countries now. But it still shows a considerable measure of inequality and even a slight increase of inequality over the last decade. Wealth is even more unequally distributed than is income, both in the United States and in other capitalist economies.

B. The Sources of Inequality

4. In explaining the inequality in income distribution, we can look separately at labor income and property income. Labor earnings differ because of differences in abilities, in intensity of work (both hours and effort), and because occupational earnings differ, due to divergent amounts of human capital, among other factors.
5. Property incomes are more unevenly distributed than labor earnings, largely because of the great disparities in wealth. Inheritance helps the children of the wealthy begin ahead of the average person; only a small fraction of America’s wealth can be accounted for by life-cycle savings. Entrepreneurship appears prominently as a source of the net worth of the 100 richest Americans.
CONCEPTS FOR REVIEW

income and wealth
income mobility
relative mobility
income velocity
relative velocity
debt
labor and property income
relative roles of luck, life-cycle savings, risk taking, inheritance
sources of inequality

QUESTIONS FOR DISCUSSION

1. Let the members of the class each anonymously write down on a card an estimate of their families' annual income. From these, draw up a frequency table showing the distribution of incomes. What is the median income? The mean income?

2. Many people believe that incomes should be more equally distributed. How unequal do you think incomes should be for people of different abilities? If you desired less inequality, what methods would you propose to equalize incomes? (Choose between redistributive taxation and government transfers.)

3. What effect would the following have on the Lorenz curve of after-tax incomes? (Assume that the taxes are spent by the government on a representative slice of GNP.)
 (a) A proportional income tax (i.e., one taxing all incomes at the same rate)
 (b) A progressive income tax (i.e., one taxing high incomes more heavily than low incomes)
 (c) A 5 percent national sales tax
 (d) A deep recession

Draw five Lorenz curves to illustrate the original income distribution and the income distribution after each of actions (a) to (d).

4. How does the fact that different cities and regions have different costs of living affect comparisons of incomes? Thus, in Anchorage (Alaska) and Honolulu, living is a third to a quarter more expensive than in the average city. Boston, New York, and San Francisco are also expensive places. Austin, Atlanta, and Dallas run 10 percent below average. Small towns run 10 to 20 percent below big cities.

5. Consider two ways of supplementing the income of the poor: (a) cash assistance (say, $500 per month) and (b) categorical benefits such as subsidized food, medical care, or housing.

 List the pros and cons of using each strategy. Can you explain why the United States tends to use mainly strategy (b)? Do you agree?

6. Instead of using the Lorenz curve to measure inequality, calculate the area between the actual curve of inequality and the curve of equal incomes (i.e., the red shaded region in Figure 13-2). Two times this ratio is called the "Gini coefficient."

 What is the Gini coefficient for a society with absolute equality of income? For one in which one person gets all the income? Estimate the Gini coefficients for the different Lorenz curves in Figure 13-3.
7. In a country called Econoland, there are 10 people. Their incomes (in thousands) are $3, $6, $2, $8, $4, $9, $1, $5, $7, and $5. Construct a table of income quintiles like Table 13-4. Plot a Lorenz curve. Calculate the Gini coefficient defined in question 6.

8. The following table shows the per capita incomes of 12 major countries for 1985. These are converted from the national currencies into U.S. dollars using "purchasing-power" exchange rates that measure actual buying power.

<table>
<thead>
<tr>
<th>PER CAPITA INCOMES, 1985</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
</tr>
<tr>
<td>Japan</td>
</tr>
<tr>
<td>West Germany</td>
</tr>
<tr>
<td>France</td>
</tr>
<tr>
<td>United Kingdom</td>
</tr>
<tr>
<td>Italy</td>
</tr>
</tbody>
</table>

Use an encyclopedia to obtain populations of each country. Then, assuming that each person in a given country received exactly that country's per capita GNP, construct a Lorenz curve for the 12 countries. Does this Lorenz curve show more or less inequality than the Lorenz curves for individual countries shown in Figure 13-3(a)?
The price of corn is not high because a rent is paid, but a rent is paid because [the price of corn is high.]

David Ricardo

THE THEORY of income distribution in competitive markets is simply a special case of the theory of prices. Wages are the price of labor, rent is the price of land, and interest is the price of capital. But within this general rule, many controversial and important questions are left unanswered: Why are pleasant professions like law paid many times more than are unpleasant tasks like garbage collection? Why are land rents in Manhattan sky-high while those in the desert are negligible? Why are women paid on average only 65 cents for every dollar earned by men? Is labor exploited by capital? What determines the interest and profit rates on capital? All these topics are addressed by the theory of income distribution.

We might ask from a macroeconomic perspective, Why are wages three-quarters of GNP? To answer this question, we must understand the force that determines all the factor prices — the factors lying behind the supply and demand for labor, land, and capital. In short, economics analyzes the distribution of income by focusing on the markets where factors of production get priced.

The key to factor pricing is found in the marginal-productivity theory of the firm. We therefore begin by
reviewing the theory of production first introduced in Chapter 8. We see that factor prices relate closely to the familiar law of diminishing returns. Indeed, the demand curves for the various factors of production—the demand for labor, land, and so forth—can be expressed in terms of the revenues earned on their marginal products. Putting the demand curves together with the supplies of each factor, we obtain the market price and quantity of each factor. This chapter ends by applying the theory of distribution to the important case of land rents.

A. MARGINAL-PRODUCTIVITY THEORY OF DISTRIBUTION

DEMANDS FOR FACTORS ARE INTERDEPENDENT

The basic peculiarity about the demand for inputs stems from the technological fact that inputs usually do not work alone. A shovel by itself is worthless to me if I want a garden. A worker with empty hands is equally worthless. Together, the worker and shovel can dig my garden. In other words, the productivity of one factor, such as labor, depends upon the amount of other factors available to work with.

Sir William Petty put the matter in this striking way: Labor is the father of product and land the mother. We cannot say which is more important in producing a baby—a mother or a father. So, too, it is generally impossible to say how much output has been created by any one of the different inputs taken by itself. The different inputs interact with one another.

It is this interdependence of productivities of land, labor, and capital goods that makes the distribution of income a complex topic. Suppose we had to distribute at one time the entire output of a nation. If land had by itself produced so much, and labor had alone produced so much, and machinery had by itself produced the rest, distribution might seem easy indeed. Under supply and demand, if the separate factors could produce goods by themselves, each factor would produce output alone and enjoy the undivided fruits of its own work.

But reread the above paragraph and underline such words as "by itself produced" and "had alone produced." They refer to a fantasy, to an independence of productivities which simply does not exist in reality. If an omelette is produced by labor and fuel and eggs, how can you unscramble the separate contributions of each input?

How then is the puzzle of income distribution resolved? It gets resolved by the interaction of supply and demand, operating in perfectly or imperfectly competitive markets.

MARGINAL PRODUCTIVITY

Before turning to the determination of the demand for factors of production, we will review the essentials of Chapter 8's production theory.

The theory of production begins with the notion of the production function. If you have given quantities of land, labor, and capital, what is the maximum output of a particular good that you can produce? In technical language, we represent the relationship by the production function, which states the maximum amount of output that can be produced, with a given state of technical knowledge, for each combination of factor inputs. A specific production function might tell you that you can produce 1 ton of steel with 1.2 tons of iron ore, 150,000 Btu of energy, and 1.2 hours of labor.

Using the production-function concept, we provided a rigorous definition of marginal product.¹ Table 14-1 is a reminder of the way marginal products

¹Note that the marginal product of a factor is expressed in physical units of product per unit of additional input. So economists sometimes use the term "marginal physical product" rather than marginal product, particularly when they want to avoid any possible confusion with a concept we will soon encounter called "marginal revenue product." For brevity, we will skip the word "physical" and abbreviate marginal product as MP.
DIMINISHING RETURNS REVIEWED

<table>
<thead>
<tr>
<th>(1) UNITS OF LABOR (workers)</th>
<th>(2) TOTAL PRODUCT (bu)</th>
<th>(3) MARGINAL PRODUCT OF LABOR (bu per worker)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>20,000</td>
</tr>
<tr>
<td>1</td>
<td>20,000</td>
<td>10,000</td>
</tr>
<tr>
<td>2 (initial input)</td>
<td>30,000</td>
<td>5,000</td>
</tr>
<tr>
<td>3</td>
<td>35,000</td>
<td>3,000</td>
</tr>
<tr>
<td>4</td>
<td>38,000</td>
<td>1,000</td>
</tr>
<tr>
<td>5</td>
<td>39,000</td>
<td></td>
</tr>
</tbody>
</table>

Table 14-1: Diminishing returns is seen as diminishing marginal product.

Marginal product of labor is calculated by adding 1 additional unit of labor while holding all other inputs constant. If the initial input is 2 units of labor, then adding a third produces 5000 additional bushels of corn. Diminishing returns is seen as a fall in the marginal product of labor as the number of workers increases.

Marginal Revenue Product

With this review of production theory behind us, we are prepared to break new ground in understanding the behavior of factor markets. We can use the tools of production theory to devise a new key concept in distribution theory, marginal revenue product.

Suppose we are operating a firm making laser disks. We know how much extra output each additional worker brings in. But ultimately as managers we are concerned with maximizing profits measured in dollars, for we buy our daily bread with money, not with disks. And workers too want to be paid with dollars rather than disks. Exactly how much additional revenue does each additional unit of input produce?

Economists give the name "marginal revenue product" to the extra money brought in by selling the output generated by an additional worker or unit of input.

The **marginal revenue product** of input A is the additional revenue produced by an additional unit of input A.
Competitive Case It is easy to calculate marginal revenue product when product markets are perfectly competitive. In this case, the marginal product that the worker brings in \((MP_L)\) can all be sold at the competitive output price \((P)\). Moreover, since we are considering perfect competition, the output price is unaffected by the firm's output, and price therefore equals marginal revenue \((MR)\). If we have \(MP_L\) of 10,000 bushels and a price and \(MR\) of $3, the dollar value of the output produced by the last worker—the marginal revenue product of labor \((MRP_L)\)—is $30,000 (equal to 10,000 \times $3). This is shown in column (5) of Table 14-2. More generally, under perfect competition, each worker is worth to the firm the dollar value of the last worker's marginal product; the value of each acre of land is the marginal product of land times the output price; and so forth for each factor.

Imperfect Competition Perfect competition is but one polar case, that of a horizontal demand curve for each single firm's product. Where the individual firm's demand curve is downward-sloping, then the marginal revenue received from each extra unit of output sold is less than the price (recall that this is so because to sell an additional unit the firm must lower its price and therefore lose revenue on previous units). Hence with \(MR < P\), each unit of labor's marginal product will be worth the \(MR\) to the firm.

To pursue our previous example, say that the \(MR\) was $2 while price was $3. Then the \(MRP\) of the second worker in Table 14-2 would be $20,000 (equal to the \(MP_L\) of 10,000 times the \(MR\) of $2), rather than the $30,000 of the competitive case.

To summarize, the additional revenue gained by a firm from an additional unit of input (such as labor) is called the marginal revenue product. It is measured in dollar terms by the marginal revenue \((MR)\) multiplied by the marginal product of the input \((MP_L)\) in the case of labor.

Marginal revenue product represents the additional

Table 14-2 Calculation of marginal revenue product for perfectly competitive firm

Using the production data in Table 14-1 along with the price of output, we can easily calculate the marginal revenue product of labor. Marginal revenue product of labor shows how much additional revenue the firm receives when an additional unit of labor is employed. It equals the marginal physical product in column (3) times the competitive output price (equal to marginal revenue) in column (4).
revenue gained by a firm from employment of an additional unit of an input, with other inputs held constant. It is defined as the marginal product of the input multiplied by the marginal revenue obtained from selling an extra unit of output. This holds for labor \((L)\), land \((A)\), capital \((K)\), and other inputs:

Marginal revenue product of labor \((MRP_L)\)
\[
MRP_L = MR \times MP_L
\]

Marginal revenue product of land \((MRP_A)\)
\[
MRP_A = MR \times MP_A
\]

and so forth.

THE DEMAND FOR INPUTS

Now that we have analyzed various underlying concepts, we turn to the determinants of the demand for inputs. We first note that the demand for inputs is a derived demand rather than an ultimate demand. We then show how profit-maximizing firms decide upon the optimal combination of inputs, which then allows us to describe the demand curve for inputs.

Demand for Factors Is a Derived Demand

At the outset, we must note that there is an essential difference between the demand by households for consumer goods and the demand by firms for inputs. Why do households demand final goods like movies or muffins? They do so because of the direct enjoyment or utility these consumption goods provide. But does this also hold for a business buying an input such as fertilizer or sulfur or unskilled labor or land? Surely a business does not buy these for the direct satisfaction it hopes to get. Rather, it buys inputs because of the production and revenue that it hopes to secure from employment of those factors.

Satisfactions are in the picture—but at one stage removed. The satisfactions that consumers get from eating muffins help determine how many muffins the firm must make and therefore how many ovens and how much wheat are needed for the muffins. An accurate analysis of the demand for inputs must, therefore, recognize that consumer demands do ultimately determine the baker’s demand for wheat inputs. The firm’s demand for labor and wheat and other inputs is derived indirectly from the consumer demand for its final product.

Economists therefore speak of the demand for productive factors as a "derived demand."

The demands for inputs or factors of production are derived demands. This means that when profit-seeking firms demand an input, they do so because that input permits them to produce a good which consumers are willing to buy now or in the future. The demand for the input is thus derived ultimately from consumer demands for final goods.

Figure 14-1 shows how the demand for a given input, such as fertile cornland, must be regarded as derived from the consumer demand curve for corn.

Factor Demands for Profit-Maximizing Firms

Where did the demand for cornland shown in Figure 14-1 come from? For that matter, what determines the demand for any factor of production? To understand these issues, we must analyze how a profit-oriented firm chooses its optimal combination of inputs.

Imagine that you are a profit-maximizing farmer. In your area, you can hire all the farmhands you want at $20,000 per year. Your accountant hands you a spreadsheet with the data in Table 14-2. You must decide how many workers to hire. How would you proceed?

You could try out different possibilities. If you hire one worker, the additional revenue (the \(MRP\)) is $60,000 while the marginal cost of the worker is $20,000, so your profit is $40,000. A second worker gives you an \(MRP\) of $30,000 for an additional profit of $10,000. However, the third worker produces extra output yielding revenues of only $15,000 as compared to a cost of $20,000 so it is not profitable to hire the third worker. The maximum profit in Table 14-2 is earned by hiring two workers. Note that by trial and error we have found an interesting rule. Our firm will maximize profits by hiring labor (or indeed any factor) as long as the \(MRP\) of that input exceeds the extra cost of that input.
By using this reasoning, we can derive the rule for choosing the optimal combination of inputs: To maximize profits, inputs should be added as long as the marginal revenue product of the input exceeds the marginal cost or price of the input.

In the case of perfectly competitive factor markets, we have an even more striking rule. Recall that under competition the marginal revenue product equals price times marginal product \(\text{MRP} = P \times MP \). In other words, a profit-maximizing competitive firm will always want to compare the costs and revenues from hiring more labor or land. The extra cost is the wage rate of labor or the rental on land. The extra revenue is the price of output times the marginal product of labor or land.

We therefore see that for perfectly competitive firms, maximum profits are earned when:

Marginal product of labor \(\times \) output price
 = the price of labor = the wage rate

Marginal product of land \(\times \) output price
 = the price of land = the rent

and so forth.

Least-Cost Rule We can use the profit-maximizing conditions on input choice to describe how all inputs should be combined. If our firm desires to maximize profits, it will follow the conditions just listed for all inputs. But we can easily solve the equations to obtain an important new set of equations for perfectly competitive firms:

\[
\frac{\text{Marginal product of labor}}{\text{Price of labor}} = \frac{\text{Marginal product of land}}{\text{Price of land}} = \cdots = \frac{1}{\text{output price}}
\]

What does this condition say? We find that profits are maximized when the marginal product per dollar of input is equalized for each input. If an acre of land costs $800 while an hour of labor costs 100 times less at $8, then no rational person would decide to equalize the marginal products of the two factors. Rather, as the equation shows, costs are minimized when the marginal products per dollar of input are the same. Since land costs 100 times as much as labor, land’s \(MP \) must be 100 times labor’s \(MP \). (Recall that this rule is identical in spirit to Chapter 6’s rule for maximum consumer satisfaction—that rule states that maximum satisfaction comes when the marginal utility per dollar is equalized for each good consumed.)
Demand for Labor and Marginal Revenue Product

We can now provide an exact description of the demand for factors of production. The last section showed how a profit-maximizing firm would choose input quantities such that the price of each input equaled the MRP of that input. This implies that, once we have found the MRP schedule for an input, we can immediately determine the demand for that input.

Glance back at Table 14-2. This table shows in the last column the MRP of labor for our corn farm. By the profit-maximizing condition, we know that at a wage of $60,000$ the firm would choose 1 unit of labor; at a $30,000$ wage, 2 units of labor would be sought; and so forth. Hence the MRP schedule is the demand schedule for the firm.

Figure 14-2 uses this result to draw a demand curve for our corn farm using the data shown in Table 14-2. In addition, we have drawn a smooth curve through the individual points to show how the demand curve would appear if fractional units of labor could be purchased.

An obvious corollary of the above is this:

Substitution Rule If the price of one factor, like labor, rises while other factor prices remain fixed, it will generally benefit the firm to substitute more of the other inputs for the now-more-expensive factor. A rise in P_L will reduce MP_L/P_L and cause labor to be fired and land rented until equality of marginal products per dollar of input is restored—thus lowering the amount of needed L and increasing the demand for land acres. A fall in P_L will do the reverse. A rise in P_A alone will, by the same logic, cause labor to be substituted for now-more-expensive land.

DETERMINATION OF FACTOR PRICES BY SUPPLY AND DEMAND

Let's now move on to a full analysis of the determination of factor prices by supply and demand. The last section provided the underpinnings for analysis of demand. We showed there that, for given factor prices, profit-maximizing firms would choose input combinations according to their marginal revenue products. As the price of land falls, each farmer would substitute land for other inputs like labor, machinery, and fertilizer. Each farmer therefore would show a demand for cornland inputs like that on the right of Figure 14-1.

How do we obtain the market demand for inputs (whether cornland, unskilled labor, or fertilizer)? We add together the individual demands of each of the firms. Thus at a given price of land, we add together all the demands for land of all the firms at that price; and we do the same at every price of land. Put differently, we add horizontally all the individual firms' demand curves to obtain the market demand curve for an input. We follow the same procedure for any

Footnote: Note that this process of adding factor demand curves horizontally is exactly the same procedure that we followed in obtaining market demand curves for consumers in Chapter 6.
input, summing up all the derived demands of all the businesses to get the market demand for each input. And in each case, the derived demand for tractors or unskilled labor or any input is based on the marginal revenue product of the input under consideration. Figure 14-3 shows a general demand curve for a factor of production as the DD curve.

Along with the demand curve we must also have a supply curve for the input, shown as SS in Figure 14-3. The general principles of supply will differ from input to input. Later in this chapter we will investigate the special case of land, while the next three chapters will discuss the supply of labor and capital goods.

Can we say anything about the slope of the supply curve of inputs? Actually, the supply curve may slope positively or negatively or even be vertical. Land’s supply is usually thought to be unaffected by price, as we will shortly see. Alternatively, if the factor of production were labor, people might feel that they could afford to work fewer hours when wages rise, so that the SS curve might eventually bend backward and northwestward from the vertical, rather than rising. (The case of backward-bending supply of a factor is discussed at greater length in Chapter 15.)

Whether the slope is positive or negative, a competitive market will have a supply curve such as the SS curve shown in Figure 14-3. The market price of the input will be set where the derived demand curve for a factor intersects its supply curve. And if the demand curve for the factor shifts up, its equilibrium price will tend to rise. On the other hand, if the supply offered of a factor increases, so that the supply curve shifts rightward, the factor price will tend to fall.

In a competitive market economy, therefore, factor prices and people’s incomes are not determined at random. There are definite forces of supply and demand operating to create high returns to scarce factors that are very useful in producing the things wanted by people with purchasing power. And, of course, any factor’s earnings tend to drop if more of it becomes available, or if other close substitutes for it are found, or if people stop wanting the goods that the factor is best suited to make. Competition gives, and competition takes.

MARGINAL-PRODUCTIVITY THEORY OF DISTRIBUTION

We can now use marginal-productivity theory to solve the riddle of the sphinx: How do markets allocate national output among two or more factors of production?

John Bates Clark, a distinguished Columbia University economist, provided a simplified theory of distribution around 1900. It can be applied to competitive price-and-wage determination when there are any number of goods and factor inputs. But it is most easily grasped if we consider a simplified world with only one product in which all accounts are kept in real terms. The product could be corn or a basket of
Under perfect competition, where landowners are free to employ as few or many workers as they like, the answer is plain: Landlords will never freely hire that second worker if the market wage they must pay exceeds the new marginal product received. So the demand curve for labor will ensure that all the workers who get hired do receive as a wage rate the marginal product of the last worker.

What happens to the excess of MP produced by the first worker and all the earlier workers up to the very last? The excess stays with the landlords as their residual earning; we will later analyze in detail the residual earnings of landowners and call these earnings rent. In free competitive markets, no one can take it away from them. Are they "profiteering"? Not in the usual sense of the word. Each landowner is but one of thousands: each has acres no better and no worse than the acres of the rest. Just as worker competes with worker for jobs, landowner competes with landowner for workers. There are no conspiracies, no employer associations, and no unions in Clark’s competitive world.

Figure 14-4 shows that the marginal product curve of labor gives the DD demand curve of all employers in terms of real wages (in corn, or market baskets of goods, or Q units). The population or labor force provides us the supply of labor (shown as SS), and the equilibrium wage comes at E. The total wage share of labor is given by \(W \times L \) (for example, if \(W = 5 \) and \(L = 1 \) million, total wages = 5 million); this is shown by the dark red area of the rectangle, OSEN.

We have determined not only the distributive share of labor but also that of land. The indicated light red rent triangle simply measures all the "excesses over final marginal product that the early workers brought and never got paid in wages." Whether fair or unfair, all the workers are alike; all landlords are free competitors who can hire labor or not as they like; so it is inevitable under competition that all workers get paid the MP of the last worker and, because of diminishing returns, that there be left the residual triangle of rent that goes to the landowners.

This completes the marginal-productivity theory of distribution. Note that labor wages exceed property rents in this example: the wage rectangle of MP is about 3 times as large as the residual rent triangle. This 3-to-1 relationship between labor income and
non-labor income reflects the fact that wages and salaries constitute about three-quarters of national income. Labor's share of national income has been remarkably stable over the twentieth century, a topic we return to in Chapter 23.

If mass immigration or a rise in the birth rate increased labor supply so much as to move society down the labor demand curve to a lower wage, the rectangular share of labor might or might not fall relative to the rent triangle of land. Here is the explanation:

An increase in labor supply down the labor demand curve must always raise the absolute total of land's rent triangle. (Try it.) What about the absolute total of labor's rectangle? The elasticity discussion of Chapter 5 reminds us that labor's total wage rectangle will most certainly increase if DD has more-than-unitary elasticity. But can labor's rectangle grow as great in percentage as land's triangle, or even greater? Although not obvious until you experiment with drawing in labor demand curves, the answer is definite: Yes, the relative share of wage's rectangle can increase and the relative share of land's triangle can decrease if the marginal product curve slopes downward slowly enough.

We noted above that labor's share of national income has varied surprisingly little over the last century. This suggests that the elasticity of the labor demand curve has been close to one.

Marginal-Productivity Theory with Many Inputs

The marginal-productivity theory discovered by J. B. Clark was a great step forward in understanding the pricing of different inputs. David Ricardo had grasped the essence of Figure 14-4 in the early 1800s. But Clark saw that the position of land and labor could be reversed to get a complete theory of distribution.

You can switch the roles of labor and land. Hold labor constant and add successive units of variable land to fixed labor. Calculate each successive acre's marginal product. Draw a $D'D'$ curve showing how many acres labor-owners will demand of land at each rent rate. In the new version of Figure 14-4 that you draw, find a new E' point of equilibrium. Identify land's rectangle of rent as determined by its MP. Identify labor's residual wage triangle. And note the complete symmetry of the factors. This new graph shows that we should think of the distributive shares of each and every factor of production as being simultaneously determined by their interdependent marginal products.

That is not all. Instead of labor and land, suppose the only two factors were labor L and some versatile capital goods K. Suppose a smooth production function relates Q to L and K, with the same general properties as in Figure 14-4. Then you can redraw Figure 14-4 and get an identical picture of income distribution between L and K.³

Profit-maximizing employers in competitive factor markets will have their demand curves for input determined by the additional output produced by successive units of each factor, i.e., by marginal products. In the simplified case of a single output (with $P = 1$) we get

\[
\text{Wage} = \text{marginal product of labor} \\
\text{Rent} = \text{marginal product of land}
\]

and so forth for any factor.

This distributes 100 percent of output, no more and no less, among all the factors of production.

To summarize, we see that Clark's aggregate theory of the distribution of income is compatible with the realistic pricing of any number of goods produced by any number of factors. But, while it is a rigorous theory, marginal productivities provide only one-half of the answer to income distribution—they determine the demand blade but omit the supply blade of the scissors of supply and demand.

A complete theory of income distribution must, then, include a pair of forces: (1) the forces of demand for factors, influenced by both the production function and the demands for final goods that lie behind the derived demands for factors; and (2) factor supplies, as determined by nature's endowment, the size and quality of the work force, and the accumulated stock of capital goods.

³That is still not all. If there are three or more factors of production, we can calculate each individual factor's MP and supply curve and Figure 14-4 still holds.
B. FACTOR PRICING: THE CASE OF LAND RENTS

Land is a good investment; they ain’t making it no more.

Will Rogers

Having developed the concepts necessary for the analysis of demand for factors of production, we now apply those theories to factors that are fixed in supply like land and natural resources. We pay particular attention to analyzing how markets determine rents to factors that are fixed in supply. We shall also see that, when rents are not charged, society may overuse common property resources, like air or fisheries.

Rent as Return to Fixed Factors

One of the peculiarities of land is that, unlike other factors, its total supply is fixed by nature and in general cannot be augmented in response to a higher price for it or diminished in response to lower land prices.

Pure Economic Rent While land can sometimes be created by drainage, and the fertility of existing land can be depleted by overcropping, we can accept the complete fixity of land’s supply as its characteristic feature. The classical economists referred to land as the “original and inexhaustible gift of nature” whose total supply is by definition fixed or completely inelastic. It was the price of such a fixed factor that the classical economists of the last century called rent, or sometimes “pure economic rent.”

The concept of rent applies equally well to other factors that are fixed in supply. There is only one Mona Lisa, and if you could pay for its temporary use, you would pay rent. If you were hiring the services of unique individuals like Whoopi Goldberg or James Taylor, you would be paying a rent for their talents. Any payments for the use of such unique commodities are rents.

Market Equilibrium In Figure 14-5, the supply curve for land is completely inelastic because of the fixity of its supply. The demand and supply curves intersect at the equilibrium point E. It is toward this factor price that the rent of land must tend. Why?

Because if rent rose above the equilibrium price, the amount of land demanded by all firms would be less than the existing amount that would be supplied. Some property owners would be unable to rent their land at all; therefore they would offer their land for less and thus bid down its rent. By similar reasoning, the rent could not remain below the equilibrium intersection for long. If it did, you should be able to show how the bidding of unsatisfied firms would force the factor price back up toward the equilibrium level.

Only at a competitive price where the total amount of land demanded exactly equals the total supply will

Figure 14-5 Fixed land must work for what its demanders bid

Perfect inelasticity of supply characterizes the case of "rent," sometimes also called "pure economic rent." We run up the SS curve to the factor demand curve to determine rent. (Aside from land, we can apply rent considerations to rich oil and gold properties, 7-foot basketball players, and anything else in fixed supply.)
the market be in equilibrium. It is in this sense that supply and demand determine any factor price.

A factor of production like cornland is said to earn a pure economic rent (1) when its total supply is fixed or perfectly inelastic; and (2) when the factor has no other uses, such as land in the production of cotton. Adam Smith’s great follower in England, David Ricardo, noted in 1815 that the case of such an inelastically supplied factor could be described as follows:

It is not really true that the price of corn is high because the price of cornland is high. Actually the reverse is more nearly the truth. The price of cornland is high because the price of corn is high. Because the supply of land is inelastic, land will always work for whatever is given to it by competition. Thus the value of the land is completely derived from the value of the product, and not vice versa.

Rent and Costs

Some economists go so far as to say: “Rent does not enter into the cost of production.” The last section shows that there is a grain of truth in this, but still it is very dangerous terminology. If you were a farmer trying to go into the corn-raising business, you would certainly find that the landlord has to be paid like anybody else. You would certainly include rent in your costs of production, and if you did not pay your rent, you would get taken to court.

Relativity of Viewpoint What then are economists saying when they claim that rent does not enter into society’s cost of production? They are reminding us that rent is the return to a factor that is completely inelastic in supply, so that the same quantity would be supplied even if price were much lower. Therefore, the prices of goods really determine land rent—rather than land rent determining the prices of goods.

But at this point we must avoid our old enemy “the fallacy of composition.” What appears as a cost of production to each and every small firm using a particular kind of land may, as we have seen, to the whole community be merely a derived, price-determined rent expense rather than a price-determining one.

Henry George’s Single-Tax Movement: Taxing Land’s Surplus

In the last part of the nineteenth century, America’s population grew rapidly as people migrated here from all over the world. As the population grew, land gradually became more heavily utilized. Competitive land rents tended to rise. This created handsome profits for some of those who were lucky or farsighted enough to get in on the ground floor and buy land early.

Why, some people asked, should lucky landowners be permitted to receive these “unearned land increments”? Henry George (1839–1897), a printer who thought a great deal about economics, crystallized these sentiments in the single-tax movement. This movement, which agitated for heavy taxation of land rents, had a considerable following a century ago and still has some adherents today. But it is unlikely that anyone will soon come forward and write so persuasive a bible for the single-tax movement as did Henry George in his best-selling Poverty and Progress.

Taxing Land’s Rents This is not the place to attempt a full assessment of the merits and demerits of George’s political movement. But one important principle of distribution and taxation can be illustrated by his central tenet:

Pure land rent is in the nature of a “surplus” that can be taxed heavily without distorting production incentives or impairing productive efficiency.
What about the rent received by the landowners? The pretax price is unchanged, and the quantity supplied is the same. Therefore, the tax must have been completely paid by the landowner.

The situation can be visualized in Figure 14-6. What the farmer pays and what the landlord receives are now two quite different things. As far as the landlords are concerned, once the government steps in to take its 50 percent share, the effect is just the same as if the net demand to the owners had shifted down from DD to $D'D'$. Landowners' equilibrium return after taxes is now only as high as E', or only half as high as E. The whole of the tax has been shifted backward onto the owners of the factor in inelastic supply.

The landowners will not like this. But under perfect competition there is nothing they can do about it, since they cannot alter the total supply and the land must work for whatever it can get. Half a loaf is better than none.

No Distortion from Tax on Rent But, you might ask, what about the effects of such a tax on economic efficiency? The striking result is that a tax on rent will lead to no distortions or economic inefficiencies. Why not? Because a tax on pure economic rent does not change anyone’s economic behavior. Demanders react not at all because (as we just saw) the price to those who buy such services is unchanged. The behavior of suppliers is unaffected because, by supposition, the supply of land is fixed and cannot react. Hence, the economy operates after the tax exactly as it did before the tax—with no distortions or inefficiencies arising as a result of the tax.

Ramsey Taxes

As in many areas of economics, we hear today in modern taxation theory strains from earlier times. In the 1920s, the English economist Frank Ramsey asked the natural sequel to George's inquiry: What are the most efficient kinds of taxes? Modern theorists have now developed a complete theory much along lines first suggested by George and Ramsey.

The modern theory of *Ramsey taxes* asks, How can the government raise the necessary taxes most efficiently, that is, with least loss in consumer surplus? The answer is simple and is called the “Ramsey tax
rule," after its discoverer: Put the heaviest taxes on those inputs and outputs that are most price inelastic in supply or demand. Thus if land and food have very price-inelastic supply and demand curves, tax them heavily. If airline travel and cars are very price elastic, tax them lightly.

The rationale for the Ramsey tax rule is basically the same as that shown in Figure 14-6: if a commodity is very price inelastic in supply (or demand), then a tax on that commodity will produce relatively little change in consumption and production. In some circumstances, Ramsey taxes may constitute a way of raising revenues with a minimum of economic inefficiency.

Fairness? Both the single-tax and the Ramsey-tax analyses present powerful arguments for certain kinds of taxes as the most efficient way to organize our fiscal structure. But economies and politics do not run on efficiency alone. While stiff taxation of land rents or food might be efficient, many would think them unfair. More generally, since the necessities of life often show the lowest price elasticities, efficient taxation would mean placing the greatest tax burden on the poor. Here we see a central dilemma of a modern society, the need to choose between efficiency and fairness in design of economic policy.

FACTOR PRICING AND EFFICIENCY: RENT AND FACTOR PRICES AS DEVICES TO RATION SCARCE RESOURCES

Clearly, the supply and demand for factors of production help determine the distribution of income or solve the for whom problem. We might or might not like the particular solution produced by markets. But whether or not we like the competitive distribution of income—and in the case of land rent, Henry George certainly did not—we must recognize that competitive pricing does contribute to an efficient solution to questions of how goods are to be produced; it plays a role in the choice of the most efficient combination of factors of production.

Thus, as a result of supply and demand in markets for goods and for factors, in America, where land is plentiful and labor scarce, we find high land-labor ratios. In Japan, where people are plentiful relative to land, we find high labor-land ratios. Why? Because of government planning? No. Rather, it is through the signals transmitted by prices that the efficient land-labor combinations get induced. Land has to be auctioned off at a low price in America; labor, auctioned off at a high price. So the American farmer, seeking the least-cost combination, substitutes land for labor. Abroad, by contrast, labor gets substituted for land.

We thus see the role of prices as indicators of scarcity: they provide signals to producers as to the relative scarcity of different inputs and thereby help producers select the combination of inputs most appropriate for a society's factor endowments.

The Tragedy of the Commons

These examples show how charging rents on scarce resources helps an economy use its resources efficiently. This point extends as well to vital questions of the environment. Many of our natural resources are owned by no one. Such resources are common property resources, like the town commons of New England villages. As has been eloquently described by the eminent biologist Garrett Hardin, a tragic outcome occurs when common land is overgrazed:

Picture a pasture open to all. Each herdsman tries to keep as many cattle as possible on the commons. This works well for centuries because wars, poaching, and disease keep the numbers well below the carrying capacity of the land. But eventually the day of reckoning arrives. Each herdsman seeks to maximize his personal gain; he concludes that the only sensible course is for him to add another animal to his herd. And another. But this is the conclusion reached by each and every rational herdsman sharing a commons. Herds are increased without limit—in a world that is limited. Therein is the tragedy: Freedom in a commons brings ruin to all.\(^5\)

Hardin uncovered a key point: When no rent is (or can be) charged on a scarce good, severe misallocation or even abuse of resources can occur. In his ex-

\(^5\)This slightly simplified paraphrase is further developed in Garrett Hardin, "The Tragedy of the Commons," *Science* (December 13, 1968).
ample, no rent was charged to those who graze their cattle on common ground, leading to overgrazing and even to destruction of the fertility of the soil. Consider these other cases:

- The oceans are open to all. So everyone fishes and overfishing. Whales are threatened, and many lakes or oceans are depleted. Without an adequate fish population, breeding and maintenance of the fish schools are not possible. There would be a better use of fish resources if rents were charged to those who use fisheries—better for consumers and for those in the fishing industry.

- During peak periods, many airports get very congested, with flights stacked up in the air and lined up on the runways. Economists like Alfred Kahn have proposed the use of peak-load "congestion fees" to ration out the scarce landing rights. These would raise ticket prices during peak periods enough to persuade some people to reschedule their flights to off-peak times.

- Factories that make power or chemicals often pump pollution into water and air. They are treating clean air and water as commons, whose disposal services they can use without paying. Why shouldn’t firms be charged for use of clean air and water just as they are for scarce capital and labor? By charging rents on the environment, we can ration out its use to those firms for whom dumping a ton of particulates or sulfur dioxide is most valuable.

Externalities in the Commons Note that there is a shared feature in each of these three examples. The act of fishing, flying, or dumping imposes costs on other members of society. These are externalities, or external diseconomies of production or consumption, such as we encountered in Chapter 3 and will discuss in greater detail in Chapter 19. Careful observation suggests that the use of common property resources often exhibits important externalities, and that these externalities can be reduced by “scarcity rents” attached to the common property resource.

Why Rents Are Absent It is natural to ask, Why are rents not charged on these scarce resources? The lack of rents can be attributed to two general sources.

First, in some cases, there are no owners or the owners are not interested in maximizing their profits. Nobody owns the air or the oceans, so there is no one to charge and collect the appropriate rent. Or sometimes, governments may own roads or waterways, but through collective choice they may decide to underprice the resource (as occurs in the case of crowded highways). Everybody’s land is nobody’s land, and people are often free to dump or pollute at no private cost.

A second reason for abuse of common property resources is that it may be extremely costly to monitor use and collect rents. Can you imagine a meter on every tailpipe or car or fishing rod—calculating the item’s contribution to pollution, crowding, or overfishing? Because the cost of such metering is extraor dinarily high, governments often choose to allow common property resources to be used free of charge.

The Commons Enclosed But changes in the treatment of our common property resources have taken place. The English enclosure movement turned most land over to private hands in the eighteenth century. Air and water pollution regulation has limited the ability of firms to dump wastes. The Law of the Sea Convention allows nations to regulate ocean resources as far as 200 miles from their shores. While not perfect mechanisms for charging the appropriate scarcity rents, these devices help to reduce the worst abuses of the commons.

Conclusions

The same general principles determining land rent also determine the prices of all inputs: capital goods, natural resources, or labor. Thus the rentals of computers or of trucks are determined in essentially the same way.

One can even say that wages are the rentals paid for the use of a person’s services for a day or a week or a year. This may seem a strange use of terms, but on second thought, one recognizes that every agreement
to hire labor is really for some limited period of time. By outright purchase, you might avoid ever renting any kind of land. But in our society, labor is one of the few productive factors that cannot legally be bought outright. Labor can only be rented, and the wage rate is really a rental.

The next chapter deals with the peculiar issues involved in analyzing wages and labor markets. Chapter 16 then focuses on the special institution of labor unions and collective bargaining. Finally, in Chapter 17 we examine interest and profits—the return to capital.

SUMMARY

A. Marginal-Productivity Theory of Distribution

1. Distribution is concerned with the determination of different people’s incomes—or with the basic question of for whom economic goods are to be produced. To understand what determines labor’s and property’s share in national product, and to understand forces acting on the degree of equality of income, distribution theory studies the problem of how the different factors of production—land, labor, capital, entrepreneurship, and risk taking—get priced in the market. Thus it must study how supply and demand interact to set all kinds of wages, rents, interest rates, and profits.

2. To understand the demand for factors of production, we must analyze the theory of production and the derived demand for factors. The demand for inputs is a derived demand; we demand ovens and wheatlands and wheat not for their own sake, but for the muffins and bread that they can produce for consumers. Hence we must understand the production and revenue relationships between inputs and outputs.

3. We met in earlier chapters the concepts of a production function and marginal products. The demand for a factor is drawn from the marginal revenue product (MRP), which is defined as the extra revenue earned by the firm from employing an extra unit of a factor. For all firms, MRP equals the marginal revenue earned by the sale of an additional unit of the product times the marginal product of an input (MRP = MR × MP). For competitive firms, because price equals marginal revenue, this simplifies to MRP = P × MP.

4. A firm maximizes profits (and minimizes costs) when it sets the MRP of each factor equal to that factor’s marginal cost or factor price. This can be stated equivalently as a condition in which the MRP per dollar of input is equalized for each input. Why must this hold in the maximum-profit equilibrium? Because any employer with common sense will stop hiring any factor at the point where what its marginal product will return in dollars of marginal revenue begins to fall short of the factor price.

5. Unlike consumer goods, inputs are bought for what they produce, not for their ability to satisfy wants. Factor demand curves are derived from commodity demand curves. An upward shift in the latter causes a similar upward shift in the former, and inelasticity in commodity demand makes for inelasticity of derived factor demand.

6. To obtain the market demand for a factor, we add horizontally all firms’ demand curves. This, along with the particular factor’s own supply curve, determines the
supply-and-demand intersection. At the equilibrium market price for the factor of production, the amount demanded and supplied will be exactly equal—only at equilibrium will the factor price have no tendency to change. Anywhere above the equilibrium price, suppliers will tend to undercut the market and will cause the price to fall; anywhere below the equilibrium price, shortages will cause demanders to bid the price upward, restoring the equilibrium.

7. J. B. Clark’s marginal-productivity theory of income distribution analyzes the way total national output gets distributed among the different factors. Competition of numerous landowners and laborers drives factor prices to equal their marginal products. That process will allocate exactly 100 percent of the product. Any factor, not just labor alone, can be the varying factor. Because each unit of the factor gets paid only the MP of the last unit hired, there is enough of a residual surplus left (from the triangle of excess-of-early-over-last-MPs) to pay the other factors their exact marginal products. Hence, Clark’s neoclassical theory of distribution, though simplified, is a logically complete picture of the distribution of income under perfect competition.

B. Factor Pricing: The Case of Land Rents

8. The unchangeable quantity of land is an interesting special case where the supply curve happens to be perfectly vertical and inelastic. In this case of pure economic rent, competition will still determine an equilibrium market price. But rent here is more price-determined than price-determining; the land rent is more the result of the market prices for the finished commodities than their cause. (Yet we must not forget that, to any small firm or industry, rent will still enter into the cost of production just like any other expense. To such a small firm or industry, rent reflects the opportunity cost of using land elsewhere and appears to be as much price-determining as any other cost element.)

9. A factor like land that is inelastically supplied will continue to work the same amount even though its factor reward is reduced. For this reason, Henry George pointed out that rent is in the nature of a “surplus” rather than a reward necessary to coax out the factor supply. This provides the basis for his single-tax program, proposing to tax the unearned increment of land value—without any shifting forward of the tax to the consumer or distorting effects on production.

Modern public finance finds some enduring truth in George’s analysis: the theory of efficient (or Ramsey) taxes shows that the amount of economic inefficiency is minimized when taxes are levied on goods or factors that are most inelastically supplied or demanded.

10. Many of today’s environmental problems occur because rents are not (perhaps cannot be) charged on scarce resources. The “tragedy of the commons” arose when too many herds grazed common land at a zero rent, thereby destroying the vegetation. Grazing, fishing, or dumping of wastes can produce externalities, or costs on society not paid for by the grazer, fisher, or dumper. In these cases, common property resources are scarce, but no rents are charged to limit their use. Why are rents not charged? Sometimes because no one owns the resource; sometimes because owners choose not to charge a fee for use; but most often because the cost of monitoring use and charging rents would be astronomically high.
11. The general principles of supply and demand can be used to explain the competitive price determination of all services. The rental of all inputs—including the wages that have to be paid for the use of the services of human beings and the rentals of durable machines—is determined in a competitive system by supply and demand.

CONCEPTS FOR REVIEW

distribution theory
marginal product, marginal revenue product
factor prices, rents
Clark’s aggregate distribution theory
MP rectangle, residual rent triangle
equalizing marginal revenue product per dollar spent on each factor under perfect competition:

\[
\text{marginal product of labor} \times \text{output price} = \text{wage rate}
\]

\[
\text{marginal product of land} \times \text{output price} = \text{rent}
\]

and so forth

\[
\frac{\text{marginal product of labor}}{\text{price of labor}} = \frac{\text{marginal product of land}}{\text{price of land}} = \frac{1}{\text{output price}}
\]

derived demand
efficient or Ramsey taxes
"tragedy of the commons"
scarcity rents for common property resources
inelastic supply of land

QUESTIONS FOR DISCUSSION

1. Define marginal product and marginal revenue product for a corn farmer. What are the units of each? Give a common-sense explanation of why maximization of profits requires that each factor price must be equal to the factor’s marginal revenue product.

2. For each of the following factors, name the final output for which the item is a derived demand: wheatland, gasoline, barber, machine tool for skis, wine press.

3. In Clark's theory shown in Figure 14-4, let land rather than labor be the varying input. Draw a new figure and explain the marginal-productivity theory with this new diagram.

4. Explain the mistake in each of the following statements:
 (a) Marginal product is calculated as output per worker.
 (b) Distribution theory is no problem. You simply figure out how much each factor produced, and then give it that part of output.
(c) Under competition, workers get paid the amount of output produced less the costs of raw materials.
(d) Marginal revenue product is simply the price times the marginal product.
5. Suppose GNP grows faster than labor supply in every decade. If, contrary to Karl Marx’s predictions, wage share stays about the same fraction of GNP, show that real wage rates must rise.
6. Define the "pure economic rent" case. Explain the sense in which rent of such a factor is "output-price-determined" rather than "output-price-determining." Show that, nonetheless, an increase in supply of the rent-earning factor will depress its return and lower prices of goods that use much of it.
7. What would you expect to be the result of a tax on the wage of championship tennis players or baseball stars?
8. Labor leaders used to say, "Without any labor there is no product. Hence labor deserves all the product." Apologists for capital would reply, "Take away all capital goods, and labor scratches a bare pittance from the earth; practically all the product belongs to capital."

Analyze the flaws in these arguments. If you were to accept them, show that they would allocate 200 or 300 percent of output to two or three factors, whereas only 100 percent can be allocated. How does Clark’s marginal-productivity theory resolve this dispute?
9. It is sometimes argued that, because housing is fixed in supply, price controls on apartment rentals will do no damage to the housing market. Assume (contrary to fact) that housing is completely inelastic in supply. What would happen if a rent control board of New York or Berkeley decreed that rents should be 20 percent below the market price? (Recall the discussion of government interferences in Chapter 5.) Compare the effects on renters and landlords of rent control and taxes on the incomes from rental properties. (Supply-and-demand analysis will help answer both parts of this question.)
10. Our highways have limited traffic capacity, as is illustrated by the vertical line CS.

![Figure 14-7](image-url)
in Figure 14-7. During peak periods, the demand curve (DEB) is far to the right. Explain what happens when society charges no tolls for road use, so the demand for highway use is at point B on the demand curve. Interpret segment CB.

Some have suggested using "congestion tolls" to keep demand within the available supply. What would the equilibrium congestion toll be? Explain how demand is restrained. Who would be made better off, who worse off by such a scheme?

11. Advanced problem: Using supply-and-demand analysis, along with the concept of consumer surplus, see if you can understand the notion of Ramsey (or efficient) taxes as follows. Construct the supply and demand curves for two markets, one with an inelastic demand, another with a very elastic demand. Both sell 1000 units at $100 each before the tax. For simplicity, use horizontal supply curves for each. Then impose a $2-per-unit tax on each product. Compare the revenues raised and the size of the deadweight losses (or consumer-surplus losses) in each case. Can you see that the consumer surplus lost per dollar of revenue raised is much smaller in the case of the product with inelastic demand? Does this suggest a rationale for Ramsey taxes?
FOR THE VAST majority of households, labor earnings are the only significant source of income. Wages and salaries, along with the earnings of self-employed people, today constitute 80 percent of national income. As a result of its importance, the labor market is a constant source of controversy and political struggle. The pitched battles between labor and capital of the last century and today's struggles by women and minorities to gain pay equity are only two examples.

This and the next chapter explore how wages are set in a market economy. Section A of this chapter reviews the determination of wages under competitive conditions, while the second section discusses the thorny problem of discrimination in labor markets. The next chapter then turns to an analysis of imperfect competition in labor markets, with particular attention to the ways that unions limit the supply and raise the wages of labor.
A. Wage Determination Under Perfect Competition

Wage rates differ enormously. The average wage is as hard to define as the average person. An auto executive may earn $3 million a year at the same time that a clerk earns $13,000 and a farmhand $10,000. In the same factory, a skilled machinist may earn $450 a week, while an unskilled janitor gets $240. Experienced women may be paid $300 a week at the same time their younger brothers are starting at $400. Any complete theory of wages must explain these differentials.¹

But important as these wage differences are, we must not overlook the general wage level. Wages of virtually every category of labor are higher than they were a century ago. As Table 15-1 demonstrates, wages are higher in North America than in Latin America; higher in Japan than in South Korea; higher in Europe than in India. By using the analytical tools of economics—particularly the supply and demand for labor—we can go far in understanding these important facts.

THE GENERAL WAGE LEVEL

Why is the wage level in the United States 5½ times that in South Korea and 25 times that in India? We can understand this phenomenon by examining the simplified case of wages paid in competitive markets to identical workers with identical jobs.

Begin by recalling what we mean by competition. A perfectly competitive labor market is one in which there is a sufficiently large number of workers and employers so that no one has the power to affect wage rates appreciably. This definition rules out labor unions or labor markets dominated by a large firm. In reality, few labor markets show complete perfection, but some labor markets—like a large city’s market for inexperienced teenagers or clerical workers or sales personnel—resemble the competitive concept tolerably well.

In a market of identical jobs and similar people, competition will cause the hourly wage rates to be exactly equal. No employer would pay more for the work of one person than for that person’s identical twin; no class of such workers would be able to get more for their services than others get.

How is this single market wage determined? If we know the supply and demand curves for these workers—such as those shown in Figure 15-1(a)—then we can see that the competitive equilibrium wage rate must be at E_n. Put differently, E_n represents the intersection of the supply of and demand for homogeneous labor. If the wage were lower than E_n, then shortages of labor would occur and employers would bid up wages to E_n, restoring the equilibrium.

<table>
<thead>
<tr>
<th>REGION AND YEAR</th>
<th>WAGE RATE IN MANUFACTURING (dollars per hr, 1988 wage levels)</th>
</tr>
</thead>
<tbody>
<tr>
<td>United States</td>
<td></td>
</tr>
<tr>
<td>1890</td>
<td>2.61</td>
</tr>
<tr>
<td>1988</td>
<td>11.22</td>
</tr>
<tr>
<td>Great Britain</td>
<td></td>
</tr>
<tr>
<td>1890</td>
<td>2.66</td>
</tr>
<tr>
<td>1988</td>
<td>8.22</td>
</tr>
<tr>
<td>West Germany (1988)</td>
<td>10.96</td>
</tr>
<tr>
<td>Japan (1988)</td>
<td>13.54</td>
</tr>
<tr>
<td>South Korea (1988)</td>
<td>2.06</td>
</tr>
<tr>
<td>Mexico (1988)</td>
<td>1.40</td>
</tr>
<tr>
<td>India (1988)</td>
<td>0.45</td>
</tr>
</tbody>
</table>

¹In this chapter, we will generally use the term "wages" as a shorthand expression for "wages, salaries, and other forms of compensation." The theories here apply to the salaries of engineers and lawyers as well as to the wages of blue-collar workers like auto mechanics or carpenters.
We are interested in real wages—in what the wage will buy—and not just in the money wage. Therefore, in our illustrations, we express wages in terms of the purchasing power of an hour’s work. By definition, an index of the real wage represents an index of money wages divided by an index of the cost of living (such as measured by the consumer price index, which measures the cost of a fixed market basket of consumer goods). The illustrative case shown in Figure 15-1 measures real wages in terms of how large a quantity of goods the wages would buy.

Imagine that Figure 15-1(a) represents the state of affairs in North America while Figure 15-1(b) describes South America. Why are the general levels of wages so different? Is it because labor unions are so powerful in North America? Or because minimum wages are so low in South America? Surely not. Rather, real wages differ among regions or in a given region over time through the operation of the supply and demand for labor.

Of course, pointing to supply and demand provides no ultimate answer. Why is the demand for labor so high in the north? Why did Europe catch up with the United States in the 1980s, while Africa lagged behind? To answer these questions, we must look at the forces underlying the supply and demand for labor.

DEMAND FOR LABOR

We begin our analysis of the general wage level by examining the demand for labor, illustrated in Figure 15-1 by the high demand curve for North America and the low curve for South America. Why are the demands so different? The answer was provided in a general way in the last chapter, where we saw that the demand for a factor reflects the marginal productivity of that input.

Figure 15-2 reiterates the marginal-productivity theory. At a given time and with a given state of technology, there exists a relationship between the quantity of labor inputs and the amount of output. By the law of diminishing returns, each additional unit of labor input will add a smaller and smaller slab of output. In the example shown in Figure 15-2, at 10 units of labor, the competitively determined, general wage level will be $20 per unit.

We can probe deeper and ask what lies behind labor’s marginal productivity. A complete analysis of productivity is provided in Chapters 23 and 24, but a preview at this point will illustrate the important issues. Labor’s marginal product depends upon the quality of labor inputs, upon the quantity and quality of cooperating factors of production, and upon the
level and utilization of technical and engineering knowledge. The quality of labor inputs refers to the literacy, education, training, and skills of the labor force. An illiterate country can hardly hope to enjoy widespread use of sophisticated computers and machinery. Years of education are necessary to produce an engineer capable of designing precision equipment. A decade of training must precede the ability to perform successful brain surgery. Such accumulations of human capital provide a substantial boost to the productivity of labor.

The quantity and quality of cooperating factors will also affect labor’s productivity. Wages are high in the United States in part because the nation is well endowed with fertile land and other resources. Advanced countries have accumulated substantial capital stocks—dense road and rail networks, substantial amounts of plant and equipment for each worker, and adequate inventories of spare parts. In poor countries, by comparison, roads are often unpaved and narrow, factories are generally crowded and hot, and equipment is old and about to fall apart.

But the quantity and quality of inputs does not tell the whole story. Two regions may have similar resources and labor inputs, but if one uses superior managerial and technological methods, its productivity may be much higher than the other’s. Britain has ample resources and a highly educated labor force, but poor management and labor strife have so hobbled Britain in the industrial race that its productivity is less than one-half that of North America. Superior technological methods arise from better basic and applied science, advanced engineering designs, and better management.

Ultimately, the combination of higher-quality labor, capital accumulation, and technological advance produces an enormous surge in labor’s productivity and in the demand for labor. More than anything else, these factors lie behind the high wages of advanced regions shown in Table 15-1.

SUPPLY OF LABOR

Determinants of Supply

Now turn to the supply side of the labor market. Labor supply refers to the number of hours worked in gainful activities in factories, farms, other businesses, government, or not-for-profit establishments.² The

²The key concepts used in analyzing the labor market are the following: the labor force, consisting of workers who are either working or unemployed, and the labor-force participation rate, which is the ratio of employed plus unemployed workers to the population (either of a nation or of a group, such as adult women).
major determinants of labor supply are the size of the population and the way the population spends its time.

Population Population is determined both by natural births and deaths and by immigration. Begin with the second. You might wonder, if wages are so high in North America, why foreigners don’t move from their low-wage area to our high-wage area. People did migrate to this country in great numbers during the three centuries prior to World War I. A few came to seek religious freedom, many because they wanted to start new lives, but by far the greatest number came to better their economic condition.

After World War I, however, laws were passed severely limiting immigration. Only a trickle of legal immigrants has been admitted since then. Illegal entry is another thing, and in recent years it has grown in volume across the United States’ southern borders.

Restricting the flow of labor is a first example of interference with the free play of competition in the wage market. By keeping labor supply down, restrictive immigration policy tends to keep wages high. Let us emphasize this basic principle: Limitation of the supply of any grade of labor relative to all other productive factors can be expected to raise its wage rate. An increase in labor supply will, other things being equal, tend to depress wage rates.

Given the downward-sloping demand for labor, it is understandable that labor unions are opposed to relaxed immigration and would like to close the borders to illegal immigration. Why might businesses be more favorable to immigration than workers are?

What about the natural increase in population? For the most part, population growth in advanced economies responds to a wide variety of religious, social, and economic factors. As a result of social trends such as the higher labor-force participation rate of women, along with the smaller families and later marriages that these trends produce, the natural growth of population in the United States and many advanced countries today is close to zero.

Labor-Force Participation and Hours Worked What is the effect of economic conditions on the number of hours worked per year or the number of years worked per lifetime? There are many complex social and political forces at work here, in addition to the economic ones.

One of the most dramatic developments in recent decades is the rise in women’s labor-force participation. Why did the labor-force participation rate of women (i.e., the fraction of women over 15 in the labor force) jump from 40 percent in the mid-1960s to 55 percent in the late 1980s? This explosion cannot be explained by economic analysis alone. To fully understand such a significant change in working patterns, one must look outside the narrow scope of economics—to changing social attitudes toward the role of women as mothers, homemakers, and workers.

"Substitution Effect" vs. "Income Effect" In analyzing labor supply, one of the most important issues is how labor responds to higher wages. What will be the effect of higher wages on the number of hours worked per lifetime? Figure 15-3 illustrates the is-

![Backward-Bending Supply Curve](image)

Figure 15-3 As wages rise, workers may work fewer hours

Above the critical point C, raising the wage rate reduces the amount of labor supplied as the income effect outweighs the substitution effect. Why? Because at higher wages we can afford more leisure even though each extra hour of leisure costs more in wages forgone.
WAGES AND THE LABOR MARKET / 15

sites; it shows a hypothetical supply curve of total hours that a group of people will want to work at each wage rate. Note how the supply curve rises at first in a northeasterly direction; then at the critical point C, it begins to bend back in a northwesterly direction. How can we explain why higher wages may first increase and then decrease the quantity of labor supplied?

Put yourself in the shoes of a worker who has just been offered higher hourly rates and is free to choose the number of hours worked. You are tugged in two different directions. On the one hand, you are tempted to work some extra hours because now each hour of work is better paid. Each hour of leisure has become more expensive, and you are therefore tempted to substitute extra work for leisure.

But acting against this "substitution effect" is an opposing "income effect." With the wage higher, your income is higher. With a higher income, you will want to buy more clothes, better food, more of other consumer goods. But you'll also want more leisure time. Now you can afford to take a week's vacation in the winter or an extra week in the summer, or take your retirement a couple of years earlier.

Which will be more powerful, the substitution effect or the income effect? There is no single correct answer. It depends upon the individual and the situation faced. In the case shown in Figure 15-3, for all wage rates up to point C, labor supplied increases with a higher wage; the substitution effect outweighs the income effect. But from point C upward, the income effect outweighs the substitution effect, and labor supplied declines as wage rates climb higher.4

Empirical Findings

It is all well and good to find that labor supply can bend forward or backward. But for many purposes we need to know exactly which way it does bend. Will tax cuts on wages increase or decrease labor supply? Will more generous welfare payments encourage or discourage work? These questions have hounded public-policy economists attempting to advise legislatures and Presidents.

Table 15-2 presents a summary of numerous studies of the subject. This survey shows that the labor supply curve for adult males appears to be slightly backward-bending, while the response of other demographic groups looks more like a conventional upward-sloping supply curve. For the population as a whole, labor supply appears to respond very little to a change in real wages.

WAGE DIFFERENCES ACROSS GROUPS

Having studied the problem of the general wage level, we turn now to the vital problem of wage differentials among different categories of people and jobs. Why is it that doctors earn 15 or 20 times more than lifeguards when both are saving lives? Why do workers in Alaska earn 25 percent more than those working in the same jobs in the lower 48 states?

We can start by examining patterns of wages and compensation in different industries. As is shown in Table 15-3, there is a wide range of wage rates among broad industry groups. Smaller, nonunionized sectors like farming or services tend to have low wages, while the larger firms in manufacturing and communications have wage levels 2 or 3 times higher.

How can we explain the wage differences across industries or individuals? To do so, we must examine the influence of four factors: compensating differentials, differences in labor quality, unique elements, and labor market segmentation.

Compensating Wage Differentials

Some of the tremendous wage differentials observed in everyday life arise because of differences in the quality of jobs. Jobs differ in their attractiveness; hence wages may have to be raised to coax people into the less attractive jobs.

Wage differentials that serve simply to compensate...
LABOR-SUPPLY PATTERNS

<table>
<thead>
<tr>
<th>GROUP OF WORKERS</th>
<th>LABOR-FORCE PARTICIPATION RATE (percent of population)</th>
<th>RESPONSE OF LABOR SUPPLY TO INCREASE IN REAL WAGES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Adult males</td>
<td>1960: 86; 1988: 78</td>
<td>Supply curve found to be backward-bending in most studies. Thus income effect dominates the substitution effect. Supply elasticity is relatively small, in the order of minus 0.1 to minus 0.2. Thus a 10 percent increase in real wage would lead to a 1 to 2 percent reduction in labor supplied.</td>
</tr>
<tr>
<td>Adult females</td>
<td>1960: 38; 1988: 57</td>
<td>Considerable uncertainty about response. Most studies find positive effect of labor supplied in response to higher real wage.</td>
</tr>
<tr>
<td>Teenagers</td>
<td>1960: 46; 1988: 55</td>
<td>Wide variety of findings. Weight of evidence is that labor supply responds positively to higher wages.</td>
</tr>
<tr>
<td>Entire population 16 years & over</td>
<td>1960: 59; 1988: 66</td>
<td>Total labor supply close to vertical, with income effects just balancing out substitution effects. Estimated labor supply elasticity for entire population is in the range from 0 to 0.2.</td>
</tr>
</tbody>
</table>

Table 15-2 Empirical estimates of labor-supply responses

There have been numerous studies of the response of labor supply to real wages. For males, the supply curve looks firmly backward-bending, while for teenagers and adult females, the supply curve appears positively sloped. For the economy as a whole, the labor supply curve is close to vertical. [Sources: George Borjas and James Heckman, "Labor Supply Estimates for Public Policy Evaluation," *Proceedings of the Industrial Relations Research Association*, 1978, pp. 320–331; Ronald G. Ehrenberg and Robert S. Smith, *Modern Labor Economics*, 3rd ed. (Scott, Foresman and Company, Glenview, Ill., 1988), Chap. 6; Don Fullerton, "Can Tax Revenues Go Up When Tax Rates Go Down?" in Bruce Bartlett and Timothy P. Roth (eds.), *The Supply Side Solution* (Chatham House, Chatham, N.J., 1983), pp. 140–157.]

for the nonmonetary differences among jobs are called compensating differentials.

Window washers must be paid more than janitors because people do not like the risks of climbing skyscrapers. Workers often receive 5 percent extra pay on the 4 p.m. to 12 p.m. "swing shift" and 10 percent extra pay for the 12 midnight to 8 A.M. "graveyard shift." For hours beyond 40 per week or for holiday and weekend work, 1/2 to 2 times the base hourly pay is customary. And when you read that doctors earn $150,000 a year, note that a part of this is a compensating differential needed to induce people to incur tuition costs and endure the lack of pay during schooling and training.

Jobs that involve dirt, tedium, low social prestige, irregular employment, seasonal layoff, short working
life, and much dull training all tend to be less attractive. No wonder, then, that companies must pay $50,000 or $80,000 a year to recruit people to work on dangerous and lonely jobs on offshore oil platforms. Similarly, for jobs that are especially pleasant and psychologically rewarding, like park rangers and life guards, pay levels tend to be modest.

To test whether a given difference in pay between two jobs is a compensating differential, ask people who are well qualified for both: "Would you take the higher-paying job in preference to the lower?" If they are not eager to make such a choice, then it is fair to conclude that the higher-paid job is not really more attractive when due weight is given to all considerations, nonmonetary and monetary.

Differences in Labor Quality

We have just seen that some wage differentials arise to compensate for the differing degrees of attractiveness of different jobs. But look around you. Clearly most high-paying jobs are more pleasant, not less pleasant, than low-paying work. We must look to factors beyond compensating differentials to explain existing wage differentials.

A key to wage disparities lies in the tremendous qualitative differences among people—traceable to differences in innate mental and physical abilities, in education and training, and in experience. A zoologist might label us all as members of the species Homo sapiens, but a personnel officer would insist that people differ enormously in their abilities to contribute to a firm’s profits.

Many of the differences in labor quality are determined outside the labor force, by genetic nature or family nurture. Much also is affected by investment in "human capital," a term that designates the stock of useful and valuable knowledge built up in the process of education and training. Doctors, lawyers, and engineers invest many years in their formal education and on-the-job training. They spend vast sums on tuition and wages forgone, invest $100,000 to $200,000 in college and graduate training, and often work late at night and on weekends. Part of the high salaries of these professions should be viewed as a return on their investment in human capital—a return on the

<table>
<thead>
<tr>
<th>INDUSTRY</th>
<th>AVERAGE COMPENSATION PER FULL-TIME EMPLOYEE</th>
<th>AVERAGE HOURLY EARNINGS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Farming</td>
<td>$13,300</td>
<td>—</td>
</tr>
<tr>
<td>Mining</td>
<td>40,400</td>
<td>12.45</td>
</tr>
<tr>
<td>Manufacturing</td>
<td>31,200</td>
<td>9.73</td>
</tr>
<tr>
<td>Steel mills</td>
<td>—</td>
<td>14.53</td>
</tr>
<tr>
<td>Communication</td>
<td>42,000</td>
<td>12.11</td>
</tr>
<tr>
<td>Retail trade</td>
<td>16,200</td>
<td>6.02</td>
</tr>
<tr>
<td>Services</td>
<td>22,300</td>
<td>8.16</td>
</tr>
<tr>
<td>Laundries</td>
<td>—</td>
<td>5.99</td>
</tr>
<tr>
<td>Government</td>
<td>29,200</td>
<td>—</td>
</tr>
</tbody>
</table>

Table 15-3 Wages and compensation in different sectors, 1986

Compensation during a particular year varies widely across industries. Average compensation per full-time employee (which includes wages, health benefits, pensions, etc.) varied by broad industry groups from a high of $42,000 in communication to a low of $13,300 in farming.

Among narrow industry groups, we see that average hourly earnings vary by a factor of 2.5 between the steel industry and laundries. (Source: U.S. Department of Labor, Bureau of Labor Statistics, Employment and Earnings; U.S. Department of Commerce.)
education that makes these highly trained workers a very special kind of labor.

Rent Elements in Wages of Unique Individuals

For the lucky few, fame has lifted incomes to levels far above those of the average worker. Reported annual earnings for these stars include such astronomical figures as $57 million for entertainer Bill Cosby, $1.5 million for baseball's Dave Winfield, and $1.4 million for football's John Elway and for tennis's Martina Navratilova. Former Secretary of State Henry Kissinger is reported to bill at least $25,000 per appearance. And the lecture fee of Murray Weidenbaum, President Reagan's former chief economist, now at Washington University (St. Louis), soared into the five-digit range.

These extremely talented people have a particular skill that is highly prized and priced in today's economy. Outside their specialization, they might earn only one-tenth as much; moreover, their labor supply may be completely unaffected by their wage rate, indicating that their labor supply curve is completely inelastic or vertical for wages 20 or 80 or 120 percent of their high compensation levels. Economists term the excess of such wages above their best available incomes in other occupations a *pure economic rent*, for they are logically the same as the rent to fixed land discussed in the last chapter. Because the labor supply of these top consultants or baseball players or musicians is completely inelastic, their efforts will respond little to tax rates of 50 or 60 or 70 percent. Even when the net reward for their services is reduced by taxes or by market forces, they will continue to consult or play or sing.

Noncompeting Groups in the Labor Market

We see then that, even in a world of perfect competition where people could move easily from one occupation to another, substantial wage differentials would appear. These differentials would be necessary to reflect differences in the costs of education and training or in the unattractiveness of certain occupations or as rewards for unique talents.

But after accounting for all these reasons for wage differentials, we still find a large disparity in wage rates. The major reason for the difference is that labor markets are segmented and we therefore find *noncompeting groups* in the labor market. This fact was first pointed out by J. E. Cairnes a century ago when he wrote:

> What we find, in effect, is not a whole population competing indiscriminately for all occupations, but a series of industrial layers, superimposed on one another, ... while those occupying the several strata are, for all purposes of effective competition, practically isolated from each other.¹

In other words, instead of being a single factor of production, labor is many different, but closely related, factors of production. Doctors and mathematicians, for example, are noncompeting groups because it is difficult and costly for a member of one profession to enter into the other market. Just as there are many different kinds of computers, each commanding a different price, so are there many different occupations and skills that compete only in a general way.

Once we recognize that there are many different kinds of labor operating in different submarkets of the labor market, we can see why wages may differ greatly among groups.

Why is the labor market divided into so many noncompeting groups? The major reason arises from the fact that, for professions and skilled trades, it takes a large investment of time and money to become proficient. Economists can hardly hope to become cardiovascular surgeons overnight. Nor are surgeons trained to frame a house or lay a neat row of bricks. Hence, once people specialize in a particular occupation, they become part of a particular labor submarket. They are thereby subject to the supply and demand for that skill and will find that their own labor earnings rise and fall depending upon events in their own occupation and industry. Moreover, once the different submarkets are segmented, the wages for one occupation can diverge substantially from wages in other areas.

The theory of noncompeting groups takes on great importance in understanding labor market discrimina-

tion. We will see in the second section of this chapter that much discrimination arises because, by custom, law, or prejudice, workers are separated by gender, race, or ethnic background into noncompeting groups. We find otherwise-equal people put into separate noncompeting labor pools, with the favored group receiving higher wages than the other group.

While the theory of noncompeting groups highlights an important aspect of labor markets, we must nonetheless recognize that some competition always exists. Just as you decide whether to hire a horse or rent a tractor to plough your field, so you must choose between hiring a high-paid professional and a low-paid, less skilled worker. Similarly, if welders' wages become $200,000 per year, I might study the craft and quit being a teacher. We see, then, that different categories of labor are neither 100 percent identical nor completely different. They are partial substitutes rather than perfect substitutes, so the true situation is generally one of partially competing groups.

General Equilibrium in the Labor Market

We have seen that several forces tend to create wage differentials—those needed to compensate for different levels of unpleasantness, returns on human capital, differences in skill and talents, and segmentation of the market into noncompeting groups.

Studies of wage behavior indicate that wage differentials are surprisingly persistent. Whether we examine the relative wages of men and women, blue-collar versus white-collar workers' wages, or differentials in particular industries like construction or autos—we see that the relative wages change very slowly from year to year.

But wage differentials are not cast in concrete. As people move into high-paying occupations and leave those that pay less, as the barriers to equal access for all groups slowly erode—as these slow-moving forces come into play, we see some tendency for wages to converge.

But for such differentials as remain, how exactly are they determined? The answer is provided by supply and demand: The market will tend toward that equilibrium pattern of wage differentials at which the total demand for each category of labor exactly matches its competitive supply. Only then will there be general equilibrium with no tendency for further widening or narrowing of wage differentials. Table 15-4 sums up our conclusions about competitive wage determination.

SUMMARY OF COMPETITIVE WAGE DETERMINATION

<table>
<thead>
<tr>
<th>LABOR SITUATION</th>
<th>WAGE RESULT</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. People all alike—jobs all alike.</td>
<td>No wage differentials.</td>
</tr>
<tr>
<td>2. People all alike—some jobs differ in unpleasantness.</td>
<td>Compensating wage differentials.</td>
</tr>
<tr>
<td>3. People differ, but each type of labor is in unchangeable supply ("noncompeting groups").</td>
<td>Wage differentials that are "pure economic rents" or "surpluses."</td>
</tr>
<tr>
<td>4. People differ, but there is some mobility among groups ("partially competing groups").</td>
<td>General-equilibrium pattern of wage differentials as determined by general demand and supply (includes 1–3 as special cases).</td>
</tr>
</tbody>
</table>

Table 15-4 Market wage structure shows great variety of patterns under competition
TWO CLASSICAL VIEWS

Modern labor economics pays a great deal of attention to wage differentials and the presence of race or gender discrimination. The classical economists, on the other hand, were fascinated by the general trend of wages and by the impacts of social legislation upon wages. Two important theories shaped views about social and economic policy during the nineteenth century and continue to have relevance today, so we review them here.

The Iron Law of Wages: Malthus and Marx

In Chapter 24, we will study in detail the Malthusian theory of population. According to this doctrine, the size of population will grow very rapidly whenever wages rise above the subsistence level (subsistence wages being the minimal level needed to support a person's life). In this approach, then, the labor supply curve should be horizontal at the subsistence wage level: such was the dismal science's iron law of wages.

A brief look at economic history shows how unrealistic for the West is this notion that people inevitably reproduce so rapidly that their incomes are relentlessly forced back to a bare minimum, and how misleading it would be as a basis for any predictions about the long-term "laws of motion of the capitalist system."

The Reserve Army of the Unemployed A quite different version of the iron law of wages was provided by Karl Marx. He put great emphasis upon the "reserve army of the unemployed." In effect, employers led their workers to the factory windows and pointed to the unemployed workers outside, eager to work for less. This, Marx thought (or is interpreted by some Marxists to have thought), would depress wages to the subsistence level.

Let us show this on our diagrams. Figure 15-1(a) is redrawn as Figure 15-4. Suppose that the wage is pegged at $15 per hour. Employment is at the level indicated by the point A. At this high wage, there would indeed be unemployment; the amount of unemployment would be represented by the distance AB between the labor supplied and demanded. In our simple, idealized model of competition, such unemployment could certainly be expected to put downward pressure on wages.

But does the basic Marxian conclusion follow? Is there any tendency for real wage rates to fall to a minimum-subistence level such as mm in Figure 15-4? None at all. There is no reason why wage rates should ever fall below the equilibrium level at E. In a country well endowed with technology, capital, and
natural resources, this competitively determined equilibrium wage might be a very comfortable one indeed. Thus we reach an important principle: If competition in the labor market were really perfect, there would be no necessary tendency in an advanced country for wages to fall toward the minimum-subsistence level.

Employers might prefer to pay low wages, but that would not matter. In a competitive market, they are unable to set wage rates as they would like. As long as employers are numerous and do not act in collusion, their demands for any grade of labor will bid its wage up to the equilibrium level at which the total forthcoming labor supply is absorbed. The workers may aspire to still higher wages, but under competition they do not get what they would like; as long as they do not act collusively to limit the labor supply, their wishes will not serve to make wages rise above the competitive level.

The Lump-of-Labor Fallacy

In periods of high unemployment, people often think that a solution lies in spreading the existing amount of work more evenly. In Europe today, for example, many labor unions are proposing that the workweek be reduced so that more people will be able to have jobs at the reduced hours. This view—that the total amount of work to be done in the short run is fixed—is sometimes called the “lump-of-labor fallacy.”

To begin with, we must give this notion its due. To a particular group of workers, with special skills and stuck in one region, a reduction in the demand for labor may indeed pose a threat to their jobs. As long as wages and prices adjust slowly, these workers may face prolonged spells of unemployment. Viewed from their personal standpoint, the lump-of-labor notion may not be so fallacious. Moreover, in a great depression, when there is mass and chronic unemployment, one can understand how workers generally may yield to a lump-of-labor philosophy.

But the lump-of-labor argument implies that there is only so much useful remunerative work to be done in any economic system, and this is indeed a fallacy. It is more correct to say that an economy can adjust to create jobs for willing workers. In the longer run, as prices and wages adjust to changes in technology and tastes, to supplies and demands, jobs will come to workers or workers will move to jobs. And in the short run, this process can be lubricated by appropriate macroeconomic policies. A look at history or across countries shows that there is no fixed lump of labor to be distributed—there is no need to ration out scarce work among the army of unemployed workers.

B. DISCRIMINATION BY RACE AND GENDER

Most of the world is nonwhite. But the white minority controls most of the economic power and enjoys a disproportionately high standard of living. Within the most advanced economic society, the United States, the one in eight citizens who is black has long experienced a measurably lower level of income and wealth. Many other minority groups also earn markedly less than do white Americans.

Half the population is female. How is it that a woman who has the same amount of schooling as a man, who also has two eyes and hands, the same tested IQ and aptitude scores, the same parental background, nonetheless ends up getting paid for full-time work only two-thirds what her brother of similar abilities gets?

Some earnings differentials arise from differences
in education, work experience, and other factors. But even after correction for such differences, a large gap remains between the wages of white males and those of other groups—at least part of which is due to discrimination. In this section, we see how discrimination affects labor markets and incomes.

Earnings differentials between groups will always be present in a market economy. But when a difference in earnings arises simply because of an irrelevant personal characteristic—such as race, gender, or religion—we call this discrimination.

Historical Roots

In the United States, in a nation that is democratic and based on a belief in freedom, discrimination has its roots in the early beliefs and institutions of society. British settlers became the dominant elite in New England 300 years ago. When other nationalities arrived, they were resented and were often kept out of the best jobs. A frequently observed sign in lodging houses and job advertisements was, "No dogs or Germans need apply." Yet with the descendents of Germans and many other nationalities mixed in a grand melting pot, became assimilated and accepted, and prospered, working their way up from Ellis Island to corporate boardrooms and the halls of Congress.

This cheerful view of American history cannot, however, apply to all ethnic groups. American Indians resided in America long before the British; Spanish conquistadores were the first European settlers; more than 100 years have elapsed since the Emancipation Proclamation freed the slaves. Yet for these ethnic groups, discrimination in the labor market, housing, and other community activities remains a barrier to economic and social advancement.

The history of black Americans will illustrate the way their incomes and economic status were kept low. There is no economic puzzle about how nineteenth-century slavery in America, or twentieth-century apartheid in South Africa, persisted and thrived. The ruling groups made "colored people" a second class of citizen, endowed with few inalienable rights, and subject to harsh laws and discipline if any of its members attempted to gain the freedoms enjoyed by others.

After slavery was abolished here, the black popula-

Graphical Analysis of Discrimination

We can use our supply-and-demand apparatus to illustrate how exclusion lowers the incomes of groups that are targets of discrimination—whether the groups be blacks in the apartheid system of modern South Africa, or women and minorities in many professions and managerial positions in America today. In such systems, certain jobs are reserved for the privileged group, as is depicted in Figure 15-5(a). In this labor market, the supply of privileged white workers is shown by S_wD_w, while the demand for such labor is depicted as D_wD_w. Equilibrium wages occur at the high level shown at E_w.

Meanwhile, Figure 15-5(b) shows what is happening in the low-paid service sector or in unskilled jobs. Because black workers live in areas with poor schools or because they cannot afford the best private education, they do not receive training for the high-paying jobs. Rather, with low levels of skills, they have low marginal revenue products in the low-skilled jobs, so their wages are depressed to the low-wage equilibrium at E_b.

Note the differential between the two equilibria. Exclusion has discriminated against the earning power of black workers. Once black workers were forced into unskilled jobs, market forces decreed that blacks would earn much lower wages than the privileged white workers. An ignorant observer might even argue that blacks "deserve" lower wages be-

\footnote{One of the pathbreaking analyses of discrimination is found in Gary Becker, *Economics of Discrimination* (The University of Chicago Press, Chicago, 1957), which showed the economic costs that result if people insist on indulging their prejudices against hiring or working with certain groups.}
cause their competitive marginal revenue products are lower. But this observer would overlook the genuine source of the wage differentials: they arose because certain groups were excluded from the good jobs by force of custom, law, or collusion.

ECONOMIC DISCRIMINATION AGAINST WOMEN

The largest group to suffer from economic discrimination is women. Even year-round, full-time female workers on average earn only 65 percent of the earnings of men of comparable education and background.

The pattern of earnings is clear. Female college graduates earn about the same amount as male high school graduates. Although white males, for the most part, receive increases in annual earnings as they grow older, income profiles show that women in their late twenties earn as much on the average as do older women.8

8A recent presentation and analysis of the position of women in the labor market is contained in Economic Report of the President 1987. Chap. 7.

Changing Occupational and Industrial Patterns by Gender

Before turning to economic analysis, let us review some history of the role of women in economic activity. Among human societies, men and women have devised many alternative patterns of specialization with respect to hunting, foraging, herding, planting, and sowing. Only in the art of warfare have men shown any unique talent.

As economies developed, work became more specialized. Men and women tended to cluster in separate roles and jobs, although, aside from biologically differentiated roles like childbearing, there was no single pattern of gender specialization in all cultures. Sometimes women hunted, often they carried water, and on rare occasions they held the scepters of power. Modern Anglo-American cultures were influenced by a curious twist of history when nineteenth-century Victorian Britain developed a caricature of a "lady" who was incapable of performing any economic functions outside the home. This was ironically noted by Thorsten Veblen in his *Theory of the Leisure Class* when he wrote that status in an affluent society was proved by the uselessness, except for display, of chattels and women. Such a social pattern found little
LABOR MARKET SEGMENTATION

<table>
<thead>
<tr>
<th>OCCUPATION</th>
<th>PERCENT FEMALES, 1981</th>
</tr>
</thead>
<tbody>
<tr>
<td>High-paid occupations:</td>
<td></td>
</tr>
<tr>
<td>Sales agents, wholesale</td>
<td>10.7</td>
</tr>
<tr>
<td>Stock and bond salespersons</td>
<td>17.2</td>
</tr>
<tr>
<td>Engineering technicians</td>
<td>17.8</td>
</tr>
<tr>
<td>Managers and administrators</td>
<td>28.4</td>
</tr>
<tr>
<td>Low-paid occupations:</td>
<td></td>
</tr>
<tr>
<td>Nurses’ aides</td>
<td>84.4</td>
</tr>
<tr>
<td>Hairdressers and beauticians</td>
<td>84.9</td>
</tr>
<tr>
<td>Childcare workers outside home</td>
<td>86.7</td>
</tr>
<tr>
<td>Sewers and stitchers</td>
<td>96.7</td>
</tr>
<tr>
<td>Practical nurses</td>
<td>97.7</td>
</tr>
</tbody>
</table>

Table 15-5 Many high-paid occupations are reserved for men

Discrimination today seldom occurs because women get lower wages for the same job. Rather, women have been limited to lower-paying occupations. Overall, such factors drive the average earnings of women down to only 65 percent of those of men. (Source: U.S. Department of Labor, Bureau of Labor Statistics, “Analyzing 1981 Earnings Data from the Current Population Survey,” September 1982.)

EARNINGS DIFFERENTIALS, 1970

<table>
<thead>
<tr>
<th>GROUP</th>
<th>MALES</th>
<th>FEMALES</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>100</td>
<td>49</td>
</tr>
<tr>
<td>Japanese-American</td>
<td>99</td>
<td>52</td>
</tr>
<tr>
<td>Chinese-American</td>
<td>85</td>
<td>46</td>
</tr>
<tr>
<td>American Indian</td>
<td>68</td>
<td>42</td>
</tr>
<tr>
<td>Mexican-American</td>
<td>67</td>
<td>36</td>
</tr>
<tr>
<td>Black</td>
<td>64</td>
<td>40</td>
</tr>
<tr>
<td>Puerto Rican</td>
<td>63</td>
<td>45</td>
</tr>
</tbody>
</table>

Table 15-6 Minorities and women earn substantially less than white males

Data were examined on the total annual earnings of men and women of different minority groups in the United States. These data do not correct for education, labor-force status, or previous work experience.

The most disadvantaged minority-group males earn only 63 to 68 percent of white male earnings. Females earn even less, partly because of low wages, partly because of fewer hours worked.

Gender Discrimination

As we have emphasized above, women typically earn less than men not primarily because they are paid less for the same job. Rather, the main bar to equality of incomes is that the best jobs have historically been reserved for men. Until recently, few women were ever elected to the boards of directors of large corporations, to senior partnerships in major law firms, or to tenured professorships in top universities.

Like minority groups, then, women are often found in low-paying noncompeting groups (see Figure 15-5 above). The extent of labor market segmentation is shown in Table 15-5. In this, we see the fraction of women in selected high-paying and low-paying occupations. The labor market segmentation apparent in
Table 15-5 shows that discrimination is much more subtle than the picture of employers simply beating down the wage demands of women or blacks or Hispanics.

Empirical Evidence

Now that we have seen the mechanisms by which the political process and the market economy enforce discrimination against women and minority groups, let's examine the size of earnings differentials. Table 15-6 shows the ratio of total annual earnings of males and females of different minority groups relative to white males. On average, earnings differentials are greatest for women and for black and Indian men as well as for men of Hispanic background. Note that women are generally penalized in the labor market only once—for many minority women show earnings close to those of white women.

Discrimination vs. Personal Characteristics It is important to understand that all differentials among different groups are not necessarily based on discrimination. The first part of this chapter noted that there are differences in quality of labor. Black workers have historically received less education than have whites; women customarily spend more time out of the labor force than do men. Since both education and continuing work experience are linked to higher pay, it is not surprising that some earnings differentials exist.

Economists in recent years have conducted numerous empirical studies attempting to separate out the earnings differentials due to measurable characteristics (education, experience, etc.) from discrimination and other factors. For women, studies by Jacob Mincer, Haim Ofek, Solomon Polacheck, and others indicate that from one-half to three-quarters of the male-female wage gap can be explained by differences in education and job experience—leaving from one-quarter to one-half to be explained by discrimination and other non-measured sources.*

*The technique of accounting for personal characteristics is one of the most powerful tools of modern economics. To illustrate how this works, take the first column of numbers in Table 15-6. Gwartney and Long deploy statistical techniques to estimate what part of observed differentials is due to observed and clearly relevant characteristics (like education, age, native language, and so forth), and what fraction is due to discrimination and unobserved characteristics.

We can calculate "uncorrected" differentials as shown in Table 15-6. Or we can calculate "corrected" differentials, which account for the average worker characteristics in different groups. More precisely, the "corrected" ratio here calculates what a minority worker would earn if he had the average education, age, language background, etc., of the average white male worker. For example, this table indicates that black men as a whole earned 64 percent as much as white men. However, when the worker characteristics of black men were taken into account (i.e., their education, age, marital status, residence, and so forth), then black men were estimated to earn 79 percent as much as white men. Expressed in different words, a black male with the average worker characteristics of black males earned but 64 percent of the wages of a white worker with the average worker characteristics of white males. On the other hand, a black male who happened to have the worker characteristics of the average white male would generally earn 79 percent of the wages of the average white male. What accounts for the remaining 21 percent? Discrimination and other unmeasured factors.

RATIO OF MINORITY-GROUP MALE WAGES TO WAGES OF WHITE MALES

<table>
<thead>
<tr>
<th>GROUP</th>
<th>UNCORRECTED</th>
<th>CORRECTED</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>100</td>
<td>100</td>
</tr>
<tr>
<td>Japanese-American</td>
<td>99</td>
<td>89</td>
</tr>
<tr>
<td>Chinese-American</td>
<td>85</td>
<td>83</td>
</tr>
<tr>
<td>American Indian</td>
<td>68</td>
<td>81</td>
</tr>
<tr>
<td>Mexican-American</td>
<td>67</td>
<td>91</td>
</tr>
<tr>
<td>Black</td>
<td>64</td>
<td>79</td>
</tr>
<tr>
<td>Puerto Rican</td>
<td>63</td>
<td>87</td>
</tr>
</tbody>
</table>

Source: See Table 15-6.
REDUCING LABOR MARKET DISCRIMINATION

Governments have over the last 25 years taken numerous steps to end discriminatory practices. Even today, however—although few defend discrimination—the United States has been unable to eradicate discrimination on the basis of race, sex, and many other characteristics.

What approaches are available to combat discrimination? The major steps were legal landmarks, such as the Civil Rights Act of 1964 (which outlaws discrimination in hiring, firing, and employment) and the Equal Pay Act of 1963 (which requires employers to pay men and women equally for the same work).

Such laws helped to dismantle the most blatant discriminatory practices, but more subtle barriers (and sometimes even unconscious attitudes) remain to exclude minorities and women from the best jobs. Policies to promote “affirmative action” were promulgated: these required employers to show that they were taking extra steps to locate and hire underrepresented groups. This approach, labelled by some as “reverse discrimination,” has always been highly controversial, but it has apparently increased the representation of women and minority groups in some sectors.

Comparative Worth

In the mid-1980s, a new approach to reducing the male-female wage gap was put forward: comparative worth. This idea goes beyond the idea of “equal pay for equal work” to “equal pay for comparable worth.” To understand the issue, we begin by analyzing wage structures and then see how comparable worth would attempt to equalize wages for different jobs.

Wage Structures Most large firms administer their internal labor market by setting up a number of different job categories or grades—say, 10 grades of clerical workers, 15 grades of craft workers, 12 grades of technicians, and so forth. Each category carries a job description that varies in terms of characteristics like skill, experience, training, working conditions, etc.

Generally, firms try to set the wage levels with reference to the compensation for similar jobs in the relevant external labor market. Hence beginning secretaries will be paid more or less what other beginning secretaries earn in the same city, while the salaries of newly minted college professors in economics are determined relative to the national market for new economists.

Where no external comparison can be easily made, firms tend to set wages for particular jobs at the level earned by similar jobs. As we will shortly see, firms sometimes assign numerical “point scores” to the skill, experience, and working conditions of jobs and then use these scores to help set wages of noncomparable jobs. Putting the external comparisons and internal evaluations together provides a firm with a wage structure for its different job categories.

Using the notion of a wage structure, we can now understand the difference between jobs of “equal worth” and those of, “comparable worth.” Table 15-7 shows three jobs—A, B, and C—in a particular company. Jobs A and B are assigned equal ratings on the four job characteristics (skill, training, responsibility, and working conditions). They are hence designated as “equal jobs,” and under the 1963 Equal Pay Act they must receive the same pay. To pay $250 per week for job A while job B pays $300 per week would represent unlawful discrimination even if the weekly market wages for A and B differed by $50.

Many advocates of breaking down discriminatory practices argue that comparable jobs should also receive equal pay. The last two columns of Table 15-7 show two jobs with an equal number of total points but with differing individual characteristics. Job A might be a technician with major responsibilities over blood samples working in pleasant surroundings, while job C could be a forklift operator with little skill or training but working in harsh and noisy conditions. The market wage rate in the local area, driven by ample supply of technicians and sparse supply of forklift drivers, might produce weekly wage rates of $250 for technicians and $400 for forklift operators. And under current law and practice, it would be perfectly legal for a firm to pay those differing market-based wages for comparable but dissimilar jobs.

Enter comparable-worth doctrine. This holds that pay should be based on what a job is worth. Jobs that
Table 15-7 Should comparable jobs receive equal pay?

Jobs A and B have similar levels of skill, training, responsibility, and working conditions and are treated as "equal jobs." Under federal laws, because they are equal jobs, A and B must earn equal pay. Jobs A and C have different characteristics, but by a company's point rating system they have the same total points and are hence treated as "comparable" jobs. Under comparable-worth doctrine, comparable but different jobs should earn equal pay even though market supply and demand dictate different wages.

have comparable worth—such as A and C in Table 15-7—should be paid equally, and employers' failure to do so, according to this view, should constitute immoral and illegal discrimination. Under this approach, by equalizing wages on jobs that have comparable overall job characteristics, society can reverse decades of discrimination and eliminate the male-female wage gap.

Analysts have often been critical of basing compensation on a comparable-worth system, such as that shown in Table 15-7, rather than on the market. Critics argue that the point system is not an adequate basis for determining wages. Among potential defects in using a point system are: that the factors entering the point scores are incomplete, subjective, and prey to manipulation; that there are many attributes, such as responsibility, that cannot be precisely measured; that different attributes are worth differing amounts in different jobs; and that people's disutilities of work (and therefore their required compensating differentials) may differ for different people.

Most damaging, perhaps, is that thorough investigation of the effect of these measured attributes on wages finds much left to be explained. Even when studies are confined to a single race and sex, they seldom explain more than one-third of the variations of earnings across different people. Using such point scores to predict an employee's worth is like predicting individual baseball batting averages on the basis of a player's height, weight, age, and education. Because of the inherent difficulty in determining the correct scores for different jobs, many economists and labor experts would be loath to use such an imperfect yardstick for measuring a job's true economic value.

What would be the likely outcome of introducing comparable worth to determine wages in today's labor markets? The major impact would be that wages are set in a way that shuts out considerations of supply and demand. If the wages of truck drivers and telephone operators were equalized, we might find a glut of operators with too few willing to deliver the goods. Moreover, wage patterns would be frozen, locking the economy into a wage structure that was relatively unresponsive to economic shocks. If a sudden energy crisis drove up energy prices, companies would be unable to raise the relative wages of oil-drilling roustabouts and coal miners. While wage rates and pay structures tend to show considerable short-run sticki-
A Wage Determination under Perfect Competition

SUMMARY

supply and demand. It would be no different in the long run. The equilibrium wage rate would be determined by the interaction of supply and demand.

A perfectly competitive equilibrium would be formed if all people and jobs were exactly alike, there would be no wage differentials. The equilibrium wage rate would be determined by

Figure 15-6 shows the slow progress that has been made in recent decades in closing the earnings gap between black and white workers. As people observe that women or minority workers' earnings are generally lower than those of white men, economic and social changes may lead to increasing racial and gender differences in earnings and educational outcomes. Economic discrimination is a complex social and economic

Slow Progress

According to the Bureau of Labor Statistics, the percentage of the working population of one race that is

The data on earnings as a percentage of white earnings for black families and unrelated individuals show that the earnings gap has

1. In a perfectly competitive equilibrium, if all people and jobs were exactly alike, there would be no wage differentials. The equilibrium wage rate would be determined by supply and demand. It would be no different in the long run. The equilibrium wage rate would be determined by the interaction of supply and demand.

A perfectly competitive equilibrium would be formed if all people and jobs were exactly alike, there would be no wage differentials. The equilibrium wage rate would be determined by the interaction of supply and demand.

Figure 15-6 shows the slow progress that has been made in recent decades in closing the earnings gap between black and white workers. As people observe that women or minority workers' earnings are generally lower than those of white men, economic and social changes may lead to increasing racial and gender differences in earnings and educational outcomes. Economic discrimination is a complex social and economic
2. The demand for labor, as for any factor of production, is determined by labor's marginal product. A country or region will show a higher marginal product of labor and higher wages when the quality of labor inputs is higher, when the quality and quantity of cooperating inputs is greater, and when that area has access to more advanced knowledge and production techniques.

3. The supply of labor has four dimensions: population size, percentage of people gainfully employed, average number of hours worked, and quality of productive effort.

4. As wages rise, there are two opposite effects on the supply of labor: the substitution effect tempts each worker to work longer because of the higher pay for each hour of work. The income effect exerts influence in the opposite direction. Higher wages mean that workers can now afford more leisure time along with more commodities and other good things of life. At some critical wage, the supply curve may bend backward. The labor supply of very gifted, unique people is quite inelastic: their wages are largely pure economic rent.

5. Once we drop unrealistic assumptions concerning the uniformity of people and jobs, we find substantial wage differentials even in a perfectly competitive labor market. Compensating wage differentials, which compensate for nonmonetary differences in the quality of jobs, explain some (but by no means all) of the differentials. But differences in the quality of various grades of labor are probably the most important cause of wage differences. Although it cannot be claimed that labor consists of wholly noncompeting groups, it is nonetheless true that there are innumerable categories of partially competing groups. The final pattern of wages would, in a perfectly competitive labor market, be determined by the general equilibrium of the interrelated schedules of supply and demand, as shown in Table 15-4.

6. Fear of unemployment often leads to acceptance of the lump-of-labor fallacy. This belief, that there is only a fixed amount of useful work to be done, may arise from experiencing technological unemployment or depression. It lies behind much of the agitation for a shorter workweek and "work-sharing" proposals. But excessively high unemployment calls for macroeconomic policies to expand employment, not for policies to decrease the supply of labor.

B. Discrimination by Race and Gender

7. By accident of history, the minority of white males in the world has enjoyed the greatest affluence. Even a century after slavery, inequality of opportunity and economic, racial, and sex discrimination can be shown, by the tools of competitive supply and demand, to lead to loss of income by the underprivileged classes and for society.

8. There are many routes to discrimination, but the most important may be to create noncompeting groups. By segmenting labor markets, reserving managerial positions for white men while relegating women and blacks to menial, dead-end jobs, an economy can allow inequality of earnings to persist for decades.

9. Steps to reduce labor market discrimination have been taken in many directions. Early approaches focused on outlawing discriminatory practices, while later controversial steps imposed the requirement to take affirmative actions. Recently, advocates of comparable worth have argued that jobs with similar value but different job character-
istics should receive equal pay even if supply and demand dictate otherwise. Critics of comparable worth foresee gluts and shortages if the externally imposed comparable-worth wages differ markedly from the equilibrium of supply and demand.

CONCEPTS FOR REVIEW

- elements in demand for labor: labor quality, other inputs, technology
- elements in supply of labor: population, labor-force participation, hours, quality
- equal jobs vs. comparable worth
- backward-bending supply curve
- income vs. substitution effect
- rent element in wages
- compensating differentials in wages
- segmented markets and noncompeting groups
- earnings differentials due to education vs. discrimination

QUESTIONS FOR DISCUSSION

1. Make sure you understand the concepts of compensating differentials, pure economic rent, and noncompeting groups. Give examples of each from history or today's world.

2. Earnings in the United States average $450 per week, while in India workers earn but $20 per week. What forces lie behind the supply and demand for labor in the two countries that would produce such a large difference? What might India do to raise its wage level?

3. Explain what would happen to wage differentials as a result of: (a) less imperfect competition among people with similar labor skills; (b) free migration among regions in a country; (c) introduction of free public education into a country where education had previously been private and expensive; (d) a drop in popularity of television sports and entertainment programs featuring prominent stars.

4. Using supply and demand, explain the impact of immigration on labor supply, quantity of labor supplied, and wage rates. Can you use this analysis to help explain why labor leaders often oppose higher levels of immigration? Also use a similar line of reasoning to explain the old labor jingle:

 Whether you work by the week or the day
 The shorter the work the better the pay.

5. Modern economic theory of discrimination states that disadvantaged groups like women or blacks have lower incomes or poor jobs because they are segmented into low-wage markets. Explain how each of the following practices, which prevailed in some cases into the 1970s, helped perpetuate discriminatory labor market segmentation: Many state schools would not allow women to major in engineering; elite colleges like Princeton, Yale, and Stanford would not admit women; blacks and whites received schooling in separate school systems; elite social clubs would not admit women,
blacks, or Catholics; many high-paid jobs (coal mining, fire fighting, construction, etc.) were thought too “tough” for women.

6. What steps could be taken to break down the segmented markets shown in Table 15-5?

7. In Europe of the 1980s, many labor groups pushed for lowering the average work-week because of the prevalence of high unemployment. What fallacy is at work here? If they succeeded, what would you expect to happen to the real wage?

8. What are the pros and cons of comparable worth? Why might it attract unions representing female workers yet find traditional male-dominated unions unsympathetic?

9. Figure 15-7 shows the effect of removing restrictions to entry into the segmented labor markets displayed in Figure 15-5. In panel (a), the privileged jobs are open to all workers. The disadvantaged group is now free to take jobs in either market. Describe the new equilibrium and compare it with the equilibrium shown in Figure 15-5. Who gains and who loses? Can you show why the shaded region is the gain in total national income—with losers losing less than gainers gain?

10. Advanced problem: Many people would charge a very high compensating differential to run the risk of working in an underground coal mine or in a nuclear power plant. A few people are relatively indifferent to such risks. Can you use this set of facts to explain (perhaps with the use of supply and demand) why actual compensating differentials may be surprisingly low?
The function of unions, broadly considered, is to maintain purchasing power. The function of unions, broadly considered, is to maintain purchasing power at a high enough level to absorb the products of business competition. Business competition and national unions are the indispensable blades of our twin scissors of supply and demand.

Robert F. Wagner.
Address at the Institute of Social Order, 1947

Most people work for the bulk of their adult lives. A third of our waking hours are spent on the job, and labor earnings constitute 80 percent of national income. No wonder that some say that ours is a laboristic rather than a capitalistic economy.

This chapter extends the analysis of labor markets to include important legal and institutional features of the workplace. We devote so much space to labor not only because labor is important but also because it is a unique commodity. After all, the economy is ultimately organized to enhance the well-being of laborers. Since the Civil War, workers cannot be bought, only "rented" for wages. Moreover, workers vary enormously in their characteristics, their strength, intelligence, skill, cheerfulness, industry, and reliability.

The fact that workers are rented by firms has one extraordinarily important implication. There must be some kind of understanding or contract between workers and employers. Sometimes the agreement is extremely casual, such as "If you work out well, the job's yours. Pay's $7.50 an hour." At the other extreme are tediously negotiated collective bargaining agreements between a group of firms and a union representing several thousand workers. Whether formal
or casual, explicit or implicit, it is useful to think of labor "rental" in terms of contracts.

It is difficult, however, to study the process of determining casual agreements. In the first half of this chapter, therefore, we focus on the more formal agreements that are hammered out between labor unions and management. This discussion of the institutions of the American labor market will serve as a prelude to the analytical issues of labor market imperfections in section B.

A. THE AMERICAN LABOR MOVEMENT

Some 19 million Americans belong to unions. One-sixth of the labor force is made up of union members. If we exclude white-collar workers, supervisors, and executives, the proportion would be higher still. Practically all eligible workers belong to unions in important industries such as rail, steel, autos, mining, and clothing. Few large firms avoid being organized by unions.

Growth and Decline

Figure 16-1 shows the growth of union membership since 1900 measured as a percent of the labor force. Note the slow, steady advance up to World War I, the upsurge during that war and immediately thereafter, and the rather sharp decline and leveling off during the 1920s. Then see the explosive acquisition of new members during the New Deal and the continued rapid growth during World War II. United States unions are no longer in a strong growth phase. Since around 1950, there has been a gradual decline in the fraction of the labor force belonging to unions.

Membership statistics understate the influence of unions. Many nonunion employees are covered by union agreements on wages, hours, and work conditions. In many areas or industries, nonunion wages and benefits parallel those in union firms, so that if you work for a nonunion firm you will enjoy many of the benefits of the union sector.

BRIEF HISTORY OF THE AMERICAN LABOR MOVEMENT

How did labor unions first begin? What are the functions of unions? We begin with a brief history of the American labor movement.

Although the first stirrings of American labor unions predate the Civil War, it was not until the last third of the nineteenth century that labor began to revolt against "big interests." The first national movement was the Knights of Labor, which began as a secret society that all but "lawyers, bankers, gamblers or liquor dealers, and Pinkerton detectives" could join. Secrecy was dropped and by 1886, the high-water mark of the movement, 700,000 members had joined the Knights. The Knights represented an attempt to form one great labor union that would speak for all labor; it was more interested in political reform and social "uplift" than in bread-and-butter issues like hourly wages. After a few unsuccessful strikes, the Knights declined in membership as rapidly as it had grown. But the lesson of the Knights was not lost on key strategists of the American labor movement: to thrive, unions must concentrate on the economic betterment of their members rather than on reforming society.

In the face of labor organizations like the Knights, employers fought back. They too learned that strength came from cooperation; they backed up one another by drawing up "blacklists" of union sympathizers and refusing to hire labor "agitators." Generally, employers were able to invoke the law on their side to "keep labor peace," and the police or the National Guard was brought in to protect company property. Some companies even hired gunmen and spies to fight unions.

1 The chief weapons used by employers to fight unions have been (1) discriminatory discharge of union members, (2) the blacklist, (3) the lockout, (4) the "yellow-dog" contract requiring agreement in advance not to join a union, (5) the labor spy, (6) the strikebreaker and armed guards, (7) conspiracy of town merchants, police, and judges against organizers and would-be union joiners, (8) the "company union," and (9) court injunctions.
The American Federation of Labor

In 1881, the present-day labor movement took its form in the birth of the American Federation of Labor (AFL). For almost half a century until his death in 1924, Samuel Gompers dominated this organization and gave the movement its characteristic pattern. Though early interested in socialist movements, he soon concluded that no movement opposed to capitalism would flourish on American soil.

Gompers' main principles were simple:

- He committed the AFL to the principle of federalism—with each national union to have sovereignty and "exclusive jurisdiction" over its craft specialty. This meant that the AFL would not tolerate "dual unionism": two unions could not try to organize the same workers, and no group of workers could break away from a recognized national union.
- He insisted on voluntarism—with labor and firms bargaining over wages, but with government staying out of collective bargaining.

* Gompers insisted on business unionism. Under this principle, American unions were to exist primarily for economic improvement of workers, rather than to engage in a class struggle to alter the form of government or to promote socialism. By and large, American labor unions since Gompers' time have focused on the struggle for higher wages, shorter hours, more vacations, easier work rules, and better fringe benefits in items such as pensions and health insurance. American unions thus were the opposite of the labor movements in many foreign countries—which, like Britain's Labour party, have come to run major political parties and have waged the class struggle for major political reforms.

During the early part of this century, labor unions met bitter repression from business groups. Opposed by business and battered by the high unemployment of the Great Depression, union membership fell to only 7 percent of the labor force. In addition, the AFL's old insistence on organizing unions on the basis of crafts, like carpentry or bricklaying, pre-
vented the organization of the huge mass-production industries like steel in a single union. The defect of craft unionism was vividly demonstrated when Judge Gary of United States Steel crushed the great 1919 steel strike by outmaneuvering an unwieldy committee of some two-score craft unions set up to conduct the strike.

Astute observers saw the handwriting on the wall: industrial unions (those organizing an entire industry, like steel) were the wave of the future; craft unions (organizing workers of a particular skill, like carpentry) were a relic of the past. Industrial unions were introduced in 1935 with the formation of the Congress of Industrial Organizations (CIO). Helped by new government attitudes during the New Deal period, legislation (especially the Wagner Act of 1935), and court decisions, a whirlwind organizing campaign followed. The important mass-production industries—such as automobiles, steel, rubber, and oil—were organized, despite the bitter opposition of the principal companies in these industries.

By this time, the AFL had learned the important lesson of industrial unionism. It, too, began to organize workers on an industrial basis, but its craft unions remained dominant. The AFL and CIO lived in healthy rivalry for two decades. Finally, in 1955, they merged into the AFL-CIO, which is today the major national labor organization in the United States.

National and Local Unions and the AFL-CIO

There are three layers in the structure of American unions:

- The *local* union
- The *national* union
- The *federation* of national unions

To members, the local is the front line of unionism. Members join the local in their plant or town. They pay dues to it. Usually, the local union negotiates the collective bargaining agreement determining their wages and work conditions.

But the local is only a single chapter of the national union. Thus, an autoworker in Pontiac belongs to the local union there, which is one of hundreds of local chapters of the United Auto Workers.

Most unions belong to the federation of unions called the AFL-CIO. Although the public thinks of the federation as the most important element of the labor movement, in reality, the AFL-CIO is the public-relations and lobbying arm for its individual unions and depends on its members for financial support. The AFL-CIO’s power is strictly limited. Like members of the Security Council of the United Nations, each national union insists upon its “sovereignty,” “right of veto,” and “exclusive jurisdiction” over workers in its sphere. Because national unions retain so much power, the AFL-CIO is today mainly a figurehead.

HOW COLLECTIVE BARGAINING WORKS

The wages and fringe benefits of unionized workers are determined by collective bargaining. This is the process of negotiation between firms and workers’ representatives for the purpose of establishing mutually agreeable conditions of employment.

Let us examine how collective bargaining is conducted. First comes union certification. Consider a production-line worker in a factory that is being organized. An AFL-CIO union has petitioned the National Labor Relations Board (NLRB) for an election to determine who will represent workers in this plant. The worker marks a secret ballot in favor of the union, and the union wins a majority. The NLRB then certifies the new union as the collective bargaining agent for the plant, prohibiting any other union from negotiating directly with management.

A day is set for the new union representatives to meet with management at the bargaining table. Seated at the table will probably be a company vice-president in charge of industrial relations; with her will be attorneys from a law firm that specializes in labor law. On the union side will be the local business agent of the union, a small committee of union officers, and an expert on negotiations from union headquarters.
What Are the Issues?

We have all heard of the last-minute, all-night sessions before a labor agreement is reached. What is actually in this agreement?

The central part, of course, is the economic package. This includes the basic wage rates for different job categories, overtime rates, along with the rules for holidays and coffee breaks. In addition, the agreement will contain provision for "fringe benefits," such as a pension plan, coverage for health care, and similar items. During periods of high inflation the agreement will generally contain a COLA (cost-of-living-adjustment) clause, which adjusts wages upward when consumer prices rise rapidly.

A second important and often controversial issue is work rules, which concern work assignments and tasks, job security, and workloads. Particularly in declining industries, the staffing requirements are a major issue because the demand for labor is falling. Thus in railroads, there were decades of disputes about the number of people needed to run a train. Airlines are currently battling unions over the size of the cockpit crew.

Finally, the agreement has procedural features. These include rules of seniority—who gets laid off first or last—as well as a grievance procedure for handling disputes or disputes.

At last the contract, covering many pages of fine print, is signed. Everything is set down in black and white. Generally there are provisions for the arbitration of issues that arise under it, each side agreeing in advance to accept the decision of an impartial outside arbitrator. The usual life of a contract is 3 years.

Collective bargaining is a complicated business—a matter of give-and-take. Much effort is spent negotiating purely economic issues, dividing the pie between wages and profits. Sometimes agreements get hung up on issues of management prerogatives, such as the ability to reassign workers or change work rules. In addition, some provisions pertain to issues which are cooperative rather than antagonistic, such as the design of education or drug-abuse programs for workplace health and safety. In the end, both workers and management have a large stake in ensuring that workers are both satisfied and productive on their jobs.

GOVERNMENT AND COLLECTIVE BARGAINING

The history of labor unions tells a story of their gradual political acceptance and freedom from restrictive laws. Two hundred years ago, when labor first tried to organize in England and America, the common-law doctrines against "conspiracy in restraint of trade" were used against union members. Well into this century, unions and their members were convicted by courts, fined, and harassed by various injunctive procedures. Repeatedly the Supreme Court struck down acts designed to improve work conditions for women and children and other reform legislation on hours and wages.

In 1890, the Sherman Antitrust Act made monopolistic restraints of trade illegal. It did not mention labor unions, but in the next 20 years the Sherman Act was used increasingly by the courts to curb the activities of unions. If a union struck for ends that a judge thought undesirable, the court might rule against it. And many traditional weapons used by unions were declared illegal.

Finally the AFL was forced into the political arena. By 1914, labor was successful in getting the Clayton Antitrust Act passed. Although hailed as "labor's Magna Carta" and designed to remove labor from antitrust prosecution under the Sherman Act, this act did not end legislative and judicial opposition to the labor movement.

Prolabor Laws

Gradually the pendulum swung toward support of union collective bargaining. Major landmarks were the Railway Labor Act (1926), which accepted the basic premise of collective bargaining; the Norris-LaGuardia Act (1932), which virtually wiped out injunctive interference by the federal courts in labor disputes; and the Fair Labor Standards Act (1938), which barred child labor, called for time-and-a-half pay for weekly hours over 40, and set a federal minimum wage for most nonfarm workers (currently $3.35 per hour for 1988).

The biggest landmark of all was the National Labor Relations (or Wagner) Act (1935). Its section 7 stated clearly:
Employees shall have the right to self-organization, to form, join, or assist labor organizations, to bargain collectively through representatives of their own choosing, and to engage in concerted activities, for the purpose of collective bargaining or other mutual aid or protection.

Moreover, it set up the National Labor Relations Board (NLRB) to make sure that employers do not engage in "unfair labor practices" against labor. The NLRB also goes into plants and holds elections to see what organization is to be regarded as the collective bargaining representative for all workers. It can, and does, issue cease-and-desist orders against employers, enforceable by the courts after appeal. And it often makes employers reinstate, with back pay, employees unjustly discharged.

Without doubt, this flurry of pro-union legislation helped propel unionism to its preeminent position on the eve of World War II.

Postwar Legislation

After World War II, many felt that the pendulum had swung too far in labor's direction, and Congress passed legislation aimed at both sides of labor disputes. The most important statute was the 1947 Taft-Hartley Act. This two-edged labor relations law prescribes standards of conduct for unions as well as employers.

Among its principal features are the following: Strikes which "imperil the national health or safety" may be suspended for an 80-day "cooling off" period, which may be imposed by a court injunction requested by the attorney general.

Unfair union labor practices are defined, and union's behavior limited. Unions can be sued and held responsible for acts of their agents. The "closed shop," which requires employees to be members of the union before they are hired, is declared illegal.

2The term "unfair labor practices", as used in the Wagner Act refers to employers' activities that interfere with employees' rights to self-organization. Examples of such employer practices are (1) firing people for joining a union, (2) refusing to hire people sympathetic to unions, (3) threatening to close an establishment if employees join a union, (4) interfering with or dominating the administration of a union, or (5) refusing to bargain with the employees' designated representatives.

...and states are given a free hand to pass "right-to-work" or open-shop laws. Secondary boycotts and jurisdictional strikes are illegal. Political activity and financial contributions by unions to political candidates or public officials are restricted. The free-speech rights of the employer are reaffirmed and strengthened.

With the passage of the Taft-Hartley Act, the framework for collective bargaining was in place. Although labor and business have from time to time proposed modifications of current law—a major goal of labor, for example, being the repeal of Taft-Hartley's section 14(b) allowing state right-to-work laws—no side has mustered the strength to change the status quo in a significant way since 1947.

CURRENT LABOR ISSUES

The issues facing labor unions in the 1990s are not dissimilar to those of the last century. These include strikes, competition from nonunion labor, and productivity restraints.

Strikes

Unions devote their bargaining efforts to improving the wages, fringe benefits, and working conditions of their members. Only by threatening to strike can unions force concessions from management. It is not surprising, therefore, that work stoppages provide the major headlines in labor relations.

Contrary to common impressions, power to strike is used sparingly, as is shown in Figure 16-2. The number of days lost from work on account of the common cold is far greater than that from all work conflicts.

The second half of this chapter points out that, without the right to strike, a union's powers to bargain would be substantially altered. Time and again concessions have been wrung out of employers only by the realistic threat of forcing upon them the heavy financial losses involved in a prolonged shutdown. Workers, too, suffer grievous financial losses and demoralization from a long shutdown. And many a time employers have successfully refused union de-
mands by a determined willingness to withstand a painful strike.

Generally, the government stays out of individual strikes, allowing unions and firms to battle it out. But, when strikes involve key functions (such as coal mining or shipping) or take place on a nationwide scale in an important sector (like autos), many feel that the public interest dictates intervention. Just as the rights of private property and of personal freedoms are not absolute, so the rights of "free collective bargaining" are subject to limitation and coordination with social necessities.

These are not academic questions. In 1919 Massachusetts Governor Calvin Coolidge said in connection with the Boston police strike, "There is no right to strike against the public safety, by anybody, anywhere, any time." The government has often had to decide whether to intervene in order to stop what might be a damaging strike. In railroads, steel, and coal, Presidents often turned to Taft-Hartley or other injunctive procedures during the 1950s and 1960s. Over the last decade, however, as strikes have become less prevalent and as the federal government has taken a less active role in economic management, direct government involvement in private labor disputes has all but disappeared.

Attitudes toward strikes have also changed among businesses and the public. In part because of favorable interpretations of labor law by the courts, and partly because of successful experience in breaking strikes, firms increasingly have decided to resist union strike threats. An important public demonstration was provided by President Reagan in 1981 when he refused to accept the demands of the union during an illegal strike by the air controllers. After the firing of 11,400 air-traffic controllers, the nation suffered a
painful slowdown in air traffic and years of delayed service at major airports. But the government’s willingness to pay the price for rebuffing the controllers’ union provided a demonstration of the possible benefits to management of a tough bargaining stance.

During the 1980s, then, a new management attitude toward strikes arose. Managers began to think about the unthinkable: that they could endure a strike, perhaps by hiring nonunion workers as temporary or permanent replacements, without facing financial ruin or public censure. The increased prevalence of anti-labor views both inside and outside government has led to a major reduction in union bargaining power over the last decade.

Increasing Competitiveness

The greatest threat to unions comes from nonunion workers who supply the same product. Sometimes, as in textiles and coal mining, the nonunion workers are in right-to-work states, where companies have successfully resisted union drives. In the last decade, however, the greatest threat to unions arose from deregulation of domestic industries and from foreign competition. As a result of import penetration, American unions no longer have a monopoly on labor supply in autos, steel, rubber, or communications equipment. Foreign workers from Toyota, Mitsubishi, and Ericsson now openly compete with domestic workers through foreign goods imported into American markets.

Similarly, the deregulation of many industries has opened them up to the entry of nonunionized firms. In an earlier era, a few established firms controlled most of the output in regulated industries. Once these firms had been unionized, unions in regulated industries like trucking, airlines, telephone, and shipping gained a virtual monopoly on labor sold in those sectors. After those industries were deregulated, nonunionized firms could enter and undercut established firms with lower-cost labor, thereby eroding the labor monopoly of unions.

A vivid example of competition undermining unions is the deregulation of the airlines in the early 1980s. As a result of deregulation, new carriers were allowed to enter the airline industry for the first time in decades, and low-cost airlines expanded into new markets without burdensome government constraints. A new firm like People Express or an expanding firm like Continental Airlines could hire nonunion pilots at $40,000 a year as compared to the $80,000 a year or more paid to unionized pilots of the major airlines. Hence, because new nonunionized firms could enter the airline market, the market power of unions was eroded and the average wages of union employees in the airline industry declined.

A second assault on union power came from the inroads on manufacturing industries made by foreign competitors in the early 1980s. From 1980 to 1985, the volume of imported goods rose 45 percent. Our markets were flooded with foreign steel, chemicals, autos, and capital equipment. The embodied labor in imported goods posed a threat to American unions because foreign labor could undersell domestic labor in exactly the way nonunionized workers could undercut unionized workers. In response to the threat from foreign manufacturing workers, many unions reopened their labor contracts. Indeed, for the first time in modern history, steelworkers accepted a pay cut, while the Teamsters’ Union froze the wages of truck drivers. The high unemployment and foreign competition of the 1980s stood as major obstacles to large wage gains by unions in manufacturing.

We see then how deregulation and foreign competition both undermine the strength of unions and put downward pressure on wages in unionized industries. This may be one reason why “big labor” has turned restrictionist and protectionist—to insulate its monopoly power from offshore workers and from deregulated firms.

Productivity Restraints

In an age of rapid technical change and at a time when there is much talk of “automation and robotization,” union members are often as concerned about job security as about wage gains. What good is a pay raise for a job that no longer exists? This is not a new concern. The word “sabotage” was coined when laborers threw their wooden shoes (sabots) into the works of the new machines brought in by the Industrial Revolution to replace workers. *Featherbedding* refers to rules imposed on employers merely for the purpose of keeping up the demand for workers: use of small
shovels, limitation on number of bricks laid per day, requirement that use of music recordings be accompanied by a standby orchestra that does nothing but draw pay, a requirement for fire stokers (i.e., coal shovellers) for diesel engines.

Entrenched unions do have power to enforce such uneconomical arrangements, since unions have a monopoly over the labor supplied to the affected firms or industries. Railroads must bargain in good faith over work rules with their unions because they cannot legally employ nonunion workers to run the locomotives. Perhaps the most extreme example is that of the dockworkers of New York. Since 1966, senior dockworkers have received a guaranteed annual income. The result is that many longshoremen simply punch the clock, drive back home, and collect $33,000 a year. Some of them haven’t hauled a line for a decade. But the recent deep recession, foreign competition, competition from nonunion states or firms, and deregulation have undermined many featherbedding practices. And unions are beginning to see that in the long run featherbedding may hamper efficiency and drive up prices that the jobs of union members become imperiled.

A study of the history of unionism will show that the controversial issues change little from decade to decade. From their infancy, unions relied upon strikes to force employers to raise wages. Once unions had gained recognition, they then labored to exclude nonunion workers and to maintain their traditional work rules. But success has been gained by skillful negotiations, as the great English economist Alfred Marshall wrote at the beginning of this century:

Trade unionism has enabled . . . workers to enter into negotiations with the same gravity, self-restraint, dignity, and forethought as are observed in the diplomacy of great nations. It has led them generally to recognize that a simply aggressive policy is a foolish policy, and that the chief use of military resources is to preserve an advantageous peace.3

How advantageous an economic arrangement have unions brought to their members? We turn to that issue in the next section.

B. IMPACT OF IMPERFECT COMPETITION ON WAGES

The last chapter analyzed the determination of wages in perfectly competitive markets. We have seen, however, that labor unions definitely lead to monopolistic influences in labor markets. In this section we analyze the impact on wage and employment patterns of market imperfections due to unions and other forces.

Imperfections in Labor Markets

To begin with, we emphasize that labor markets are not the competitive auction markets that we see for grains and common stocks. While wheat can be graded into neat categories, that cannot be done for human beings. No auctioneer allocates workers to the highest bidders. Rather, labor markets tend to display signs of imperfect competition; that is, some firms or groups of workers can affect the wages of individual categories of labor. Most important, workers are extremely heterogeneous. Who could dream of putting all workers into 12 different grades and pretend that each labor grade would command exactly the same price on competitive labor markets?

Wage Stickiness Two tests indicate that the labor market is imperfect. When there is a considerable increase in unemployment—as in 1982—do wage rates drop as they would in the corn market when a glut occurs? The answer is clearly, No. Money wages rose almost 5 percent in 1982 even though one-tenth of the labor force was unemployed.

Why do wages continue to rise when labor is in excess supply? This phenomenon, known as sticky wages, means that wages and salaries tend to respond slowly to economic shocks rather than adjusting instantaneously to balance the supply and demand for labor and clear the labor market.

Why don’t unemployed workers quickly drive down the equilibrium wage? Just imagine going to General Motors or any other large corporation when the next recession comes, brandishing your degrees and certificates of IQ and excellence, and offering to work for less than GM is paying. GM would not think of changing its entire wage policy just to save a few dollars. Indeed, if you were a blue-collar worker, GM would have to renegotiate its entire contract with the United Auto Workers just to hire you at a reduced wage rate.

Remember that workers are not like machines: a machine cares not a bit about its price, but workers care a great deal about their wages. So when you tried to reduce wage rates, existing workers would probably resent you, call you a ‘‘union-busting scab,’’ and pelt you with eggs. These factors, and others as well, have led all but the smallest firms to construct a wage structure to rationalize and administer the compensation of their workers.

Wage Structures of Firms The fact that firms must have wage structures is additional evidence of labor market imperfections. Recall from the end of Chapter 15 that large firms tend to set up classification systems as a means of organizing and paying their workers. In a perfectly competitive market, a firm need not make decisions on its pay schedules. Instead, it would turn to the morning newspaper to learn what the reigning market wage rate was that week. Any firm, by raising wages ever so little, could get all the extra help it wanted. If, on the other hand, it tried to pay less than the competitive wage, it would find no labor to hire at all.

But few labor markets approach perfect competition; rather, they are a blend of competitive and monopoly elements. For most firms, if wages are set too low, at first nothing much happens; but eventually workers quit a little more rapidly than would otherwise be the case. Recruitment of new people of the same quality will get harder and harder, and slacking off in the performance and productivity of those who remain on the job will become noticeable.

How do firms deal with the peculiarities of imperfect competition in labor markets? If you have but a few employees, you might bargain and haggle with each one to avoid paying more than you have to. But if you have more than a hundred employees, you will want to set up an internal wage structure; you will group jobs into different classes, name a wage for each class of job, and then decide how many applicants you will accept for each job opening. Moreover, this wage structure will remain relatively stable in the face of changing labor market conditions.

Hence, these two features of labor markets—wage stickiness and the need for an internal wage structure—are the hallmarks of labor markets today. Moreover, it would be a mistake to think that these peculiarities arise only because of unions. Wage stickiness and wage structures are features of all large organizations, private or public, union or nonunion. Large companies have standard wage scales to help simplify wage decisions and promote a sense of fairness. Also, nonunion firms generally have an annual wage period, adjusting wage rates only once a year. In years of high unemployment, nonunion wages grow more slowly than do union wages, but not by a wide margin. And even in the most competitive labor markets, we seldom see actual money wage cuts in recession years. The phenomenon of sticky wages and wage structures responding slowly to economic shocks is intrinsic to a world of imperfectly competitive labor markets.

FOUR WAYS UNIONS SEEK TO RAISE WAGES

Let’s now use our economic theory to analyze how unions operate. For example, how can steelworkers raise their wages above competitive levels? There are four main methods by which a union might raise wages in a particular industry:

1. Unions can reduce the supply of labor.
2. They can use their collective bargaining power to raise standard wage rates directly.
3. They can cause the demand for labor to increase.
4. Unions can resist employers who possess monopoly bargaining power.
Restricting the Supply of Labor

We have already seen that a union may restrict the supply of labor in order to travel upward on the demand curve for labor. Immigration barriers, maximum-hour legislation, long apprenticeships, racial and sex barriers, refusal to admit new members into the union or to let nonunion members hold jobs—all these strategies are restrictive devices to reduce the supply of labor.

Figure 16-3(a) displays the effect of a direct restriction of labor supply. Say that unions persuade the government to pass a law (such as the Davis-Bacon Act) that effectively prohibits government contractors from hiring nonunion construction workers. The effect of this law would be to restrict the supply of construction workers from SS to S′S′. The supply restriction would lower total employment and raise wages in this labor market. (What would happen if a union imposed long apprenticeships on new carpenters in such a framework?)

Raising Standard Wage Rates

Most union bargains do not directly restrict labor supply. Rather, they attempt to force employers to pay a standard wage higher than prevailing market wages. For example, if nonunion plumbers earn $12 per hour in Alabama, a union might bargain with a large construction firm to set the wage at $15 per hour for that firm’s plumbers.

Such an agreement is valuable to the union only if access to alternative labor supplies can be restricted, however. Hence, under a typical collective bargaining agreement, a firm cannot hire nonunion plumbers; nor can it contract out plumbing services; nor can it subcontract to nonunion firms. Each of these provisions helps prevent erosion of the union’s monopolistic lock on the supply of plumbers to the firm. In some industries, like steel and autos, unions will even try to unionize the entire industry so that firm A’s unionized workers need not compete with firm B’s nonunion workers. All these steps are necessary to protect high union wage rates.

Figure 16-3(b) shows the impact of agreed-upon high standard wages, where the union forces employers to pay wages at the standard rate shown by the horizontal line rr. As in panel (a), the equilibrium is at E′, where rr intersects the employers’ demand curve. The workers from E′ to F are as effectively excluded from jobs as if the union had directly limited entry.

Note that the union has not directly reduced supply when it sets high standard wage rates. What then limits employment? At the above-equilibrium wage rates, employment is limited by the firms’ demand for
labor. The number of workers who seek employment exceeds the demand by the segment $E'E$. These excess workers might be unemployed and waiting for vacancies in the high-paying union sector, or they might become discouraged and look for jobs in other sectors. The unemployment stemming from too-high wages is called classical unemployment and will be discussed further at the end of this chapter; some economists believe that it is quantitatively important in Europe today.

Increasing the Demand for Labor

A third way to increase wages is by a policy that increases the demand for union labor. Figure 16-4 shows how a shift in the demand for unionized labor will shift up both wage rates and employment from E to E'. Numerous techniques exist to shift the labor demand curve. Labor may help industry advertise its products. Or it may agitate for an import quota on the product, thereby raising the demand for domestic workers in the industry.

In addition, unions can sometimes take measures that raise demand through increasing the efficiency (and therefore the marginal productivity) of labor. For example, a century ago, workers were being paid so little that they were malnourished and inefficient. Higher wages might then have made them more efficient and thus resulted in lower rather than higher production costs. Today, in this country, few workers are still physiologically undernourished.

But psychological elements can be as important as physiological ones. Many an employer has found that too low wages are bad business even from a hard-boiled, dollars-and-cents standpoint. The quality and contentment of the workers fall off so much that the company is losing, rather than gaining, from trimming the last few dollars of its wage bill. Recently, economists have begun to stress the impact of wages on worker efficiency (sometimes called *efficiency wages*). Some analysts argue that farsighted employers will raise wages above competitively determined levels to attract more efficient workers, boost morale, and improve worker productivity. Recent analyses by Harvard's Richard Freeman and James Medoff have thrown new light on this question. They find evidence

![Figure 16-4 Shifting labor demand increases wage rates](image)

Labor unions also increase wages by increasing the demand for labor. This occurs either because of increases in labor's marginal product, or through means that increase the derived demand for labor by shifting the demand for the final product toward the output of union-made goods.

that unions, by serving the role of a collective voice of workers, may have actually increased labor productivity. Some economists question the plausibility of these findings, asking why employers are so resistant to unions if they raise productivity so much. This bold new thesis will be heartily debated in the coming years.

Combating Monopsony Power of Businesses

When union organizers first began to agitate for combinations of workers, they argued that unions were

necessary as a "countervailing power" to large employers. In essence, the union's market power was necessary to offset the employers' market power. Let us understand the reasoning behind this contention.

Suppose you live in a company town. The dominant firm hires most people who have jobs. You must take what the employer offers or go without work; your only alternative is to move to another region.

In this case, the employer is a monopsonist, which designates a single buyer of a commodity (just as "monopoly" means a single seller). Consider how a profit-maximizing monopsonist would calculate its costs and make its hiring decisions. The monopsonist will no longer behave as a perfectly competitive purchaser of labor. Rather, it will recognize that it can have an effect upon wages in its town, paying higher wages as it hires additional workers. In effect, because the firm is so large, it moves up the town's labor supply curve as it employs more workers.

As a result of the higher wages paid as more workers are employed, the firm finds that its marginal cost of labor is greater than the wage rate. Why so? Because when the monopsonist hires an additional worker, it must raise the wage rate paid to all workers. Therefore the marginal cost of a new worker is equal to the wage rate of the new worker plus the higher wages paid to already-hired workers, and this sum is clearly higher than the wage rate. The profit-maximizing monopsonist realizes then that it should not hire labor up to the point where the wage equals the marginal revenue product of labor (recall from the last chapter that this is the condition for profit maximization when firms face perfectly competitive factor markets). Instead, the firm should hire an additional worker only when its marginal revenue product is equal to the marginal cost of labor (which is greater than the wage rate). The monopsonist therefore both depresses wages and restricts employment relative to perfectly competitive labor markets.

Enter the labor union. After organizing the workers, it settles with the employer for a standard wage that is above the depressed monopsonistic wage level. At that higher standard wage, the employer can hire all the workers it needs at a given wage rate; the firm becomes a "wage taker" rather than a "wage maker." It will then become like the competitive firm that hires workers up to the point where the marginal revenue product equals the going standard wage. A union that exercises countervailing power may produce higher wages and higher employment.5

The role of unions in combating business monopsony power proved important in their early history, particularly in isolated locations like the tin mines of Bolivia or the lumber camps of the American west. In periods when business trusts behaved like monopsonists by keeping wages low, union countervailing power may have improved wages and employment in labor markets. Countervailing power is less relevant in today's America, where labor mobility is great and where few communities are dominated by a single firm.

Theoretical Indeterminacy of Collective Bargaining

Having seen how unions raise wages, can we devise a theory that accurately predicts the outcome of a bargain between labor and management? Unions sometimes realize it would not be in their interest to ask for higher wages; management sometimes takes the view that a wage increase would improve long-run corporate earnings. But both these views are exceptional. Usually, at any collective bargaining negotiation, the workers are pressing for higher wages while management holds out for a leaner wage bill.

What will be the terms of the final agreement? Unfortunately, this is one important question that no economic theory can answer with precision. This is a situation known as "bilateral monopoly"—where two sides have strong bargaining power. The result depends on psychology, politics, and countless other intangible and unpredictable factors. As far as the economist is concerned, however, the final outcome of bilateral monopoly is in principle indeterminate—as indeterminate as the haggling between two millionaires over the value of a fine painting.6

5The analysis of monopsony and countervailing power is pursued in question 10 at the end of this chapter.

6Situations like labor-management bargains are the subject of game theory, analyzed in Chapter 12's appendix. The theoretical indeterminacy of collective bargaining is equivalent to the following result from game theory: that a two-person noncooperative game does not generally have a unique outcome. Rather, like wars or strikes, the outcome of such a two-person game depends on many factors like the bargaining power, prestige, bluffing ability, and even the perceptions on each side of the strength of the other side.
The Importance of Controlling Entry

The control of potential competitors is as important to a labor monopoly as to a product-market monopoly. If you go back to review how unions raise wages, it quickly becomes clear that in many cases control of entry is critical. Thus by forming a union that comprises all the workers in a particular group, the union is able to set a monopoly price for its members. To succeed, however, it must fight off competition from nonunion labor.

This need to prevent nonunion competition is behind many of the central policies supported by labor unions. It explains why unions want to limit immigration; why unions support protectionist legislation which would limit foreign goods, that is, goods made by workers who are not members of American unions; and why unions sometimes oppose deregulation in industries like trucking, communications, or airlines, since deregulation allows entry of nonunionized firms.

EFFECTS ON WAGES AND EMPLOYMENT

The advocates of labor unions claim that they have raised real wages, at least for their members. Critics argue that although unions have done just that, the result is high unemployment, inflation, and distorted resource allocation. Despite the agreement about the effects of unions on real wages, the facts are hard to pin down.

Has Unionization Raised Wages?

Let's start by reviewing the effects of unions on relative wages. Economists have first estimated the economic impacts of unions by examining wages in unionized and nonunion industries. This has led most analysts to conclude that union workers receive on average a 10 to 15 percent wage differential over nonunion workers. The effects range from a negligible effect for hotel workers and barbers to 25 to 30 percent higher earnings for skilled construction workers or coal miners. The pattern of results suggests that where unions have the greatest difficulty monopolizing labor supply and controlling entry (as for barbers), they will be least effective in raising wages.

A second approach examines the wages of individual workers, correcting for worker characteristics and taking into account whether the worker is in a union or nonunion job. Orley Ashenfelter of Princeton examined a panel of workers over the period 1967–1975. Correcting for the influence of each worker's sex, race, education, and other personal characteristics, he found that those workers who belonged to unions in the mid-1970s had wages 17 percent above those of nonunion workers. In addition, Ashenfelter found that black males who belong to unions got even higher wage differentials than other groups: 23 percent higher wages as compared to 16 percent for white males.

Yet a third approach, pioneered by Wesley Mellow, compares the wage received by the same worker as he or she moves from union to nonunion jobs or vice versa. This study found that those becoming union workers experienced an average wage increase of 7.5 percent in 1977–1978 while those leaving unions experienced a wage reduction of the same magnitude. Mellow also found a much smaller impact of unionism on the wages of black workers than have other studies, his study estimating gains of black workers moving into union jobs of only 2 percent. This small figure suggests that the large impact of unions on wages of black workers found by other studies may be attributable to unmeasured worker quality differences of unionized black workers.

Overall Impacts But can unions bootstrap the entire economy to a "higher real wage"? Most evidence suggests not. The share of national income going to labor (including self-employment) has changed little over the last six decades. Once cyclical influences on labor's share are removed, we can see no appreciable impact of unionization on the level of real wages in the United States. The evidence from heavily unionized European countries suggests that, when unions succeed in raising money wage rates, the main impact is to trigger an inflationary wage-price spiral with little or no permanent effect upon real wages. Moreover, macroeconomic history shows that when inflation heats up, governments and central banks often apply contractionary macroeconomic policies, such
Figure 16-5 Too-high real wages cause classical unemployment

If unions push real wages too high for an entire economy, firms will demand \(E' \) while workers will supply \(F \). Thus the black arrow from \(E' \) to \(F \) represents the amount of classical unemployment. This source of unemployment is particularly important when a country cannot affect its price level or exchange rate, and differs from the unemployment caused by insufficient aggregate demand.

as raising interest rates and slowing the growth of government spending, resulting in higher unemployment rather than higher real wages.

Effects on Employment

If unions do not affect overall wage levels, this suggests that their major impact would fall upon relative wages. Wages in unionized industries would rise relative to those in nonunionized industries. Moreover, employment would tend to be reduced in unionized and expanded in nonunionized industries.

Waiting for Recall Some economists think that the artificial wage differentials across sectors created by unions are a major cause of unemployment. They point to two mechanisms. The first is \textit{wait unemployment}. As workers from high-paid jobs are laid off, they can collect unemployment insurance or supplemental benefits. In fact, these benefits may well exceed the take-home pay for jobs in other sectors of the economy, such as in service industries. The workers may prefer to wait for a recall from the auto firm or steel firm; they are unemployed but do not wish to work at going rates in the low-paying industries.

Classical Unemployment A second concern, particularly prevalent in Western Europe today, is that unions and government policies have raised real wages to artificially high levels, resulting in excess supply of labor and what is called \textit{classical unemployment}.

This case is illustrated in Figure 16-5. Let us say that \textit{all} workers belong to unions—which is close to accurate for many Western European countries. Say unions succeed in raising wages above the market-clearing wage at \(E \) to a higher real wage at \(r \). Then, if supply of and demand for labor in general are unchanged, the arrow between \(E' \) and \(F \) will represent the number of workers who want to work at wage \(r \) but cannot find work. This variety is called classical unemployment because it results from too high real wages, as opposed to Keynesian unemployment, which results from insufficient aggregate demand.

The diagnosis and prescription for classical unemployment belongs more in the \textit{Macroeconomics} volume than here in our microeconomic analysis of wages and marginal products. But it does suggest that when a country gets locked into too high real wages, the high level of unemployment may be primarily a result of inappropriate relative prices rather than insufficient aggregate demand for goods and services.

The Consequences of Decline

We have traced in this chapter how labor unions became legal during this century; how they thrived during the New Deal period; and how their economic strength has eroded slowly as blue-collar jobs became less numerous and as deregulation and foreign competition spurred businesses to fight union power.

What does this eclipse of labor unions portend for labor markets of the 1990s? Harvard’s Richard Freeman has the following reflections upon the social
implications of the decline of the labor movement:

What are the economic effects of a proportionately smaller trade union movement? From the perspective of the monopoly "face" of unionism the decline can be expected to reduce the monopoly misallocation of resources resulting from unionism and... also reduce the union wage advantage. On the other hand, however, reduced unionism can be expected to affect adversely many of the positive effects of strong unionism—lower dispersion of earnings among workers; lower quit rates; and higher productivity due to pressures on management to reduce costs in organized firms. As the United Mine Workers organization and industrial relations in coal have deteriorated, productivity in union mines has fallen sharply. The broader social effects of a diminished trade union movement remain to be seen.7

SUMMARY

A. The American Labor Movement

1. Labor unions occupy an important but diminishing role in the American economy, in terms of both membership and influence. Their present structure is in three layers: (a) local unions, (b) national unions, and (c) a federation of unions (AFL-CIO), the first two being the most important.

2. By the 1900s, the typical American pattern of federated, nonpolitical business unionism had been established. Since 1935, the CIO and finally the AFL have modified the pattern in the direction of industrial unionization of whole mass-production industries rather than relying solely upon craft unionization of skilled workers.

3. After a union has been recognized by an NLRB election as the exclusive bargaining agent for a group of workers, management and labor representatives meet together in collective bargaining to negotiate a contract. Such agreements typically contain provisions for wages, fringe benefits, and work rules, along with a dispute-resolution mechanism.

4. Until the mid-1930s there was bitter opposition to unions. But the pendulum of government swung to support collective bargaining, and since the Wagner Act (1935), most manufacturing industries have become unionized. The result has been less violence but still vigorous collective bargaining between unions and management. In 1947, Congress felt the law had become one-sided in favor of labor and passed the Taft-Hartley Act to correct the balance.

5. Strikes have become less prevalent since World War II. Featherbedding (or work-slowing practices) are a major obstacle to productivity growth in many declining industries. The biggest threat to unions today is the competition from nonunionized firms, from imported products, and from new firms in newly deregulated industries. These forces, together with a more probusiness political environment, have led to a significant decline in the economic and political power of unions.

B. Impact of Imperfect Competition on Wages

6. Labor markets are not perfectly competitive in real life. With unions or without them, employers usually have some control over wages. The imperfectly competitive
nature of labor markets is seen in the stickiness of wages and the existence of wage structures.
7. Unions affect wages by (a) restricting labor supply, (b) bargaining for standard rates, (c) following policies designed to shift productivity or the demand schedule for labor upward, and (d) countering monopoly bargaining power of employers (i.e., of so-called monopsonists).

The different techniques show an important common feature: in order to raise real wages above prevailing market-determined levels, unions generally must prevent entry or competition from nonunion workers. This involves pushing for foreign-trade restrictions, regulation, and occupational licensing.
8. Economic theory states that there is no unique outcome of a collective bargaining session; bilateral monopoly or management-union bargaining (like war or two-person games) has a theoretically indeterminate solution.
9. Unions do appear to have raised the wages of union members relative to nonunionized workers. Studies estimate that, on average, union members have earned wages 7 to 17 percent higher than nonunion members for workers with the same characteristics. This union differential may have eroded in the last decade’s period of high unemployment and competition from nonunion labor.
10. While unions may raise the wages of their members, they probably do not increase real wages or labor’s share for an entire nation. They are likely to increase unemployment among union members who would prefer to wait for recall from layoff of their high-paid job rather than move or take a low-paying job in another industry. And for a nation with inflexible prices, too high real wages may induce classical unemployment.

CONCEPTS FOR REVIEW

AFL-CIO
business vs. political unionism
Wagner and Taft-Hartley Acts, NLRB
collective bargaining agreement
standard wage rates
featherbedding
four ways unions raise wages

unions as monopolies
monopsony
control of entry by unions
effect of unions on real wages of union members, of nation
wait and classical unemployment

QUESTIONS FOR DISCUSSION

1. Discuss the economic structure of unions. How are unions able to exercise monopoly power?
2. Describe the swing of the pendulum in the attitude of legislature and courts toward organized labor before and after the Wagner Act.
3. Should the police have the right to strike? Coal workers? Soldiers? Everyone? Anyone?
4. Unions favor minimum-wage laws that apply mostly to the poorer, unorganized workers. Using Chapter 15's concept of discrimination in segmented markets, would less or more union labor be demanded with a higher minimum wage? Might the poor and unskilled be hurt—be priced out of the market—by a minimum wage that is set too high?
5. Collective bargaining contains both cooperative and antagonistic elements. List the elements of a contract that might be cooperative. Also list the antagonistic ones. Does the existence of cooperative elements in labor-management agreements suggest a reason why compulsory arbitation of labor contracts by outside arbitrators might not always be a good solution?
6. Labor unions are the major entities in the economy that are exempt from antitrust laws. Review antitrust legislation in Chapter 12. Review this chapter's discussion of how labor unions became exempt. What are the effects of the exemption? Do you think the exemption is justified?
7. Explain, both in words and using supply and demand, the impact of each of the following upon the wages and employment in the affected labor market:
 (a) Upon union bricklayers: the bricklayers' union negotiated a lower standard work rule from 26 bricks per hour to 20 bricks per hour.
 (b) Upon airline pilots: after the deregulation of the airlines, nonunion airlines like Continental or People Express increased their market share by 20 percent.
 (c) Upon M.D.'s: many states begin to allow nurse practitioners to be given more of physicians' responsibilities.
 (d) Upon American autoworkers: Japan agreed to limit its exports of automobiles to the United States.
 (e) Upon steelworkers: through negotiations, the United Steelworkers raised its members' standard wage rates 30 percent relative to the average manufacturing worker.
8. If you were a union leader, would you focus your attention on: (a) an industry with many small firms with easy entry and exit; (b) a regulated monopolist, with highly inelastic demand for its output, that is allowed to use average cost pricing? Justify your reasoning in terms of the ways that unions raise wages.
9. In addition to formal unions, there are many "near-unions," which have the effect of limiting employment to their members. For example, state licensure limits the practice of medicine and law to those who pass stringent examinations; some universities limit faculty appointment to those who have a Ph.D.; social workers in some states are pressing for limitation of practice to those who have state certificates; doctors have attempted to limit the medical practice of chiropractors.

Using supply and demand analysis, explain how such practices tend to limit supply and raise the prices of the affected professions. What are the conditions on the demand curve that would lead to such limitations increasing the incomes of the affected professions?
10. Advanced problem: J. K. Galbraith wrote of the "countervailing power" of unions. The reasoning might have been as follows. In a company town, an employer had monopsony buying power over unorganized labor. The outcome is shown as wage rate m in Figure 16-6.

![Figure 16-6](image)

Question A: Why would a profit-minded monopsony employer be at point M rather than at the competitive equilibrium point E?

Now let a union step in. It raises the standard wage rate from m to r by collective bargaining.

Question B: What has happened to the efficiency of the outcome? What has happened to employment and real wages? Does this analysis suggest conditions in which Galbraith's theory of countervailing power is likely to be valid or invalid?
PREVIOUS CHAPTERS have analyzed the determination of the rents on land and the wages of labor. This chapter turns to the third broad factor of production, capital. Capital (or capital goods) consists of durable goods that are both produced and used as inputs in the productive process — items like factories and trucks and roads and computers and inventories. A complete understanding of any modern economy, whether it be capitalist or socialist or communist, requires an appreciation of the role of capital in economic growth.

Capital theory is one of the deeper subjects in microeconomics—but many of the basic ideas can be visualized using the elementary tools of supply and demand. In developing the central concepts in capital theory, the main part of this chapter analyzes interest, profits, and production over time. The appendix then presents certain special topics of capital theory in more detail.
CONCEPTS IN CAPITAL THEORY

Economic analysis traditionally divides factors of production into three categories: land, labor, and capital. The first two of these are called primary factors of production—where "primary" means "original" factors that are available before production takes place. To them we add a produced factor of production, capital or capital goods.

Capital consists of those durable produced goods that are in turn used as productive inputs for further production. Some capital goods might last a few years while others might last for decades. But the essential property of a capital good is that it is both an input and an output.

There are three major categories of capital goods: structures (such as factories and residences), equipment (consumer durable goods like automobiles and producer durable equipment like machine tools), and inventories (such as groceries on the shelf or cars in dealers' lots).

Rentals on Capital Goods

Capital goods are bought and sold in capital-goods markets. For example, IBM sells capital goods to businesses in the form of mainframe computers—these computers are used by firms to help improve the efficiency of their payroll systems or production management.

Most capital goods are owned by the firm that uses them. Some capital goods, however, are rented out by their owners for short or long periods. Payments for the temporary use of capital goods are called rentals. An apartment that is owned by Ms. Landlord might be rented out for a year to a student, with the monthly payment of $200 constituting a rental.

Rate of Return on Capital Goods

One of the most important tasks of any economy, business, or household is to decide how to allocate its capital across different possible investments. Should the United States invest in steel mills or in computers? Should IBM build a new plant to produce microcomputers or add to its productive capacity in mainframe processors? Should the Valdez family, hoping to improve its accounting records, put its dollars in an IBM personal computer or buy an Apple or a Leading Edge? All these questions involve costly investments, spending money today that might yield handsome dividends in the future.

In deciding upon the best investment, we need a measure for that yield or return on capital. One important measure is the rate of return on capital, which denotes the net dollar return per year for every dollar of invested capital.

Let's consider an example of a rental car company. Ugly Duckling Rental Company buys a used Ford for $10,000 and rents it out for $2500 per year. After calculating all expenses (maintenance, insurance, depreciation, etc.), and ignoring any change in car prices, Ugly Duckling earns a net rental of $1200 each year.¹ We then say that the rate of return on the Ford was 12 percent per year (= $1200 ÷ $10,000).

Note also that the rate of return is a pure number per unit of time. That is, it has the dimensions of (dollars/dollars) per period of time and is usually calculated as percent per year.

You might be considering different investments: rental cars, oil wells, apartments, computer disks, and so forth. Your financial advisers tell you that you do not have sufficient cash to invest in everything, so how can you decide which ones to invest in?

One common approach is to compare the rates of return on capital on the different projects. For each one, you first calculate the dollar cost of the capital good. Then estimate the annual dollar receipts or rentals yielded by the asset. The ratio of the annual rental to the dollar cost is the rate of return on capital: it tells you the amount of money you get back for every dollar invested, measured as dollars per year per dollar of investment.

The rate of return on capital is the annual net return (rentals less expenses) per dollar of invested capital. It is a pure number—percent per year.

Of Wine, Trees, and Drills Here are some examples of rates of return on investments:

- I buy grape juice for $10 and a year later sell it as

¹Depreciation is an estimate of the loss in dollar value of a capital good due to obsolescence or wear and tear during a period of time.
wine for $11. If there are no other expenses, the rate of return on this investment is $1/$10, or 10 percent per year.

- I plant a pine tree with labor cost of $100 paid in advance. At the end of 25 years the grown tree sells for $430. The rate of return on this capital project is then 330 percent per quarter-century, which, a calculator will show, is equivalent to a return of 6 percent per year.

- I buy a $20,000 piece of oil-drilling equipment. For 10 years it earns annual rentals of $30,000, but I incur annual expenses of $26,000 for fuel, insurance, and depreciation. What is the rate of return on the drill? It is the same as the annual percentage yield of an investment of $20,000 which pays $4,000 per year for 10 years and then self-destructs. Interest tables show this drill’s yield to be 15 percent per year.

Profits as Return on Capital Where would you look to find the return on capital in the American economy? Generally, when companies own capital, the return is included in business profits. Profits are a residual income item equal to total revenues minus total costs. When you own shares in corporate capital, you get your return as your part of the overall profits of the firm. While the return has a different name and is more risky than many other investments, it is nonetheless a return on capital and has the dimensions of dollars of earnings per year per dollar invested. Business profits are the largest part of the return on capital in the U.S. economy today.

We will further examine the nature of profit at the end of this chapter.

Financial Assets and Interest Rates

We have spoken so far of capital goods like automobiles. But where do the resources needed to produce capital come from? Someone must be saving to provide funds for buying the capital goods. Someone must be abstaining from current consumption, thereby releasing resources needed to produce new capital goods. In a complex modern economy, with a sophisticated financial system like that of the United States, households and firms channel funds into capital goods by saving money in various financial assets. People buy bonds and stocks; they put money in savings accounts; they put money away for retirement in their pension funds. All these are vehicles that carry funds from savers to the firms or people who actually buy capital goods.

But people do not save for nothing. They lend money in the market for funds. What is the "price of funds" or the return on financial assets? It is the interest rate, or the annual return on borrowed funds.

Examples abound. When you put your money in a time deposit at a commercial bank, you might receive an 8 percent interest rate. This means that if you deposit $1000 on January 1, 1990, you will end up with $1080 on January 1, 1991.

You will usually see interest rates quoted as x percent per year. This means that the interest would be paid at that rate if the sum were borrowed for an entire year; for shorter or longer periods, the interest payment is adjusted proportionately.

Interest comes in many guises. There are long-term and short-term interest rates, depending on the length of the loan or the bond; there are fixed interest-rate loans and variable interest-rate loans; there are interest rates on super-safe bonds (like U.S. government securities) and there are interest rates on highly risky "junk bonds."

To summarize: Households and other savers provide financial resources or funds to those who want to purchase physical capital goods. The rate of interest represents the price that a bank or other financial intermediary pays a lender for the use of the money for a period of time and interest rates are quoted as a certain percent yield per year.

Present Value of Assets

We have seen that capital goods are durable assets that produce a stream of rentals or receipts over time, much as a fruit tree produces a series of harvests. If you owned an apartment building, you would collect a series of rental payments over the life of the building.

But say you became weary of tending the building and decided to sell the capital good. To determine a fair price for the building, you would be interested in determining the value today of the entire stream of future income. The value of that stream is called the
present value of the capital asset. The present value is obtained by calculating how much money invested today would be needed, at the going interest rate, to generate exactly the same stream of receipts as the asset under consideration.

Let’s start with a very simple example. Let’s say somebody offers to sell you a bottle of wine that matures in exactly 1 year and will then be worth exactly $11. Assuming the market interest rate is 10 percent per year, what is the present value of the wine—that is, what should you pay for the wine today? Pay exactly $10, for $10 invested today at the market interest rate of 10 percent will be worth $11 in 1 year, and that is just what the wine will be worth.

Present-Value Formula We can provide an exact formula for calculating present value for a perpetuity (an asset that lasts forever, like land) that will pay you $N every year from now to eternity. What is its present value (V) if the interest rate is i percent per year?

To answer this, find the amount of money invested today that would yield exactly $N each year. The answer is simply:

\[
V = \frac{S}{i}
\]

where \(V \) = the present value of the land

\(S \)N = permanent annual receipts

\(i \) = interest rate in decimal terms (e.g., 0.05, or \(\frac{1}{20} \), for 5 percent per year)

Put differently, if the interest rate is always 5 percent per year, then an asset yielding a constant stream of income will sell for exactly 20 (= \(1 + \frac{0.05}{0.05} \)) times its annual income. In this case, what would be the present value of a perpetuity yielding $100 every year? At a 5 percent interest rate its present value would be $2000 (= $100 ÷ 0.05).²

Note how important is the role played by the interest rate in determining the market value of assets. When the interest rate drops from a high to a low level, the present value of existing machines, land, bonds, stocks, or any other assets yielding a stream of future returns must rise considerably. Thus in our example of the last paragraph, if the interest rate fell from 5 percent per year to 2 percent, the present value of the land yielding $100 per year would rise from $2000 to $5000. There may, then, be a large impact on people’s wealth when interest rates move sharply, as they often have in the last few years.

Review

Let’s review quickly the terms we have learned before turning to apply them:

- The economy today has accumulated large stocks of capital, or capital goods. These are the machines, buildings, and inventories that dot the landscape.
- The annual dollar receipts on capital are called rentals. When we divide the net receipts (rentals less costs) by the dollar value of the capital generating the rentals, we obtain the rate of return on capital (measured in percent per year). Note: These must be net receipts, after appropriate allowance for expenses such as depreciation of assets has been subtracted from gross rentals.
- Capital is financed by savers who lend funds, getting financial assets in return. The dollar yield on these financial assets is the interest rate, measured in percent per year.
- Profits are a residual income item, equal to total revenues minus total costs. For large corporations that own their own capital, business profits are the earnings after payment of wages, rents, and other direct factor costs.
- Capital goods and financial assets generate a stream of income over time. This stream can be converted to a present value, i.e., a value that the stream of income would be worth today. This conversion is made by asking what quantity of dollars today would be just sufficient to generate the asset’s stream of income at going market interest rates.

THEORY OF CAPITAL

Now that we have surveyed the major concepts in capital theory, we turn to an analysis of the classical

²The appendix to this chapter deals at greater length with the concepts and measurement of present value.
theory of capital. This approach was developed about a century ago by the Austrian economist E. V. Böhm-Bawerk, the Swede Knut Wicksell, and Irving Fisher in the United States.

Roundaboutness
As we saw in our introduction to capital in Chapter 3, investing in capital goods involves indirect or roundabout production. Instead of catching fish with our hands, we find it ultimately more worthwhile first to build nets and boats—and then to use the nets and boats to catch many more fish than we could by hand.

Put differently, we frequently forgo present consumption to increase future consumption. Fewer fish caught today frees up labor for making nets to catch many more fish tomorrow. Society thus invests, or abstains from present consumption, and by waiting obtains a yield or return on that investment. In the most general sense, this yield—more future consumption in return for forgone present consumption—is the return on capital.

To see this, imagine two islands exactly alike. Each has exactly the same amount of labor and land. Island A uses these primary factors directly to produce consumption goods like food and clothing; it uses no produced capital goods at all. Island B, on the other hand, for a preliminary period sacrifices current consumption; it uses some of its land and labor to produce capital goods, such as plows, shovels, and looms. After this preliminary period of sacrificing current consumption pleasures in the interest of net capital formation, B ends up with a varied stock of capital goods.

Figure 17-1 shows the way that Island B forges ahead of A. For each island, measure the amount of consumption per person that can be enjoyed while keeping up the existing capital stock. Because of its thrift, Island B, using roundabout, capital-intensive methods of production, will enjoy more future consumption than Island A. B gets more than 100 units of future consumption goods for its initial sacrifice of 100 units of present consumption.

We conclude that investment takes place because it allows an economy that sacrifices present consumption to get more consumption in the future.

Diminishing Returns and the Demand for Capital
But what happens as society invests in more and more capital goods? As a nation transfers more and more of its consumption toward capital accumulation? As production becomes more and more roundabout or indirect?

The answer is that we would expect the law of diminishing returns to set in. As we add more fishing boats or nets or power plants or steel mills or chemical factories or computers or trucks, the extra product or return on even more roundabout production begins to fall. The first few fishing boats yield many fish, but too many fishing boats simply deplete the fish stock. Eventually, as capital is accumulated, the rate of return on the investments would fall from, say, 20 percent per year to 10 percent or even to 2 percent.

Unless offset by technological change, therefore, rapid investment would produce diminishing returns, which would drive down the rate of return on investment. But then, why have rates of return on capital
not fallen markedly over the course of the last 150 years, even though our capital stocks have grown manifold? Because innovation and technological change have created profitable new opportunities as rapidly as past investment has annihilated them.

Determination of Interest and the Return on Capital

What determines the return on capital and the level of interest rates? We can now provide the classical explanation based on the supply of and demand for capital.

Households supply funds for investment by their accumulation of saving over time (that is, by abstaining from current consumption). In the long run, people may decide to supply more saving if the return on their saving is higher. At the same time, firms and other entities demand capital goods—in the form of trucks, buildings, and inventories—to combine with labor, land, and other inputs. In the end, firms’ demand for capital is driven by their desire to make profits by producing goods.

Or as Yale’s great Irving Fisher put the matter at the beginning of this century:

Supply-and-demand determination of the amount of capital and return on capital is determined by interaction between (1) people’s impatience to consume now rather than accumulate more capital goods for future consumption (perhaps for old-age retirement or for that proverbial rainy day); and (2) investment opportunities that yield higher or lower returns to such accumulated capital.

A Riskless World To understand how interest rates and the return on capital are determined, consider an idealized world without risk, monopoly, or inflation. A profit-maximizing firm, when deciding whether to undertake an investment, will always compare its cost of funds with the rate of return on capital. If the rate of return is higher than the market interest rate at which the firm can borrow funds, it will undertake the investment. If the interest rate is higher than the rate of return on investment, the firm will decline to invest.

Where will this process end up? Eventually, firms will undertake all investments whose returns are higher than the market interest rate. Hence, the equilibrium is reached in our idealized world when competition among firms beats down the return on investment to the level of the market interest rate.

Hence, in a world free of risk, inflation, and monopoly, the competitive rate of return on capital would be equal to the market interest rate.

Note that the market rate of interest has two functions: it rations out society’s scarce supply of capital goods into the uses that have the highest rates of return; and it induces people to sacrifice current consumption and add to the stock of capital.

Graphical Analysis of the Return on Capital

We can illustrate capital theory using supply-and-demand diagrams. In doing so, we must drastically simplify economic conditions—concentrating on an elementary case in which all physical capital goods are alike. In addition, we consider a stationary economy in which there is no population growth or technological change.

Figure 17-2 illustrates how the interest rate is determined. Curve DD shows the demand curve for the stock of capital; it shows the relationship between the quantity of capital demanded and the rate of return on capital. Where does the demand for capital come from? Remember how the demand for labor was formed from the marginal productivity curve for labor. Similarly, the demand for capital is a “derived demand”—derived ultimately from the marginal product of capital, that is, from the extra output yielded by additions to the capital stock.

Diminishing Returns We see that the law of diminishing returns applies to capital as well as to other factors. This is shown by the fact that the demand-for-capital curve is downward-sloping. When capital is very scarce, there are some very profitable roundabout projects that yield 15 percent per year or more. Gradually, as capital is accumulated and the community has exploited all the 15 percent projects, with total labor and land fixed, diminishing returns to capital has set in. The community must then invest in 12 and 10 percent projects as it moves down the demand-for-capital curve.
Short-Run Equilibrium We can now see how the supply and demand interact. In Figure 17-2, past investment has bequeathed a given stock of capital, shown as the vertical short-run supply curve, SS. Firms will demand capital goods in a manner shown by the downward-sloping demand curve, DD.

At the intersection of supply and demand, at point E, the amount of capital is just rationed out to the demanding firms. At this short-run equilibrium, firms are willing to pay 10 percent a year to borrow funds to buy capital goods. At that point, the lenders of funds are satisfied to receive exactly 10 percent a year on their supplies of capital.

Thus, in our simple riskless world, the rate of return on capital exactly equals the market interest rate. Any higher interest rate would find firms unwilling to borrow for their investments; any lower interest rate would find firms clamoring for the too scarce capital.

Only at the equilibrium 10 percent rate are supply and demand equilibrated.

But the equilibrium at E is sustained only for the short run. Why? Because, even though capital is scarce enough to keep the economy temporarily at E, people want to go on saving. Figure 17-3 shows how interest rates are determined in the long run. The long-run supply of capital or wealth, shown as SS in Figure 17-3, slopes upward to indicate that people are willing to supply more funds at higher real interest rates. At an interest rate of 10 percent, the long-run supply of wealth or capital exceeds the demand for capital at E. People thus desire to accumulate more capital, i.e., to continue saving. This means that net capital formation is taking place at point E. So each year, the capital stock is a little higher as net investment occurs. As time passes, the community moves slowly down the DD curve as shown by the black arrows in Figure 17-3.

The March toward Equilibrium We move rightward down the DD curve because positive investment means that the capital stock is increasing; the short-run supply curve is consequently being pushed further and further to the right each year. You can actually see a series of very thin short-run supply-of-capital curves in Figure 17-3—S, S', S'', S''', These curves show how the short-run supply of capital marches to the right with capital accumulation.

Why do the rate of return and interest rate move downward? Because of the law of diminishing returns. As capital increases, while other things such as labor, land, and technical knowledge remain unchanged, the rate of return on the increased stock of capital goods falls to ever-lower levels.

Long-Term Equilibrium Where does long-run equilibrium occur? It comes at E' in Figure 17-3, the intersection of the long-run supply of capital (shown as SS') with the demand for capital. The long-run equilibrium is attained when the interest rate has fallen to the point where the capital stock held by firms has expanded so as to match the amount of funds or financial capital that people desire to supply. At that point, net saving and net capital accumulation are zero.

When net saving is zero, the capital stock is no
longer growing; the vertical short-run supply curve no longer shifts rightward. The long-run equilibrium interest rate and rate of return on capital come at the point where the value of financial assets that people want to hold in the long run exactly matches the amount of capital the firms want to hold at that interest rate.\(^3\)

We can now summarize the results of the classical view of interest and the return on capital.

There are two forces that drive the accumulation of capital and its return. First, the demand for capital is grounded in the fact that indirect or roundabout production processes are productive; by abstaining from consumption today, society can raise consumption in the future. Second, people must be willing to abstain from consumption; they must be willing to accumulate financial assets, lending funds to firms who will make the productive investments in roundabout productive processes.

\(^3\)More advanced and realistic cases are considered in the appendix and in later chapters. More specifically, see the appendix’s Fig. 17A-1 for a further discussion of interest determination, including Irving Fisher’s illuminating analysis. Chapter 23 considers the process of economic growth, in which both population and technology are changing over time.

These two forces of technology and impatience are brought into balance by the interest rate, which ensures that the society’s accumulation of capital just matches the amount that people are willing to hold back from consumption in the form of saving.

SOME MAJOR QUALIFICATIONS

Now our main task is done. But the classical capital theory needs some amplifications and qualifications.

Technological Disturbance

Real life does not remain unchanged while the economy proceeds to accumulate capital and travel down the road of diminishing returns. Inventions and discoveries are constantly being made. Such technological changes will often raise the return on capital and thereby affect equilibrium interest rates. Historical studies suggest that, for America and the West generally, the tendency toward falling interest rates via diminishing returns has been just about canceled out by inventions and technological progress.

Some economists (such as Joseph Schumpeter) have likened the investment process to a plucked violin string: In a world of unchanging technology, the
string gradually comes to rest as capital accumulation drives down returns on capital. But before the economy has settled into a steady state, an outside event or invention comes along to pluck the string and set the forces of investment into motion again.

Uncertainty and Expectations

Our exposition of capital theory has proceeded without a discussion of uncertainty in the investment decision. This is a serious oversimplification. In real life no one has a crystal ball to read the future. All evaluations of capital and all investment decisions, resting as they do on estimates of future earnings, must necessarily be guesses—accurate guesses based on much thought and information in some cases, wild guesses in other cases, but in every case uncertain guesses. Each day we wake up to learn that our expectations were not quite accurate and have to be revised. Each night we go to bed realizing that the next morning will have some surprises for us.

How does the presence of uncertainty affect capital theory? Recall that we carried out our classical analysis assuming that there were no risks. But what, in this troubled world, is safe? Generally, people treat loans to the U.S. federal government as the safest of risks. It is hard to think of a situation short of nuclear holocaust in which the government could not pay off its obligations.

But almost any other loan or investment has an element of risk. Machines break down; an oil well may turn out to be a dry hole; your favorite computer company may go belly up. So unless you leave your money in 3-month Treasury bills, you must face up to the inherent riskiness of your investment.

Investors are generally averse to holding risky assets. They would rather hold an asset that is sure to yield them 10 percent than an asset that is equally likely to yield 0 or 20 percent. Thus, you must offer an extra return, or *risk premium*, to get them to hold risky investments.

For example, raising cattle involves risks due to weather, while production of telephones does not. Suppose that investments in service industries are riskless and the normal return for such riskless investments is 10 percent per year. By contrast, owning cattle is a highly risky investment—because of bad weather, disease, and other factors you could with equal chances double your money or lose half of it. Your average return in cattle is then 25 percent per year. The extra 15 percent return, over and above the riskless 10 percent return, is a risk premium required to coax cattle ranchers to endure the extra risks and sleepless nights in such an uncertain business.

In summary, the high rates of return on risky assets or ventures include risk premiums that investors require before they will hold such risky investments.

Real vs. Nominal Interest Rates

We have up to now banished inflation from the picture. But in a world of changing prices we need to correct interest rates for the changes in the monetary yardstick caused by inflation.

Recall that interest rates are measured in dollar terms and not in terms of trees or fish or wine. Interest is the yield on an investment measured in dollars per year per dollar of capital. But dollars can become distorted yardsticks. The price of fish, trees, wine, and other goods changes from year to year—these days the overall level of prices tends to rise, showing inflation. Thus we need to derive a *real* return on capital, a genuine measure of the quantity of goods we get tomorrow for goods forgone today. In short, we need to correct money yields and interest rates for inflation to obtain real interest rates.

As an example, say that you obtain a 10 percent nominal or money yield on your investment, obtaining $110 next year for $100 invested this year. Over the course of the year, however, prices have risen 6 percent. In real terms, that is, in terms of the amount of goods you could buy, your real yield is not 10 percent but $10 - $6 = 4 percent. In other words, if you were to lend 100 market baskets of goods today, you could obtain only 104 market baskets of goods next year.

Thus, during inflationary periods, we must use real interest rates, not money or nominal interest rates, to calculate the true yield on investments. The *real interest rate* is the nominal interest rate less the rate of inflation.

*The average, or expected value, of the return is equal to the return in each state weighted by the probability of that state's occurring. Since in one state the return is 100 percent and in the other minus 50 percent, with each state having probability of one-half, the expected return is \(\frac{1}{2}(100) + \frac{1}{2}(-50) = 25 \) percent.
Figure 17-4 Real vs. nominal interest rates

This figure shows in red the nominal interest rates on safe short-term securities (1-year Treasury notes). Note their upward trend over the last 25 years. Most of the upward movement can be seen as the reflection of the increase in inflation. The black curve shows the real interest rate, equal to the nominal or money rate less the realized inflation rate over the prior year. Note that real interest rates drifted downward until 1980. After 1980, however, real interest rates have moved up sharply. (Source: Federal Reserve Board, U.S. Department of Labor.)

The difference between real and nominal interest rates is most dramatic during periods of high inflation. During the inflationary period of 1979–1980, nominal interest rates in the United States soared to 12 percent per year. After inflation was subtracted, however, these proved to be real interest rates of around zero. This difference shows the importance of keeping in mind the distinction between real and nominal returns when making investments. The recent history of real and nominal interest rates is shown in Figure 17-4.

Macroeconomic Shocks and Policies

Perhaps the most significant shortcoming in the classical theory of capital is its neglect of modern macroeconomic theory. Changes in the level of real income and output profoundly affect the demand for invest-
ment and the supply of savings. Investment and savings are affected by the level of income and output. Moreover, macroeconomic policies (such as the level of taxation or the rate of growth of the money supply) can change the national savings and investment rates.

The possibility of shifts in capital's supply and demand schedules, arising from shifting levels of GNP, is absent from the classical theory. Many classical economists were unaware of this possibility because they held that chronic unemployment was impossible and that output would not fluctuate. They didn't always know why they believed full employment was inevitable. But they did hold to Say's Law that "supply always creates its own demand; general overproduction is an impossibility."

Today, mainstream macroeconomic theory holds otherwise. We see that saving and investment respond not only to interest rates, but also to the levels of output and income. A deep and prolonged depression can leave a country with a smaller supply of capital—thus lowering potential GNP and raising real interest rates.

The economic policies of the 1980s illustrate the way that macroeconomic policies can affect the accumulation of capital. As a result of tax cuts, a defense buildup, and other policy measures, the United States found itself saddled with high federal budget deficits and unusually high real interest rates. This policy effectively shifted Figure 17-3's supply-of-capital schedule to the left. Real interest rates rose while the net accumulation of domestic and foreign capital dropped sharply. At decade's end, the United States inherited a smaller stock of capital and lower potential output than it would have enjoyed with a macroeconomic policy that produced lower real interest rates.

Many economists and public officials call for a reversal of the current policy stance—arguing that the nation would benefit from a policy that would increase the aggregate supply of capital by lowering the amount of government dissaving. While not questioning the importance of the goals, others tend to discount the long-run costs of public deficits, questioning whether in fact any major shift in the supply of capital has occurred. Such debates are a reminder that the need to forge policies affecting the nation's saving and investment—moving the capital stock and interest rates in desired directions—remains one of the most sobering tasks of governments today.

PROFITS

In addition to wages, interest, and rent, economists often talk about a fourth category of income called profits. What are profits? How do they differ from interest and the returns on capital more generally?

In this section we will look carefully at the definition of profits, then explore different sources of profit income.

Reported Profit Statistics

When statisticians calculate profits, what do they usually include? This issue was discussed in detail in Chapter 7's appendix on firm accounting, but let's review the definition here.

Profits are defined as the difference between total revenues and total costs. Thus, start with total revenues from sales. Subtract all expenses (wages, salaries, rents, materials, interest, excise taxes, and the rest). What is left over is the residual called profits.

The profit figures reported in the national-income accounts are limited to profits of corporations. In 1987, corporate profits before taxes were $310 billion. Companies paid $134 billion in taxes, distributed $96 billion in dividends to shareholders, and retained the balance.

How large are corporate profits? In the United States in the 1980s, corporate profits after taxes are significantly below 8 percent of total GNP. The rate of return on American corporate capital (defined as profits divided by the current dollar cost of capital goods) has averaged about 8 percent per year in the last 15 years. This return is well above the real interest rate on safe assets, which averaged around 4 percent per year over the last decade. Why is the rate of profit so high? Or is it? We now turn to this issue.

Determinants of Profits

What determines profits? The following list provides some of the explanations that have been given over the years.

In analyzing profits, it is important to distinguish business profits from economic profits. Business profits are the residual income, equal to sales less costs, measured by accountants. Business profits include an implicit return on the capital owned by firms. By economic profits we mean the earnings after all costs—both money and implicit—are subtracted. In large corporations, therefore, economic profits would equal business profits less an implicit return on the capital owned by the firm along with any other costs (such as unpaid management time) not fully compensated at market prices.
1. Profits as implicit returns. To the economist, business profits are a hodgepodge of different elements. Obviously, part of reported business profits is merely the return to the owners of the firm for their own labor or their own invested funds, i.e., for factors of production supplied by them.

For example, part may be the return to personal work provided by the owners of the firm—by the doctor or lawyer who works in a small professional corporation. Part may be the rent return to self-owned natural resources. In large corporations, most profits are the implicit return on invested capital. (Recall Chapter 9’s discussion of implicit costs and opportunity costs.)

Thus some of what is ordinarily called profit is really nothing but rentals, rents, and wages under different names. Implicit rentals, implicit rent, and implicit wages are the names economists give to the earnings on factors that the firm itself owns.

2. Profits as reward for risk bearing. If the future were perfectly certain, there would be no opportunity for a bright young person to come along with a revolutionary innovation. Everything would already be known. A half-century ago, Chicago economist Frank Knight suggested that all true profit is linked with uncertainty or imperfect information. By this he meant that, once the implicit returns—the pure interest on capital, implicit wages on managerial labor, and so forth—are subtracted, what remains is a reward for a willingness to undertake investments with uncertain returns.

Default In examining this theory, modern economics specifies three kinds of risks that lead to profits. The first kind of risk that leads to profits is default risk. Because there is a possibility that an enterprise will go into bankruptcy—this even applies to giants like First RepublicBank (Texas), the Penn Central Railroad, or the Public Service Company of New Hampshire—the return on invested capital must include a premium for default. This default premium should add enough to the return on capital to cover the risk of an enterprise going bankrupt.

Pure Risk A second kind of risk that must be considered in profit calculations is the pure risk (or statistical risk) associated with different investments. A company may have good and bad years, just as a farmer may face good or bad weather. Even though two firms may have the same average net revenues year in and year out, one may show highly volatile earnings (like a steel or auto firm) while another may be very stable (like telephone or beverage firms). Investors are averse to risky situations; when they are unable to insure or diversify their risks, investors require a risk premium added to returns to offset their risk aversion.

How does the presence of uninsurable risk relate to profits? Profits are the most volatile component of national income—indeed, they turned negative during the Great Depression. Moreover, investors cannot buy an insurance policy to protect themselves from the fluctuations of corporate profits. As a result, corporate capital must contain a significant risk premium to attract investors. How large is this risk premium? We do not know for sure, and the premium probably changes over time. Recent studies suggest, however, that between 3 and 6 percentage points of the annual return on corporate capital is a risk premium that serves as a reward for the willingness to bear risks.

Innovation A third kind of risk contributing to profits is the reward for innovation and enterprise. Let us subtract from measured profits the implicit return for owners’ labor, capital, and land. Subtract a default premium. Even subtract an estimate of the reward for risk bearing. Would there be nothing left?

In a world of perfect competition and no economic evolution, there would be no further profits at all. Let’s see why. Firms might still be reporting some profit figures to the press, but under these ideal conditions, the implicit returns on the labor and property supplied by owners, along with the reward for risk bearing, would exactly swallow up all the profits reported. Why? Because owners would be getting for their own factors and risk incurred exactly what those services were worth in competitive markets.

In other words, free entry of numerous competitors would, in a static world of perfect knowledge, bring price down to cost. The only sustainable profits in a static world would be the competitive wages, rentals, rent, and return for risk bearing.

We do not live in such a dreamworld. In the world as we know it, there is a chance for someone with a brand-new idea to invent a revolutionary medicine or computer or software program—to promote a new
product or find a way to lower costs of an old one. Let us call the person who does any of these things an innovator or entrepreneur. We can identify "innovational profits" as the temporary excess return to innovators or entrepreneurs.

What do we mean by "innovators"? Such people should not be confused with managers, who are the people who run large and small companies but do not own a significant part of the equity. These managers are talented at oiling the wheels of industry; like any other factor of production, they move into those jobs where they will receive the highest prices.

Innovators are different. They are always trying to carry out new activities. Here is the person with vision, originality, and daring. Although not always the inventor of the new process or device, the innovator is the one who successfully introduces it. Maxwell developed the scientific theory of radio waves, Hertz discovered them experimentally, but Marconi and Sarnoff made them commercially profitable. Carlson invented xerography, made a personal fortune, and launched a great firm, Xerox. The 1980s saw innovators like Steven Jobs launch Apple Computer, Inc. Dr. Herbert Boyer help found Genentech, and Mitch Kapor become wealthy through spreadsheets he developed at Lotus Corporation. For every one of these successful innovators, others fail on the road to fame and fortune. Many try; few succeed.

Every time there is a successful innovation, a temporary pool of monopoly is created. For a short time, innovational profits are earned. These profit earnings are temporary and are soon competed out of existence by rivals and imitators. But just as one source of innovational profits is disappearing, another is being born. So these innovational profits will continue to exist.

3. Profits as monopoly returns. Innovational profits shade off into our last category. Many people are downright suspicious of profit. The critics of profits do not see them as implicit rentals or return for risk bearing in competitive markets. Their image of the profit seeker is more likely that of someone with a penchant for sly arithmetic who somehow exploits the rest of the community. What critics have in mind is a third quite different meaning of profit: profit as the earnings of monopoly.

How are monopoly profits generated? Once a market departs appreciably from perfect competition, firms in the industry can earn extra or super-normal profits by raising prices. If you are the sole owner of a valuable patent or if you have acquired the sole franchise to lease cable television in a city, you can raise prices above marginal cost, restrict supply, and earn monopoly profits on your investment.

What does this all add up to? It means that part of what is called profit is the return to market or monopoly power.

Awash with Profits?

This brief survey of different theories reveals many sources of profits. Which is most important? No definitive answer can be given. But given all the ways that firms can extract profits in a modern economy—implicit returns; rewards for default, risk bearing, and innovation; and returns to monopoly power—we would expect to see the coffers of American corporations awash in cash.

Surprisingly, however, they are not. Over the last 15 years, corporations earned a modest rate of return on their investments—only about 8 percent in real terms. And for the last decade the ratio of the market value of corporations (i.e., the value of their stocks and bonds) to the value of their land, plant, and equipment (called "Tobin's Q") has been substantially less than 1. On average, from 1980 to 1987 every $100 worth of corporate tangible assets sold for only $76 on stock and bond markets.

This low level of corporate profitability is a puzzle to many observers. It does suggest, however, that some of the arguments about extraordinary monopoly power of large companies are exaggerated, and that the forces of competition among American corporations are powerful.

The Next Steps

With this discussion of the return on capital, our treatment of pricing of factors of production is completed. We are now ready to move on to Part Four, where we will weigh the major issues of design of an economic system: How do the prices and quantities in all the markets interact in a general equilibrium of markets? How does government intervene to change the allocation of resources? What are the possible conflicts between equity and efficiency? What are the alternative economic systems and how do they compare with modern mixed capitalism?
SUMMARY

1. Recall the definitions of key terms given on page 374:
 - Capital goods: durable produced goods used for further production
 - Rentals: net annual dollar returns on capital goods
 - Rate of return on capital: net annual receipts on capital divided by dollar value of capital (measured as percent per year)
 - Interest rate: yield on funds, also measured in percent per year
 - Present value: value today of a stream of future returns generated by an asset
 - Profits: a residual income item equal to revenues minus costs

2. In addition to the two primary factors of production, labor and land, capital is a third factor, a produced good that is used in further production. In the most general sense, capital is roundabout production, postponing consumption today by producing buildings or equipment, which increase consumption in the future. It is a technological fact that roundabout production yields a positive rate of return.

3. Assets generate streams of income in future periods. By calculating the present value, we can convert the stream of returns into a single value today. This is done by asking what amount of dollars today will generate the stream of future returns, when invested at the market interest rate.

4. Interest is a device that serves two functions in the economy. It provides an incentive for people to save and accumulate wealth—for retirement, for a rainy day, for heirs. But the interest rate is also a rationing device; it allows society to select only those investment projects with the highest rates of return. However, as more and more capital is accumulated, and as the law of diminishing returns sets in, the rate of return on capital and the interest rate will be beaten down by competition. As interest rates fall, this is a signal to society to adopt projects that have lower rates of return.

5. Saving and investment represent waiting for future consumption rather than consuming today. Such thrift interacts with the net productivity of capital to determine interest rates, the rate of return on capital, and the capital stock. The funds or financial assets needed to purchase capital are provided by households who are willing to sacrifice consumption today in return for larger consumption tomorrow. The demand for capital comes from firms that have a variety of investment projects. In long-run equilibrium, the interest rate is thus determined by the net productivity of capital and the extent to which households are willing to postpone consumption today for consumption tomorrow.

6. Important qualifications of classical capital theory include the following: Lack of perfect foresight means that capital's return is highly volatile as expectations, technology, and income levels change. Also, classical theory ignores deviations from full-employment output. Finally, to get the real rate of interest, one must subtract the rate of inflation from the nominal rate of interest.

7. Profits are revenues less costs. Reported business profits are chiefly corporate earnings. Economically, we must distinguish three different categories. Perhaps the most important source is profits as an implicit return. Firms generally own many of their own nonlabor factors of production—land, capital, patents. Sometimes, the labor earnings of the owners are included in profits. In these cases, the implicit return on unpaid or owned land, labor, or capital is part of profits.

8. A second source of profits arises from uncertainty—associated with the extra return to cover default, the return to cover uninsurable risks, and the profits earned by entrepreneurs who introduce new products or innovations.
9. Finally, profits may result from firms exercising monopoly power—on their patents, from special privileges, or due to regulation.

CONCEPTS FOR REVIEW

- capital, funds
- rate of return on capital, interest rate
- indirect, roundabout production methods
- present value by \(V = \frac{S}{N+i} \)
- implicit rewards to factors in profits
- real vs. nominal interest rate
- twin elements in interest determination:
 - returns to roundaboutness and uncertainty and profits: default risk, return to risk bearing, innovation

QUESTIONS FOR DISCUSSION

1. Give some examples of efficient roundabout processes: of "produced" or "intermediate" outputs that serve in their turn as inputs.
2. Contrast three "prices" of capital: (a) rental of a capital good, (b) rate of return on a capital good, and (c) interest rate. Give an example of each.
3. Using the supply-and-demand analysis of interest, explain how each of the following would affect interest rates in the classical analysis:
 - (a) An innovation that increased the marginal product of capital at each level of capital.
 - (b) A decrease in the desired wealthholdings of households.
 - (c) A 50 percent tax on the return on capital.
4. Define "implicit" factor earnings. Contrast with other profit concepts.
5. Consider each of the following sources of reported profits. Decide into which of the three categories (or subcategories) of profits each falls:
 - (a) The profit earned by a medical corporation in a perfectly competitive industry.
 - (b) The profits earned by a firm that has relatively little invested capital but is extremely cyclical.
 - (c) A firm that is making $100,000 a year on a new video game, but whose competitors are expected to invade the field and wipe out the profits.
 - (d) The profit of a farm that owns a prime vineyard in California.
6. Looking back to Figures 17-2 and 17-3, review how the economy moved from a short-run equilibrium interest rate at 10 percent per year to the long-run equilibrium. Now explain what would occur in both the long run and the short run when innovations shifted up the demand-for-capital curve. What would happen if the government debt became very large and part of people's supply of capital was reduced by their holdings of government debt?
7. Explain the rule for calculating present discounted value of a perpetual income stream. At 5 percent, what is the worth of a perpetuity paying $100 per year? Paying $200 per year? Paying $N per year? At 6 or 8 percent, what is the worth of a perpetuity paying $100 per year? What does doubling of the interest rate do to the capitalized value of a perpetuity—say, a perpetual bond?
8. Many states offer a "Million Dollar Prize" in their lotteries. These generally pay $50,000 per year for 20 years. What would be the present value of a "consol" lottery that pays you and your heirs $50,000 each year forever if the interest rate is 8 percent per year? Explain why its present value is not infinite. Can you see why the "Million Dollar Prize" is worth less than the consol lottery? (For those who wish to estimate the exact value of the "Million Dollar Prize," consult the formula given in the appendix.)
APPENDIX: 17

Advanced Analysis of Capital and Interest

Capital theory and the theory of interest form one of the most exciting topics of microeconomics. They underpin discussions of modern finance theory and monetary economics, and they constitute a central core for understanding the growth of nations. In this appendix we elaborate upon this chapter’s introductory analysis.

PRODUCTIVITY OR IMPATIENCE?

Some people like to find a single cause for everything, and they ask: “Is interest caused by the productivity of capital? Or by the fact that savers must be paid for the unpleasant task of ‘abstinence’ or ‘waiting’? Which is more important, opportunity to invest or impatience to spend?”

Our previous argument shows this is a false antithesis. Both factors operate to determine the time path of interest rates: the impatience to spend, or the tendency to prefer the present to the future, limits the accumulation of capital, and the productivity of capital tells us what interest rate can be earned for any given level of the capital stock.

Just as both blades of a scissors are needed to cut—so that you cannot say that one blade rather than the other is doing the actual work—both factors, impatience and productivity, interact to determine the behavior of the interest rate.

Determination of the Interest Rate

Can our account of interest determination avoid the use of Figure 17-2’s and Figure 17-3’s simplifying concept of a stock of homogeneous capital? Yes.

Thus, we may work with various different physical capital goods and processes, being careful never to add their heterogeneous units together and never forgetting that it is machines and not dollars which enter into physical production functions. Advanced treatises can show rigorously how an equilibrium interest-rate pattern can be defined in such a heterogeneous world.

The key to an understanding of the deeper theory of interest rates lies in the Fisher diagram in Figure 17A-1, named after the American economist who first used this approach. We start with a production-possibility frontier showing how consumption today can be transformed into consumption tomorrow (this is the black curve in Figure 17A-1). We also put on this same diagram a set of indifference curves, like those described in Chapter 6. These indifference curves reflect the struggle of impatience—showing how society or representative individuals trade off consumption today against consumption tomorrow.

In this more complete analysis, the interest rate is determined by the equilibrium at E in Figure 17A-1. At that point, the PPF is tangent to the highest indifference curve.
The slope of both curves at point E (changing the sign from negative to positive) represents how many future goods are equivalent to today's consumption goods—the slope is $(1 + r)$ where r is the real interest rate. This is then a more complete theory of interest determination. But note that we have not had to make any mention of capital goods or mobility of factors or homogeneity of capital. We simply need the PPF and indifference curves to derive the market interest rate.

We thus derive the following fundamental proposition about the theory of interest:

Society can exchange present consumption goods for future consumption goods at a tradeoff rate depicted by the real rate of interest.

Figure 17A-1 makes an additional interesting point. Note that there is no need for the intersection at E to show a slope greater than 1. It could be relatively flat. But because the slope is equal to $(1 + r)$—where r is the real interest rate—if for some reason the tangency came with a slope less than 1, the real interest rate would be negative. Such an outcome might result if people were very patient or if the PPF showed no net return to sacrificing current consumption.

PRESENT VALUE EXTENDED

The chapter presented a simple case of present value for perpetual income streams. We here consider the more general case of the present value of an asset with income streams that vary over time, as would be the case for the yield on a computer that tended to become obsolete as it got older.

The main thing to remember about present value is that future payments are worth
less than current payments—they are discounted relative to the present. Why are future payments discounted? Because a positive interest rate means that today’s dollars will become more valuable in the future; hence future payments are worth less now, just as a distant building looks tiny.

The interest rate produces a similar shrinking of time perspective. Even if I knew you would pay $1 million to my heirs 999 years from now, I would be foolish to pay you as much as a cent today. To see why, let us review the arithmetic of discounting.

At 6 percent interest I can set aside about 94 cents today, and it will grow to $1 after 1 year. Hence, the present value of $1 payable a year from now is today only 94 cents (or, to be exact, 100/1.06 = 94.306 cents). The present discounted value of $1 payable in 2 years’ time is about 89 cents, or $1/(1.06)².

More generally, to arrive at any asset’s present value, let each dollar stand on its own feet. Evaluate the present value of each part of the stream of future receipts, giving due allowance for the discounting required by its payment date. Then simply add together all these separate present values. This summation will represent the asset’s present value.

The exact formula for present value is the following: Let \(i \) be the one-period market interest rate. Further, let \(N_1 \) be the net receipts (positive or negative) in period 1, \(N_2 \) the net receipts in period 2, \(N_r \) the net receipts in period \(r \), and so forth. Then a stream of payments \((N_1, N_2, \ldots, N_r, \ldots)\) will have the present value, \(V \), given by the following formula:

\[
V = \frac{N_1}{1+i} + \frac{N_2}{(1+i)^2} + \cdots + \frac{N_r}{(1+i)^r} + \cdots
\]

\(^1\)The general rule for present values is the following: To figure out the value today of $1 payable \(t \) years from now, ask yourself how much must be invested today at compound interest to grow into $1 at the end of \(t \) years. We know that at 6 percent compound interest any principal grows in \(t \) years proportionally to \((1 + 0.06)^t\). Hence, we need only invert this expression to arrive at the final answer: the present value of $1 payable \(t \) years from now is only $1/(1 + 0.06)^t. What if the interest rate were 8 percent? Replace 0.06 by 0.08 and recalculate.
For example, assume that the interest rate is 10 percent per year, and that I am to receive $100 next year and $470 in 3 years. The present value of this stream is:

\[V = \frac{100}{(1.10)^1} + \frac{470}{(1.10)^3} = 444.03 \]

Figure 17A-2 shows this graphically for a machine that earns steady net annual rentals of $100 over a 20-year period and has no scrap value at the end. Its present value is not $2000, but only $1147. Note how much the later dollar earnings are scaled down or discounted because of our time perspective. The total area remaining after discounting (the red shaded area) represents the total of the machine’s present value—the value today of the stream of all future incomes.

Acting to Maximize Present Value

Our formula tells us how to calculate the value of any asset once we know what the earnings on that asset are. But note that an asset’s future receipts usually depend on our business decisions: Shall we use a truck 8 or 9 years? Overhaul it once a month or once a year? Replace it with a cheap, nondurable truck or an expensive, durable one?

There is one rule that gives correct answers to all investment decisions: Calculate the present value resulting from each possible decision. Then always act so as to achieve the maximum present value. That way you will have more wealth, to spend whenever and however you like.

SUMMARY TO APPENDIX

1. Investment opportunities (to swap present consumption for future consumption goods) interact with people’s subjective time preferences (about how much to consume today or in the future) to determine the interest rate. As in all markets, both supply and demand factors interact.

2. Avoiding the device of homogeneous stock of physical capital, we can still have a complete interest theory using the Fisher diagram. The real interest rate equals the terms of trade at which we can get next year’s consumption goods for today’s sacrificed goods—106 meals next year for 100 given up today means a 6 percent annual real interest rate.

3. The formula for calculating the present value of an asset can be extended when receipts are neither constant nor perpetual. Each dollar payable \(t \) years from now is worth only its “present value” \((V) \) of \(\frac{1}{(1+i)^t} \). So for any net receipt stream \((N_1, N_2, \ldots, N_t, \ldots)\) where \(N_t \) is the dollar value of receipts \(t \) years in the future, we have:

\[V = \frac{N_1}{1+i} + \frac{N_2}{(1+i)^2} + \cdots + \frac{N_t}{(1+i)^t} + \cdots \]
CONCEPTS FOR REVIEW

abstinence, impatience, waiting
opportunity to invest
present value
Fisher diagram
tradeoff between consumption today
and consumption tomorrow

QUESTIONS FOR DISCUSSION

1. After nuclear weapons were developed, people’s time preference for present over future consumption increased. After having learned that my uncle will bequeath me a fortune a decade from now, my time preference changed in the same way. Was this rational? Thinking of a steak dinner tonight, I offer you $15 on next Monday for $10 now. Is this irrational?
2. Two communities have the same technological production functions. Why might they show different patterns of nominal interest rates? (HINTS: impatience; wealth inequality; inflation.)
3. Give reasons why lower real interest rates might increase investment.
4. Recall the algebraic formula for a convergent geometric progression:

\[1 + K + K^2 + \cdots = \frac{1}{1 - K} \]

for any fraction \(K \) less than 1. If you set \(K = 1/(1 + i) \), can you verify the present-value formula for a permanent income stream, \(V = \frac{N}{i} \)? Provide an alternative proof using common-sense economics.
5. Advanced problem: If a doubling of \(i \) halves the present value of a perpetuity, can you show that the stream of income shown in Figure 17A-2 will less than halve in present value? (HINT: The perpetuity has a rectangle that goes on forever, with its red area getting less and less. The finite stream in Figure 17A-2 lacks this infinite tail off to the right. The early years’ receipts hardly change in value at all, since, say, 0.96 is not much changed when it becomes 0.92. So the average change in all the red area is less than that for the perpetuity.) By similar reasoning, establish the rule: Interest changes have their biggest effects on the value and prices of long-term bonds; their least effects are on the prices of short-term bonds—whose principal will be repaid soon and is therefore barely affected by any discounting.
6. **Advanced problem**: Figure 17A-1 showed that real interest rates can be negative in certain conditions. (Review the reasons.) But the nominal interest rate can never be negative. (Why not? Because storable currency bears a zero nominal interest rate, and other assets cannot have yields below super-safe currency.) How could an economy ever generate an equilibrium with negative real interest rates? (As a hint, consider the impact of inflation.)
PART FOUR
EFFICIENCY, EQUITY,
AND GOVERNMENT
OUR STUDY OF microeconomics has afforded us a better understanding of how technological opportunities interact with consumer tastes to determine millions of prices and quantities in a market economy. The market mechanism sends out factor-price signals in the form of rents of land and wages of labor along with the prices of a multitude of commodities like guitars, textbook’s and concrete. We have seen that perfectly competitive markets have the remarkable efficiency properties of the invisible hand but that monopolistic influences can drive up prices and restrict production below the most efficient level.

In the chapters of Part Four that follow, we take a more careful look at the efficiency and equity of market economies. We begin in this chapter by examining how the different markets interact to reach an overall or general equilibrium of all the products and factors together. It may be true that individual competitive markets display the invisible-hand property of efficiency, but does this hold when all the markets are put together? And what are the failures that sometimes prey on market economies, leading to business cycles, monopolies, and environmental pollution?
This chapter’s review of the general functioning of markets is followed by two chapters investigating the role of government in an advanced industrialized economy. There we examine the nature of public choice, study the patterns of government taxation and expenditure systems, and explore the ways government can cope with spillovers or externalities.

Chapter 21 then analyzes further a key potential flaw in the invisible hand—poverty in today’s society. In addition, it examines the conflict between efficiency and equity, asking how much output a nation must sacrifice if it wishes to reduce or eradicate poverty.

Finally, Chapter 22 turns to the biggest economic issue of all—alternative economic systems. Here we tour different views on the most efficient and equitable economic system and then review how alternative systems like the Soviet Union are organized and how they perform in reality.

This part, then, is devoted to the thorniest and most controversial issues of microeconomics: How well or badly does the market perform? How much should government intervene in economic activity? How much, if any, should the state tax the rich to boost the living standards of the poor? Are socialism and communism superior to capitalism as ways of organizing economic activity?

Modern positive economics cannot, by itself, provide crisp “yeses” or “nos” to these perennial questions. But it can throw light on some factual and analytical questions that must be answered before reasoned value judgments can resolve such enduring political dilemmas.

GENERAL EQUILIBRIUM AND THE INVISIBLE-HAND THEORY

Let’s review the path we have followed in understanding the behavior of individual markets:

1. Competitive supply and demand operate to determine price and quantity in a single market.
2. The marginal utilities of different goods lie behind the market demand curves.
3. The marginal costs of different commodities lie behind their competitive supply curves.
4. Firms calculate marginal costs of products and marginal revenue products of factors and then choose inputs and outputs so as to maximize profits.
5. These marginal revenue products, summed for all firms, provide the derived demands for the factors of production.
6. These derived demands for land, labor, or capital goods interact with their market supplies to determine factor prices such as rent, wages, rentals, and interest rates.
7. The factor prices and quantities determine incomes, which then close the circle back to steps 1 and 2 by helping to determine the demand for different commodities.

Each of these relationships is the subject of partial-equilibrium analysis, which analyzes the behavior of a single market, household, or firm, taking the behavior of other markets, individuals, or firms as given. In this chapter we examine the properties of a general equilibrium, which analyzes the simultaneous interaction of all households, firms, and markets.

Simultaneous General Equilibrium

Notice how, in the listing of the seven steps above, each follows from the preceding one—from step 1 to step 2 and then step 3—until finally we come to step 7. In the textbook chapters, they follow in almost the same order.

But in real life, which comes first? Is there any order and sequence which determines prices in single markets on Monday, evaluates consumer preferences on Tuesday, and reckons business costs on Wednesday and marginal products on Thursday? Obviously not. All these processes are going on at one and the same time.

That is not all. These different processes do not go on independently, each in its own little groove, careful not to get in the way of the other. All the processes of supply and demand, of cost and preference, of factor productivity and demand are really different as-
pects of one vast, simultaneous, interdependent process.

Thus, the supply curve for wheat is the result of the cost calculations, of the production considerations, and of the wage, rent, and interest determinations. Actually, you can take any one of the seven steps in the outline and draw arrows connecting it causally with every other step.

Nor is the interdependence limited to the seven steps outlined above. There are as well linkages across different products. Thus wheat supply and demand, and wheatland supply and demand, depend upon tastes for cornbread and oatmeal; upon how many people want to sacrifice traditional food purchases for innovations like VCRs or personal computers; and upon the demand for fertile land as biologists develop new, genetically engineered strains of corn.

A Circular Flow Like an invisible web, the many input and output markets are connected in an interdependent system we call a general equilibrium. Figure 18-1 depicts the general structure of the web of a general equilibrium. The outer loops show the demands and supplies of goods and factors. We speak here not of a single good or factor but of all different products (corn, medical care, concerts, pizzas, etc.), which are made by a vast array of factors of production (cornland, surgeons, studios, trucks, etc.).

Each good or factor is exchanged in a market, and the equilibrium of supply and demand determines the price and quantity of the item. That marriage of supply and demand is occurring thousands of times every day, for all kinds of commodities from albums to zinc. Note in Figure 18-1 that the upper loop carries the supplies and demands for products, while the lower loop matches the supplies and demands for factors of production. See how consumers demand products and supply factors; indeed, consumers buy their consumption goods with the incomes they earn from the factors they supply. Similarly, businesses buy factors and supply products, paying out factor incomes and profits with the revenues from the products that businesses sell.

Thus we see a logical structure behind the millions of prices and outputs: (1) households with supplies of factors and preferences for products interact with (2) firms that, guided by the desire to maximize profits, transform factors bought from households into products sold to households. The logical structure of a general-equilibrium system is complete.

Properties of a Competitive General Equilibrium

In earlier chapters, using partial-equilibrium analysis, we analyzed the behavior of individual competitive markets for factors and products. We now consider, using general-equilibrium analysis, the properties of an ensemble of competitive markets. Such a general equilibrium contains thousands of different kinds of labor, machines, and land, and these serve as inputs to produce dozens of different kinds of computers, hundreds of different specifications of automobiles, thousands of different items of clothing, and so on.

What are the characteristics of a general economic equilibrium? Do the efficiency properties of perfect competition in individual markets carry over to all markets together? Do prices play an important role as indicators of scarcity for the overall economy? Do the equations of supply and demand actually lead to an equilibrium, or is the overall outcome indeterminate? These questions are addressed by general-equilibrium analysis.

In this section we proceed as follows. We first describe the assumptions of our general economic equilibrium. We then describe in a summary fashion the properties of a general equilibrium. Next, in a more technical section, we sketch the properties of a general equilibrium in more detail. Finally, we show why a perfectly competitive general equilibrium will be efficient.

The Basic Principles To simplify the analysis, we will consider an economy in which all markets are

1This picture is similar to Figure 3-1 which showed a simplified version of the circular flow.
Figure 18-1 General-equilibrium pricing determines what, how, and for whom for the overall economy.

The circular flow of economic life is described by the general economic equilibrium. Observe how profit-maximizing firms and utility-maximizing households interact in product markets at A and factor markets at E, determining the prices and quantities of each. Note that the flow of money inside the figure moves in the opposite direction from the physical flow of goods and factors.
perfectly competitive and are subject to the relentless competition of many buyers and sellers. Firms maximize profits, while consumers choose their most preferred market baskets of goods. Further, there are no natural monopolies—rather, each good is produced under conditions of constant or decreasing returns to scale. No pollution, entry-limiting regulation, or monopolistic labor unions mar the competitive landscape. Finally, each price, whether for an input or output, moves flexibly enough to equilibrate supply and demand at all times. Such an economy, were it to exist, would be one in which Adam Smith’s invisible hand could rule without any impediment from imperfect competition.

For this economy, we can describe consumer and producer behavior and then show how they dovetail to produce an overall equilibrium. First, consumers will allocate their incomes across different goods so as to maximize their satisfactions. They thereby choose goods such that the marginal utilities per dollar of expenditure are equal for the last unit of each commodity. Put differently, for individual consumer, each dollar’s worth of consumer purchase has exactly the same marginal utility.

What are the conditions for the profit maximization of producers? In product markets, each firm will set its output level so that the marginal cost of production equals the price of the good. Since this is the case for every good and every firm, it follows that the competitive market price of each good reflects the marginal cost of that good to society as a whole. (A second set of conditions concerns inputs; consideration of these conditions will be postponed to the fuller treatment in the next section.)

Putting together the conditions for perfectly competitive producers and consumers, we see that, for each consumer, the marginal utility per dollar of consumption equals that good’s social cost of production. Further, the marginal utility per dollar of consumption of each good is equal to the social cost of every other good.

This is the central result of general-equilibrium theory: that the marginal utilities per dollar of all consumer goods are all equal and are also equal to the social costs of production of those goods.

A simple example will clarify this result. Say that we have two individuals, Ms. Smith and Mr. Ricardo, and two kinds of goods, corn and clothing. Under consumer equilibrium, and with an appropriate adjustment of her utility scale, Ms. Smith buys corn and clothing until the MU per dollar of each good is 1 (Smith) util. Similarly, we could adjust the utility scale of Mr. Ricardo so that his purchases are also each worth 1 (Ricardo) util per dollar of spending. The corn and clothing producers set their output levels such that price equals marginal cost, so a dollar-bundle of corn will have a marginal cost of production of $1 for each producer, and similarly for clothing. If society were to produce one more dollar-bundle of corn, this would cost society exactly 1 dollar’s worth of scarce resources of labor, land, and capital.

Putting these conditions together, we see that each extra dollar of consumption, by either Smith or Ricardo, yields exactly 1 extra util of satisfaction, whether that extra spending is on clothing or on food. Similarly, each extra unit of spending will have a marginal or additional cost to society of $1 extra dollar of resources, and this is so whether that extra dollar is spent by Smith or Ricardo or on food or clothing. We see, then, that the general equilibrium of markets ties together the value of purchases to consumers with the economic cost to society so that the satisfaction value of goods to consumers equals the economic cost of goods to society. This linkage of social cost and satisfaction value will play a crucial role in the analysis of allocative efficiency later in this chapter.

Detailed Analysis of General Equilibrium*

In this section we will present a more complete analysis of the conditions of general equilibrium for those students who wish to see how our general-equilibrium analysis relates to the partial-equilibrium analysis of Chapters 6 through 10. We have seen in earlier chapters that perfectly competitive markets lead to a number of important results. Before we investigate how those results lead to an efficient allocation of resources, we reiterate the conditions of a competitive general equilibrium. These conditions break naturally into two categories corresponding to the upper and

The balance of this section is more technical and may be omitted in courses pressed for time.
lower loops of Figure 18-1; those relating to consumers and those relating to production.

1. Consumer equilibrium. Our analysis of consumer behavior in Chapter 6 showed that consumers would maximize their utility when choosing among goods by equalizing the marginal utility per dollar of spending. Using this rule, we then see that the ratio of the marginal utilities of two goods, known technically as the “marginal rate of substitution” between the two goods (or $MRS_{1,2}$ for the substitution relation between goods 1 and 2), satisfies the condition:

$$MRS_{1,2} = \frac{MU_1}{MU_2} = \frac{P_1}{P_2}$$

In words, the ratio of marginal utilities of two goods, or the relative satisfactions derived from the two goods, is equal to the ratio of the goods’ relative prices. This condition must hold for an individual consumer who buys the two goods in question; further, because all consumers face the same competitive prices, the consumer condition must hold in exactly the same way for all consumers.

2. Producer equilibrium. The behavior of profit-maximizing firms leads to an analogous but somewhat more complex set of conditions, as we described in Chapters 8 to 10. In those chapters we found that competitive firms choose input and output levels as follows:

(a) The first and most fundamental output condition for producers is that the level of output is set so that the price of each good equals the marginal cost of that good. By rearranging terms in this equation, we then find that

$$\frac{MC_1}{MC_2} = \frac{P_1}{P_2}$$

Putting this equation into words, we say that, in a competitive economy, the ratio of the marginal costs of two final products is equal to their price ratio. The equality holds for all goods that are produced and for all firms that produce these goods. We can also interpret the ratio of marginal costs as the rate at which society can transform one good into another (sometimes the ratio of marginal costs is called the “marginal rate of transformation of goods” or the MRT). If corn’s MC is 1 and a haircut’s MC is 10, then, by transferring resources from barbers to farmers, society can transform one haircut into 10 units of corn.

The fundamental point to understand about a competitive economy is that the competitive prices reflect social costs or scarcities. We just noted that the ratio of marginal costs, or the MRT between two goods, tells us the rate at which society can substitute or trade off one good for another. But since the price ratio of the two goods equals the MRT between the two goods, it follows that relative prices reflect social scarcities under perfect competition. It is just this surprising fact, that competitive prices provide an accurate signal of the relative scarcity of different goods, that demonstrates the validity behind the invisible-hand principle that perfectly competitive markets lead to allocative efficiency.

(b) In addition to the first condition, competition leads to certain relationships concerning input use. We have seen that profit-maximizing firms choose the amount of each input so that the value of its marginal product is equal to its price. Hence

Marginal product of land in good 1
\[\times \text{ price of good } 1 = \text{rent on land} \]
Marginal product of land in good 2
\[\times \text{ price of good } 2 = \text{rent on land} \]
Marginal product of labor in good 1
\[\times \text{ price of good } 1 = \text{wage of labor} \]

And so forth.

These conditions have several important implications. First, because each firm faces the same prices for inputs and output, the marginal product of input A for output X is the same for each firm. Under perfect competition, we will not find that some firms have low values of marginal products of labor while other firms have high ones. All producing competitive firms will have the same values of marginal products of each input.

By rearranging the terms in the above equations, we can see that the ratio of marginal products of inputs is equal to the ratio of their prices:
Marginal product of land in good 1
Marginal product of labor in good 1

\[\frac{\text{price of land}}{\text{price of labor}} \]

In addition, this condition holds for all firms that use land and labor to produce good 1. Moreover, it holds for all factors of production (capital, oil, unskilled labor, etc.) and for all produced goods.

The importance of this input condition comes from the fact that it implies that the ratios of marginal products of factors are the same for all inputs and all firms in all uses. If labor is scarce in America, then all firms will operate with low ratios of land-to-labor marginal product. Moreover, the price ratio of land to labor, the rental-wage ratio, will be low in America, thereby providing a signal to producers to substitute land for labor. For inputs, as for outputs, competitive prices are an accurate index of the economic scarcity of different factors of production.

To summarize, under competitive conditions, with utility-maximizing consumers and profit-maximizing firms, the general-equilibrium conditions provide:

* that the ratios of marginal utilities of goods for all consumers are equal to the relative prices of those goods;
* that the ratios of marginal costs of goods produced by firms are equal to the relative prices of those goods;
* that the relative marginal products of all inputs are equal for all firms and all goods and are equal to those inputs’ relative prices.*

*A careful reader might here ask: “Are you sure that you have exactly the right number of equations to solve all the unknown prices and quantities? That they will actually have supply-and-demand equilibria? Is nothing left to chance or to the state?”

Economists have pondered these profound questions for almost a century. Léon Walras, a French economist of the last century, is usually credited with discovery of the theory and equations of general equilibrium. He was, however, unable to provide a rigorous proof that there is an equilibrium of the competitive system. Only in the middle third of the twentieth century was a complete proof of the existence of a solution given, using high-powered mathematical tools such as topology and set theory, by I. von Neumann, A. Wald, and American Nobel Prize-winning economists Kenneth Arrow and Gerard Debreu. This revolutionary discovery showed that there will always exist at least one set of prices that will exactly balance the supplies and demands for all inputs and outputs—even if there are millions of inputs and outputs, in many different regions, and even if goods are produced and sold at different times.

But before writing home to announce the final victory of the invisible-hand doctrine, we should pause to consider the stringent assumptions that are used to prove the theorems about the competitive model: no increasing returns anywhere, no externalities, perfectly flexible wages and prices, no uninsurable risks, no monopolies or oligopolies, and other assumptions as well.

PERFECT COMPETITION AND ALLOCATIVE EFFICIENCY

Once a system of competitive markets overcomes the first hurdle of actually solving the what, how, and for whom issues for an economy, we can next ask how efficiently the system performs. We have repeatedly seen for individual markets—that is, in partial equilibrium—that a competitive market mechanism serves to allocate resources with remarkable efficiency. Does an ensemble of markets in general equilibrium also allocate resources efficiently?

Allocative Efficiency

We encountered the concept of allocative efficiency in Chapter 10. This concept measures the extent to which society is providing consumers the largest possible bundle of commodities, in the desired proportions, given society’s endowment of inputs and technology. More precisely, allocative efficiency (sometimes also called “Pareto efficiency,” or “efficiency” for short) occurs when there is no other reorganization of production or consumption that will increase the satisfaction of one person without reducing the satisfaction of another person. More informally, efficiency means that no one can be made better off without making someone else worse off.

The Utility-Possibility Frontier We have defined efficiency as a state in which the maximum amount of goods and satisfaction is squeezed out of society’s resources. This definition sounds very much like the
Figure 18-2 Outcomes on the utility-possibility frontier are efficient

An economy is operating efficiently when no person's satisfaction can be improved without lowering someone else's satisfaction. Efficient points are on the utility-possibility frontier (UPF). Moving from outcome A to outcome C can improve Smith's position only by hurting Jones; point A is therefore efficient. Point B is inside the UPF; it is thereby inefficient because Jones or Smith or both can be made better off without hurting anyone else.

economy is on a frontier. And indeed it is—the utility-possibility frontier (or the UPF). This curve shows the outer limit of utilities or satisfactions that an economy can attain. Such a concept is very similar in spirit to the production-possibility frontier. The major difference here is that the UPF places utilities or levels of satisfaction on the two axes, as is shown in Figure 18-2.

Note as well that we have drawn the UPF as somewhat wavy. This unevenness indicates that we do not have a clear way of measuring or comparing different people's utilities. But it must be emphatically stated that the lack of a precise scale of measurement is completely irrelevant. All that matters here is that a person's level of satisfaction rises as the utility index increases. Because of this positive relation between utility and desired levels of consumption, we are guaranteed that each person will want to move out as far as possible on his or her utility axis.

Return now to allocative efficiency. This central concept was introduced by Vilfredo Pareto in 1906 and forms the core of modern welfare economics, public-choice theory, and the burgeoning discipline of theoretical political science. An economic outcome is defined as having allocative efficiency (or Pareto efficiency) when it is on the frontier of the utility-possibility curve. Such a Pareto-efficient point is shown at point A in Figure 18-2.

Why is point A Pareto-efficient? Because there is no feasible economic reorganization that makes anyone better off without making someone else worse off. We can, of course, move to point C. Such a move would certainly delight Smith, whose consumption and satisfaction are increased. But Smith's gain comes only at Jones' expense. When all possible gains to Smith must come at Jones' expense, this implies that the economy is on its UPF and that the economy is operating efficiently.

Efficiency, Competition, and Welfare Economics

As we examine the relationship between perfect competition and allocative efficiency, we are traveling in the realm of welfare economics. This is the general term for the normative analysis of economic systems: for the study of what is right and what is wrong, what is desirable and what is undesirable about the economy's functioning. Welfare economics has nothing to do with the welfare system, which provides income to poor people. Rather it is concerned with the best way to organize economic activity, with the best distribution of income, and with the best tax system. In each case, however, the analysis should rest upon clearly stated value judgments about economic organization, income distribution, or tax policy.

One of the central subjects of welfare economics concerns the efficiency of a perfectly competitive economy. Two centuries ago, Adam Smith proclaimed that, through the workings of the invisible hand, those who pursue their own self-interest would most effectively promote the public welfare. But it took almost two centuries for economists to prove the kernel of truth in Smith's intuition. Today, this
result is known as the first theorem of welfare economics:

A perfectly competitive, general-equilibrium market system will display allocative efficiency. Such a system has all goods prices equal to marginal costs, all factor prices equal to the value of their marginal products, and contains no externalities. In such an economy, when each producer selfishly maximizes profits and each consumer selfishly maximizes utility, the economy as a whole is efficient in the sense that you cannot make anyone better off without making someone else worse off.

What does this mean? It means that even the most skilled planner or engineer cannot come along with a computer or an ingenious reorganization scheme and find a solution superior to the competitive marketplace; no reorganization can make everyone better off. And this result is true whether the economy has one or two or 2 million competitive markets for goods and factors.

Rationale: What is the reason for this most surprising result? Advanced treatises can prove this result rigorously with the use of modern mathematics, but we can easily see the logic using an example.

Suppose some wizard comes forth and says, "Aha, I have found a way of reorganizing the perfectly competitive economy to make everyone better off. Simply give everyone more pizzas and fewer shirts and everyone will be better off."

You would explain that the wizard is necessarily sadly mistaken. Suppose the current price of shirts is $15, while the price of pizzas is $5. On the consumer's side, each individual has allocated his or her budget so that the marginal utility per dollar of the last pizza is just one-third that of the last shirt. So consumers would certainly not want to have more pizzas and fewer shirts unless they could get more than three pizzas for each shirt given up.

Can the economy squeeze out more than three pizzas for each forgone shirt? Not if the economy is competitively organized. Under perfect competition, the ratio of the price of shirts to the price of pizzas is the ratio of the marginal costs of the two goods. Hence if their price ratio is $15/$5 = 3, producers can eke out only three more pizzas for each shirt not produced. Indeed, if the production-possibility frontier is bowed out, producers will actually get somewhat less than three pizzas for every shirt forgone.

So we see why our wizard is wrong. Consumers are willing to eat more pizzas and have fewer shirts only if they can improve their satisfactions, which means that they must get more than three pizzas for every shirt forgone. Profit-maximizing producers cannot get more than three pizzas by producing one less shirt. Therefore the proposed reorganization will not improve everybody's economic satisfaction.

The reasoning, of course, extends far beyond pizzas and shirts. With a little thought you can see that it works as well for all consumer goods. With a lot of thought, or with the help of an intermediate textbook, you can even see how it will extend to include reorganizations of inputs and production across firms. The basic point to see is that, because prices serve as signals of economic scarcity for producers and social utility for consumers, a competitive price mechanism
allows the maximum output to be produced from a society's resources and technology.

The efficiency of perfect competition is illustrated in Figure 18-3. We have divided the population into two groups, group 1 and group 2, and have shown the satisfaction of the two groups on the two axes. Points A and B represent alternative competitive equilibria. As perfectly competitive economies, both operate efficiently. By contrast, point C shows an economy laboring with much pollution or inefficient monopolies; economy C operates well inside its frontier, with groups 1 and 2 both losing consumption relative to efficiently operating economy B. We see, therefore, that all perfectly competitive economies operate efficiently and are somewhere on their utility-possibility frontiers.³

QUALIFICATIONS TO THE INVISIBLE-HAND THEORY

Our discussion has proceeded on the basis of some abstract assumptions: no monopolies, no spillovers or externalities, no unforeseen innovations or disturbances, no government policy failures, and so forth. The perfectly competitive world of the economist is like the frictionless model of the physicist. It is not a picture of the real world as we know it when we step outside the library and rub elbows with real, live, breathing people on the street. Moreover, even if perfect competition ruled everywhere, people still might not be satisfied with the distribution of incomes generated by competition.

Let's review, then, the two qualifications of the invisible-hand theory—market failures and unacceptable income distribution.

Market Failures

In reality, a pair of market failures spoils the idyllic picture of perfect competition assumed in the invisible-hand theory: imperfect competition and externalities. Issues of imperfect competition have been analyzed in depth in Chapters 11 and 12, while externalities will occupy us in Chapter 19.

The key problem in both sources of market failure is similar: the market outcome is one in which the prices do not reflect true social marginal costs and social marginal utilities.

Monopoly Say that a firm has a monopoly over a particular market—a patented drug, a local electricity franchise, or a brand name on a soft drink. In these cases it can raise the price of the drug, electricity, or drink above its marginal cost. Consumers buy less of these goods than they would under competition, and wasteful distortions are created. Such distortions are typical of the inefficiencies created by imperfect competition.

Externalities The other key market failure is externalities. Recall that externalities arise when all the side effects of production or consumption are not included in markets. Thus when a utility pumps sulfurous fumes into the air, neighboring homes suffer property damage and people experience illnesses. But the utility does not pay for these impacts—the sulfur is external to the circular flow of Figure 18-1.

Not all externalities are harmful. There are positive externalities, such as those that rise when knowledge is generated. Chester Carlson invented xerography, but he received scant compensation when the world's secretaries and scribes were relieved of billions of hours of drudgery. Inventors are on the whole drastically undercompensated for their work—their incomes are far less than their social marginal products—and society therefore tends to underinvest in inventive activity.

Economics in a Vacuum? In the last 13 chapters, we have encountered many, many other examples of
market failure or breakdown of competition. We have seen that prices are often rigid in contrast to the minute-to-minute flexibility of competitive auction prices seeking their equilibria. We have seen that two people may work in the same city for different wage rates at similar jobs. We have seen how oligopolies and monopolies can restrain quantities to raise prices and profits.

We found that discrimination and segmented labor markets may lead to unequal employment opportunity, generating economic inefficiencies and social inequities. And we have seen how government interferences in markets can lead to unemployment or unavailability of credit or apartment shortages.

After reading this list of qualifications, you might naturally wonder whether they vitiate the whole notion of the efficient invisible hand. When we consider the wide range of actual market failures, should we believe that the real-world economy bears any resemblance to the idealized general-equilibrium analysis of the textbooks?

Taken literally, there is no doubt that a perfect and absolutely efficient competitive mechanism differs markedly from the real-world economy. But in a broader sense, the insights of the competitive theory retain a great deal of validity. Even though engineers know that they can never create a perfect vacuum, they still find the analysis of behavior in a vacuum extremely valuable for throwing light on many complicated problems. So it is with our competitive model. In the long run, many imperfections turn out to be transient as monopolies are eroded by competing technologies. While oversimplified, the competitive model points to many important hypotheses about economic behavior, and these hypotheses appear especially valid in the long run.

Suppose, for example, that an invention cuts the cost of computer-memory devices. Competitive analysis says that the price of such devices will fall and the quantity demanded will rise. Sophisticated students of imperfect competition aver that the real world is not perfectly competitive and that no hard-and-fast conclusions can be drawn. But put your money with the competitive model—betting that prices will fall in the long run—and you will probably end up wealthier than the sophisticated skeptics.

Initial Distribution of Income

But let us for the moment close our eyes to monopolies, pollution, labor unions, and other market failures. Let us ignore unemployment, inflation, and the business cycle. What do ideal competitive markets mean for the distribution of incomes? Is there an invisible hand in the marketplace that ensures that the most deserving people will obtain their necessities? No. In fact, competitive markets do not guarantee that income and consumption will necessarily go to those who are thought most needy or deserving. Rather, the distribution of income and consumption in a market economy reflects initial endowments of inherited talents and wealth along with a variety of factors such as discrimination, effort, health, and luck.

Perfect competition under laissez-faire could lead to massive inequality, to malnourished children who grow up to produce malnourished children, and to the perpetuation of inequality of incomes and wealth for generation after generation. Or, if the initial distribution of wealth, genetic abilities, education, and training happened to be spread quite evenly, perfect competition might lead to a society characterized by near-equality of wages, incomes, and property.

In short, Adam Smith, in the famous passage quoted on page 37, was not wholly justified in asserting that an invisible hand successfully channels individuals who selfishly seek their own interest into promoting the "public interest"—where the public interest is defined to include the socially acceptable distribution of income and property. Smith proved nothing of this kind, nor has any economist since 1776.

A Final Word on Welfare Economics

In Part Four of this book, we will be traveling extensively in the land of welfare economics, confronting some of the major ethical and political issues of modern society. We will consider whether government should intervene in certain markets and whether the tax system should redistribute income from rich to poor or from farm to city. We will continue to apply the results of our analysis of perfect competition, recalling the important results of the great master Adam
Smith along with the refined analyses of his twentieth-century counterparts.

But even Adam Smith cannot have the final word on these controversial problems. For underlying all these issues lie normative assumptions and value judgments about what is good and right and just. What a modern-day Adam Smith does, therefore, is try very hard to keep positive science cleanly separated from normative doctrines. Recall from the very first chapter that we defined positive statements as ones that are confined to description, while normative statements concern what society ought to do.

For the most part in science, scholars discuss what is and what will be under this or that situation. The task of positive description is kept as free as is humanly possible from the taint of wishful thinking and ethical concern about what ought to be. Why? Because scientists are cold-blooded robots? No. Rather, because experience shows that a more accurate job of positive description will be achieved if one tries to be objective.

Birds or Antelopes? Experience also shows that, try as we may, we humans never succeed in separating completely the objective and subjective aspects of a discipline. Indeed, the very choice of what scientists decide to measure, the perspective from which they observe and measure it, and the reactions the observer produces in that which is observed—all these conspire against totally objective analysis and observation. Recall Chapter 1’s bird-antelope paradox (page 9) and be warned that one’s unconscious attitudes can color one’s seemingly objective perceptions.

The citizens of a nation are, of course, mainly interested in the final outcomes, not in the fine points of economic theory or macroeconomic modeling. But citizens are best served by scientists who can give the most accurate description of what is relevant, and of what the consequences of different policy actions will be.

The issues of welfare economics studied in the chapters that follow are highly controversial and subjective ones that cannot be settled within positive science. Conservatives may legitimately interpret the above principles in terms of their version of the good society. Middle-of-the-roaders may do the same for theirs. And radicals may call for small or large reforms of the present structure of a mixed economy by giving their interpretation of fundamental economic laws.

Economic science does not determine the final conclusion. It arms us for the great debate.

SUMMARY

1. Earlier chapters examined the functioning of individual markets—for labor and land, for wheat and baking machines, for final goods such as bread and muffins. But the economic system must reach a general equilibrium of all these markets. This general equilibrium of what, how, and for whom is interrelated in a competitive market by a web of price connections. Households supply factors of production and demand final goods; businesses buy factors of production and transform and sell them as final goods.

2. The general-equilibrium competitive price system is a logically complete one. There is a sufficient number of relationships (i.e., a sufficient number of supply and demand curves) to determine all relative prices and all quantities.

3. Under certain conditions, a competitive general equilibrium will display allocative efficiency. Allocative efficiency (sometimes called Pareto efficiency) signifies that no one person can be made better off without someone else being made worse off. In such a situation, the economy is on both its production-possibility frontier and its utility-possibility frontier. But there are severe limits on the conditions under which an efficient competitive equilibrium will be attained; there may be no externalities, no mo-
nopolies or economies of scale, and no uninsurable risks. The presence of such imperfections leads to a breakdown of the price = marginal cost = marginal utility conditions, and hence to inefficiency.

4. Even if the world were one in which the ideal conditions for efficient perfect competition were to hold, a major reservation about the outcome of competitive laissez-faire would remain: we have no reason to think that the dollar votes under laissez-faire will be justly distributed. The outcome might be one with enormous disparities in income and wealth that persisted for generations. Or, conceivably, the outcome might be one in which there was a virtual equality of outcomes—one that some might even feel to be a dull gray sameness of personal fortunes.

CONCEPTS FOR REVIEW

partial equilibrium vs. general equilibrium
allocative (or Pareto) efficiency
utility-possibility frontier (UPF)
invisible-hand theory, in Adam Smith and in today's general-equilibrium theory

qualifications to the invisible-hand doctrine: market failures and arbitrary distribution of dollar votes
welfare economics
two theorems of welfare economics

QUESTIONS FOR DISCUSSION

1. Summarize how a competitive pricing system solves the three fundamental economic problems. Illustrate the price mechanism for the seven steps (page 396) where the economy produces outputs of food and clothing with inputs of labor and land.

2. List the qualifications to the invisible-hand theory. In terms of the economy as you know it, illustrate each of the qualifications with a real-world example.

3. State carefully the two theorems of welfare economics. How would they apply to the following quotations:
 (a) "Perfect competition affords the ideal condition for the distribution of wealth." (Francis Walker, 1892)
 (b) "The invisible hand, if it is to be found anywhere, is likely to be found picking the pockets of the poor." (Edward Nell, 1982)
 (c) Adam Smith's quotation on the invisible hand (see the beginning of Chapter 3).
 (d) "Pareto . . . suggested that competition brought about a state in comparison to which no consumer's satisfaction can be made higher, within the limitations of available resources and technological know-how, without at the same time lowering at least one other consumer's satisfaction level." (Tjalling Koopmans, 1957)
 (e) "Perfect competition can achieve anything that can be achieved by socialism."

4. The analysis of efficiency of competitive economies assumes that there is no technological advance by innovations and inventions. Recall the Schumpeterian hypothesis from Chapter 12. How does this elaboration qualify the view of economic efficiency of the competitive mechanism? In a world of rapid potential technological advance, use
production-possibility curves to illustrate how in the long run an innovative economy with imperfect competition might produce higher consumption than an efficient but technologyarily stagnant competitive economy.

5. "You say that the competitive general-equilibrium system is complete, and that there are enough equations to determine economic equilibrium. But it looks like a circular argument to me. Suppose that I say, 'My age, Y, is twice yours, X. Your age, X, is 25 years less than mine.' What a swindle: to know X, I must first know Y; but to know Y, I must first know X!!" Show that the logical circle is not circular. The only solution to \(Y = 2X \) and \(X = Y - 25 \) is \(X^* = 25 \) and \(Y^* = 50 \). So it is with supply and demand determining wheat's \(P \) and \(Q \). And so it is with general equilibrium involving 1 million \(P \)'s and 1 million \(Q \)'s. Comment.

6. Advanced problem: "The second theorem of welfare economics (page 404, fn. 3) means that all the debates about socialism vs. capitalism are vacuous. Anything that can be done by ideal, centrally planned socialism can, by the second welfare theorem, be done by competitive markets plus the proper dose of redistributive taxation." Comment on the logic behind this statement. State whether you agree or not and why.
OVER THE SPAN of the last century, the governments of most advanced economies have steadily increased their control and influence over economic activity. This trend is reflected in the growth of government expenditure and taxation, in the increasing share of national income devoted to transfers and income-support payments, and in the increase in legal and regulatory controls over economic life. Governments have not exercised a continuous encroachment on the private sector; rather, reflecting the cycle of politics, capitalist economies take two steps forward, then one step backward, on the road to greater government involvement. During the most recent era, under the inspiration of political leaders like President Reagan in the United States and Prime Minister Thatcher in Britain, most industrial countries have witnessed a retrenchment in the activities of government during the 1980s.

In this and the next chapter we survey the economics of government activity. This chapter begins with
an analysis of the central economic functions performed by governments. It then turns to the topic of public choice, which describes how governments actually choose among the alternatives open to their societies. The final section of the chapter applies the analysis to externalities like pollution. After this chapter’s analysis of the economic theory of government’s role, the next chapter analyzes taxation and government expenditure.

Of course, the economic role of government cannot be neatly divided up and placed in two chapters. The study of macroeconomics, along with an analysis of how government’s monetary and fiscal policies affect overall economic activity, shows us how government could affect unemployment, economic growth, and inflation. And we saw in Parts Two and Three on microeconomics how governments use economic regulation and antitrust policy to control monopoly. But in this chapter, we want to take a more comprehensive look at the norms and realities of government economic policy.

However, be warned at the beginning. The electorate is divided. Some people want to continue expanding the scope of government; others take up the banner of the Reagan revolution and strive to further reduce government’s role. Whether you tend to agree with liberals or conservatives, or even if you have not developed your own political philosophy, you will benefit from a cool analysis of factual trends and modern theories.

A. GOVERNMENT’S ROLE IN A MODERN ECONOMY

THE INSTRUMENTS OF GOVERNMENT POLICY

How do governments affect the economy? They cannot have a durable impact by simply exhorting the populace to save more or pollute less. Rather, attaining public-policy objectives requires that governments raise revenues, spend money, or issue regulatory commands over economic activity.

The major instruments with which governments affect economic activity are: (1) taxes that reduce private expenditure (such as for automobiles or restaurant food) and thereby make room for public expenditure (on goods like trucks or food for the army); (2) expenditures that induce firms or workers to produce certain goods or services, along with transfers (like welfare payments) that provide income support; and (3) regulations or controls that direct people to perform or desist from certain economic activities. Governments have come to rely on each of these three kinds of instruments increasingly over the last century.

Taxing and Spending

For more than a century, national income and production have been rising. At the same time, in most countries, the trend of governmental expenditure has been rising even faster. Each period of emergency—each war, each depression, each wave of enhanced concern over poverty and inequality—expands the activity of government. But after the urgency has passed, expenditures never seem to go back down to previous levels.

Before World War I, all federal, state, and local government expenditure or taxation combined amounted to little more than one-tenth of our entire national income. During World War II, the war effort compelled government to consume about half the nation’s greatly expanded total output. In the 1980s, expenditure of all levels of government in the United States ran around 35 percent of GNP.

Figure 19-1 shows the trend in government taxes and expenditures (for all levels of government in the United States). The rising curves indicate that the shares of taxes and spending have grown steadily upward over the course of this century.

Figure 19-2 shows how government spending as a percent of GNP varies among countries. High-income countries tend to tax and spend a larger fraction of GNP than do poor countries. Can we discern a pattern among wealthy countries? Note that highly productive and efficient countries are not uniformly high-spending or low-spending areas. West Germany—a country whose conservative economic pronouncements have made it the darling of those longing for
The Growth of Government Controls and Regulation

The increase in collective expenditures is only part of the story. Besides the rapid growth in spending and taxing, there has also been a vast expansion in the laws and regulations governing economic affairs.

Nineteenth-century America came as close as any economy has to being a pure laissez-faire society—the system that the British historian Thomas Carlyle dubbed "anarchy plus the constable." This extreme permitted people great personal freedom to pursue their economic ambitions, and indeed it was a century of rapid material progress. But critics saw many flaws in this laissez-faire idyll. They witnessed periodic business crises, extremes of poverty and inequality, slavery followed by deep-seated racial discrimination, and poisoning of water, land, and air by pollution. Muckrakers and progressives called for a bridle on capitalism so that the people could steer this wayward beast in more humane directions.

Gradually, beginning in the 1890s, the United States turned away from the belief according to which "that government governs best which governs least." Presidents Theodore Roosevelt, Woodrow Wilson,
Franklin Roosevelt, and Lyndon Johnson—in the face of strenuous opposition—pushed out the boundaries of federal control over the economy, devising new regulatory and fiscal tools to suit their purposes. Constitutional powers of government were interpreted broadly and used to "secure the public interest" and to "police" the economic system. Utilities and railroads came under state regulation. In 1887, the federal Interstate Commerce Commission (ICC) was set up to regulate rail traffic across state boundaries. The Sherman Antitrust Act and other laws were invoked after 1890 against monopolistic combinations in "restraint of trade."

Economic regulation of banking became increasingly pervasive: after 1913, the Federal Reserve System was established to serve as a central bank, controlling commercial banks; since 1933 most bank deposits have been insured by the Federal Deposit Insurance Corporation (FDIC). As we saw in Chapter 11, during the New Deal a whole set of industries came under economic regulation, where government sets the prices, conditions of exit and entry, and safety standards. Regulated industries included the airlines, trucks, barge and water traffic; electric, gas, and telephone utilities; financial markets; oil, natural gas, as well as pipelines. The mid-1970s recorded the high-water mark of economic regulation, with many conservatives portraying the United States as a planned economy run by regulatory agencies.

In addition to regulating the prices and standards of business, the nation attempted to protect health and safety through increasingly stringent social regulation. Pure food and drug acts were passed following the revelations of the muckraking era of the early 1900s. Then, during the 1960s and 1970s, a series of acts were passed that regulated mine safety and then worker safety more generally; set the framework for federal regulation of air and water pollution and of...
hazardous substances; authorized safety standards for automobiles and consumer products; controlled strip mining; and regulated nuclear power safety and toxic wastes.

So great was the proliferation of regulation by the late 1970s that many saw in the regulatory agencies a "fourth branch" of government. So powerful was the opposition to new regulatory programs that further growth of regulation was abruptly halted during the Reagan years (1981–1988), a time when the stringency of social regulation was abated, when enforcement was relaxed, and when the amount of antipollution spending by business fell sharply.

Political Evolution

How does it come to pass that the nation adopts such radically new doctrines? Looking back, we see how each new policy produced violent reactions on both sides. The social security system introduced by Franklin Roosevelt was espoused as essential to protecting the well-being of older citizens, as a kind of public pension system. Opponents denounced social security as an ominous victory of socialism during the troubled 1930s. Newspapers of the day recorded similar sentiments about public subsidies for medical care, regulation of factory conditions, legal protection for unions, and antipollution laws.

With the passage of time, as the old generation passes away and is replaced by new ideas and experiences, political attitudes evolve. The radical doctrines of one era become accepted as the gospel of the next. The much-criticized social security system of the 1930s was defended by conservative President Ronald Reagan in the 1980s as part of the "social safety net." The public has come to accept government constraints on laissez-faire capitalism, constraints that changed the very nature of capitalism. Private property is less and less wholly private. Free enterprise has become progressively less free. Irreversible evolution is part of history.

THE FUNCTIONS OF GOVERNMENT

Philosophers since the time of Plato have debated the role of the state, and political thinkers have proposed different approaches to government. In recent years economics has developed a new field called public choice. This is the study of how governments make choices and direct the economy. It asks what goods are bought by governments, for whom are the benefits of government programs distributed, and how government goods and services are produced.

Our survey of public-choice theory begins in this section with an analysis of the normative role of government; that is, of the kind of economic functions that government ought to perform. The next section presents the positive or descriptive analysis of government behavior, describing the actual behavior of governments and legislatures. We then end with an application of these principles to the important public-policy problem of externalities.

We are beginning to get a picture of how government directs and interacts with the economy. What are the major economic functions that government performs in a modern mixed economy? In fact there are four:

- Establishing the legal framework for the market economy
- Determining macroeconomic stabilization policy
- Affecting the allocation of resources to improve economic efficiency
- Establishing programs that affect the distribution of income

Let's look at each.

The Legal Framework

The government's first function, setting the legal framework, establishes the rules of the economic game played by households, firms, and even governments. Such rules include the definition of property (just how "private" is private property?), the laws of contracts and business enterprise, the mutual obligations of labor and management, and a multitude of statutes constraining the way different members of the society interact. If red lights mean stop and green lights mean go, it is because these and countless other rules are woven into the fabric of our society by laws.

Although the legal framework profoundly affects
economic behavior, most laws are not set on the basis of a finely honed economic cost-benefit analysis. Rather, some laws came from Roman times, others grew from English common law, while modern law is often driven by feelings about what is fair or right or, sometimes, by what will sell in the political marketplace.

Whatever the source of our laws and customs, the legal framework strongly influences economic activity. For example, in the nineteenth century, firms were not responsible for workers who became ill while working in unsafe or unhealthy factories; also, consumers had little recourse if they bought a defective product. What were the results? There were thousands of occupational illnesses and millions of dollars spent on “snake-oil remedies” that purported to cure all ailments.

Over the twentieth century, the legal system evolved to make businesses legally responsible for their actions and products. Firms can now be sued if workers become ill from their work. Recently, thousands of workers have sued asbestos manufacturers after they contracted cancer, and one giant firm, Manville Corporation, filed for bankruptcy under the weight of these claims. Firms are more and more held responsible for faulty products. In many states, you can return a car that turns out to be a “lemon.”

As a result of these legal changes, firms now pay much closer attention to the safety of their products and workplaces. Managers must constantly ask themselves, “What can go wrong with this product? Will we be sued if there is an accident? Should we buy insurance? Or should we scrap the whole venture and take on a less risky line of work?” The net effect is to reduce the dangers from products. In addition, businesses have become averse to undertaking many risky activities, as was recently seen when vaccines were unavailable because there was no insurance coverage for product liability.

Macroeconomic Stabilization

Now that we have seen how government sets the legal framework, we turn next to a discussion of the three central economic functions of government: stabilization, allocation, and income distribution.

The first economic function of the federal government is macroeconomic. Modern governments generally try to smooth out the business cycle—preventing chronic unemployment, economic stagnation, and rapid price inflation. Two principal weapons are used: monetary policy and fiscal policy.

A central bank is a governmental bank for banks which is given the power to issue currency and control bank reserves. Our central bank, the Federal Reserve, exercises money and credit policies designed for high employment, production growth, and price stability.

Governments have controlled the supply of money since Roman times. But only in the last 30 years have governments attempted to employ fiscal policies—variations in government spending and taxation—to influence the levels of employment and output along with the rate of inflation. Well-designed stabilization policies can help moderate the cycles of unemployment and contain excessive inflation. But bad stabilization policy can make the business cycle worse.

Allocation

The second central economic purpose of government is to assist in the socially desirable allocation of resources. This is the microeconomic side of government policy, tending to the what and how of economic life. Microeconomic policies might emphasize a hands-off, laissez-faire approach, leaving all questions to the market. Or they might lean toward central planning, with decisions about steel and car and computer production made by government planners.

Ours is fundamentally a market economy. On any microeconomic issue, the first presumption is that the market will be allowed to solve the economic problem at hand. But sometimes our government chooses to override the allocational decisions of market supply and demand. Let us see why.

Hypothetical Laissez-Faire In the first place suppose all goods could be produced efficiently by perfectly competitive enterprise at any scale of operations. And assume that all goods were like loaves of bread, the total of which could be cut up into separate consumptions of different individuals, so that the more I consumed out of the total, the less you consumed. And further, suppose there were no spillovers or externalities like air pollution and that each person had equal initial access to human and natural re-
sources, had equal opportunity in every sense, and could carry, on any activity independently of others, much as in frontier days.

If all these idealized conditions were met, would there be any need whatsoever for government intervention in the market? Couldn’t the invisible hand provide a perfectly efficient and equitable production and distribution of the economic fruits? Why should there be any government functions at all? Indeed, why speak of “a society” at all, since we could then be regarded as an array of independent atoms with absolutely no organic bonds among us?

Yet even in this case, if there were to be a division of labor among people and regions, and if a price mechanism were to work, the need would soon grow for the legal framework described above: for government courts and police forces to ensure honesty, fulfillment of contract, nonfraudulent and nonviolent behavior, and freedom from theft and external aggression, and to guarantee the legislated rights of property.

This is the case for laissez-faire with minimal government—and indeed, it might be a good system if the idealized conditions listed above were truly present.

Real Interdependencies Each and every one of the idealized conditions enumerated above is violated to some extent in all human societies. The market is not ideal. There are market failures.

Abilities, opportunities, and ownership of property do exhibit disparities, depending on biological and social history. Some groups are or have been systematically discriminated against. Also, it is a fact that many kinds of production can take place most efficiently only in units too large for truly perfect competition. And unregulated factories do tend to dump their wastes into the air, water, and land.

Let us review briefly how these market failures might lead to a call for government activity:

* The breakdown of perfect competition. When monopolies or oligopolies inhibit rivalry or drive firms out of business, government may want to apply antitrust policies or regulation, or even to break up large firms.

* The existence of significant externalities—too much air pollution or too little investment in science and engineering. As we will see later in this chapter, government may need to control the emissions of polluters or to support basic science.

* Discrimination in labor markets. When some groups are discriminated against or excluded from high-paid jobs, government may decide to step in, outlaw discriminatory actions, and break down the barriers between noncompeting groups.

Clearly, there is much on the agenda of possible allocational problems for government to handle.

Income Redistribution

One of the first lessons we learned is that the invisible hand might be marvelously efficient while producing a very unequal or unfair distribution of income. Under laissez-faire, people end up rich or poor depending on their inherited brains or wealth, on their talents and efforts, on the prices of their skills, and sometimes on how lucky they were in finding oil. To some people, the distribution of income arising from unregulated competition looks as arbitrary as the Darwinian distribution of food and plunder among animals in the jungle.

In the poorest societies, there is little excess income to take from the better off and provide to the unfortunate. But as societies become more affluent, they devote more resources to human services. The welfare states of North America and Western Europe now devote a significant share of their incomes to maintaining minimum standards of health, nutrition, and income.

Most advanced economies now rule that children shall not go hungry because of the economic circumstances of their parents; that poor people shall not die young because of insufficient money for needed medical care; that the old shall be able to live out their years with some minimum of income. These government programs are provided in the United States by transfer programs (such as food stamps, Medicaid, and social security) and by redistributive taxes (which raise a greater proportion of taxes from high-income persons and levy little or no taxes on the poor).

This analysis of the four functions of government concludes our survey of the normative view of government’s role, of how government ought to behave to improve the economy’s functioning.
B. PUBLIC-CHOICE THEORY

The first section of this chapter described the normative role of government in a modern economy. But do governments in fact follow the prescriptions laid down by economists and philosophers? Do governments constantly labor to create the just and efficient society? Do governments use a "visible hand" to ensure that public-policy decisions serve to make the economy operate more smoothly and effectively? Or are there "government failures" that parallel market failures such as monopoly and pollution?

These questions are the domain of public-choice theory, which is the branch of economics that studies the way that governments make decisions. Here we ask how governments decide on the level of taxes and public consumption and on the size of transfer payments, and we inquire into inconsistencies in legislative decisions. Public-choice theory asks about the how, what, and for whom of the public sector, just as supply-and-demand theory analyzes choices in the private sector.*

HOW GOVERNMENTS CHOOSE

In the private sector, people express their views by casting what we have metaphorically called "dollar votes" for the goods they desire. In the political sphere, they cast real votes—for representatives and for Presidents. Let's review how people vote and what the consequences are.

*Since the time of Adam Smith, economists have focused most of their energy on understanding the workings of the marketplace. But serious thinkers have also pondered the government's role in society. Joseph Schumpeter pioneered public-choice theory in Capitalism, Socialism, and Democracy (1942), and Kenneth Arrow's Nobel Prize-winning study on social choice (analyzed later in this chapter) brought mathematical rigor to this field. But the landmark study of Anthony Downs, An Economic Theory of Democracy (1957), first sketched a powerful new theory in which politicians set economic policies in order to be re-elected. Downs showed how parties will tend to move toward the center of the political spectrum and suggested that it is highly irrational for people to vote given the small likelihood of any individual's affecting the outcome.

Further studies of James Buchanan and Gordon Tullock in The Calculus of Consent (1959) defended checks and balances and advocated the use of unanimity in political decisions—arguing that unanimous decisions do not coerce anyone and therefore impose no costs. For this and other works, Buchanan received the Nobel Prize in 1986. This conservative brand of economics received careful study by the Reagan administration during the early 1980s and was applied to such areas as farm policy, regulation, and the courts and formed the theoretical basis for a proposed constitutional amendment to balance the budget.
Poised between voters and politicians stand organizations known as interest groups. These represent people or businesses who have joined together to lobby for a narrow set of interests or issues. The National Rifle Association defends the right of citizens to bear arms; the Iron and Steel Institute attempts to limit steel imports; the American Medical Association lobbies against government regulation of medicine. In each case, a coalition forms to ensure that the incomes and privileges of its members are protected. Sometimes, interest groups assume a degree of political power far beyond the numerical size of their membership. When this happens, we have a case of non-representative government, and of interest groups who “capture” regulatory agencies or political influence.

There are other players as well, although we will not examine them in our survey of public choice. One important set of participants (such as generals in the Pentagon or farmers in the Agriculture Department) runs executive agencies. Although they exercise great power because of their expertise and long experience, these bureaucrats are ultimately subject to supervision by the political leaders.

In summary, public-choice theory describes how governments make decisions about taxation, expenditure, regulation, and other economic policies. Like the game of markets, the game of politics must match up people’s demands for goods with the economy’s capability to supply goods. The major difference lies in the fact that the central entrepreneurs of politics—politicians—are oriented to win elections, while the central organizations in markets—business firms—aim to earn profits.

MECHANISMS FOR PUBLIC CHOICE

Government economic policies are not determined in a vacuum or by a computer. Rather, in every nation there is a political system or mechanism for making collective decisions, for public choice. In the balance of this section we ask, How does such a mechanism work in theory and in practice? Moreover, we focus our attention on decision processes, particularly on voting systems, in democratic countries.

Before launching into this analysis, we should remind ourselves what public choice accomplishes: it is the process whereby individual preferences are combined into collective decisions. A democratic society stresses the importance of individual values and tastes in such an aggregation—“one person, one vote” expresses this individualistic underpinning of our political system. A crucial problem arises just because we must aggregate millions of opinions into a single decision. The United States has 250 million views about the defense budget or welfare or abortion or drugs. But in the end, there can be only one federal law, only one defense budget, only one welfare policy, and so forth. A red light means stop for everyone because political choices are indivisible for a nation. Such decisions are coercive compared to private decisions about ice cream or bread or concerts, where your choice to eat ice cream does not bind my decisions. Unlike private decisions, collective choice contains an essential indivisibility with but one outcome on any particular issue.

Outcomes of Collective Choice

What is the effect of collective decisions? Figure 19.3 shows the possibilities. For this diagram we imagine a society in which there are two kinds of people, A’s and B’s. They may be rich and poor, Republicans and Democrats, or farmers and urban dwellers. For the moment, think of each as a unified group with homogeneous interests and tastes.

Consider first a society that shunned any kind of government. Such a world was described by the great seventeenth-century philosopher Thomas Hobbes as one where there was “no place for industry, because the fruit thereof is uncertain; no culture of the earth, no navigation, no arts; continual fear of violent death; and the life of man, solitary, poor, nasty, brutish, and short.” Even if some rudimentary laws and constitutions were in place, a pure laissez-faire economy would find itself with relatively low incomes, as shown at point E in Figure 19.3.

Next consider the potential for a society which undertook sensible collective actions. It could build highways and encourage railroads. Public-health

2 Thomas Hobbes, Leviathan (1651). This quotation has been shortened and rendered into modern English.
measures could wipe out malaria, smallpox, and plague. Government-supported science could probe space or molecular structure, thereby leading to vast technological improvements. Monetary policies could lead to a sound currency and financial system, thereby allowing people to save and businesses to invest. Police could make the streets and homes safer. Pollution-abatement programs could clean the air and water and produce a healthier and more productive populace. Income-support measures could provide food and medical care for those who are unable to care for themselves. Successful public-sector activities push out the frontier of what the economy can produce, as the outer red frontier in Figure 19-3 illustrates.

Is Public Choice Efficient?

When we think of the many helpful activities undertaken by government, we might ask whether collective choice always enhances efficiency. Few would argue that wiping out plague or launching communications satellites was harmful. But is there a "visible-hand" theorem, whereby the visible hand of government guides the economy toward an efficient and equitable economic allocation of public goods and income?

We will later see that the answer is, No. As Figure 19-4 illustrates, collective decisions can be divided into three general categories: harmful, redistributive, and efficient. A first and probably rare harmful case arises when governments take steps that make everyone worse off. If a particular strategy leads to nuclear war, that will surely be an abject failure. Such failures are illustrated by the movement from initial point E to point W in Figure 19-4.

Second, there are simple redistributive outcomes, shown by the arrow from E to R. In these cases society may tax one group and subsidize another, or may impose a tariff on a product that helps factors of production in that industry but hurts consumers, or may build an inefficient dam that benefits one group while hurting another.

Finally, collective actions may produce Pareto improvements, which represent actions that lead to improvements in everyone’s satisfaction; they make everyone better off and no one worse off. A Pareto improvement is shown by the arrow moving northeast in Figure 19-4 from point E to point P. Examples of Pareto improvements would be governments supporting a new scientific advance (like communications satellites) or helping disseminate a public-health measure (like a smallpox or polio vaccine).

This distinction among the three kinds of outcomes is of great importance, for, as we will see, collective action cannot construct foolproof rules that always make everyone better off.
ALTERNATIVE DECISION RULES

Different societies have evolved diverse ways of making collective decisions. Traditional societies were often governed by an informally selected council of elders. Many European countries relied on absolute monarchies until two or three centuries ago. Venice was ruled by an elaborate oligarchy for 500 years. Countries of Western Europe and North America today are governed by their elected representatives, some by a strong executive branch and others by a powerful parliament.

In public-choice theory, we look behind the particular forms of government to the underlying choice process. Do systems that rely on consensus or unanimity produce efficient and consistent decisions? What does "the will of the majority" really mean? Are the decisions of collective choice always fair and efficient?

Unanimity

Many social and economic thinkers have stressed the advantages of making decisions by consensus or by unanimity. This approach requires that everybody agree with collective decisions. Figure 19-5(a) illustrates how decisions by consensus proceed. No decision can be made without the accord of each person, so each decision must improve (or not worsen) each person's income (or, more generally, each person's level of satisfaction). It must therefore move society northeast toward the income-possibility frontier in Figure 19-5(a)—a process shown by the arrows. A voting system based on unanimity would guarantee that all decisions be Pareto improvements, never making anyone worse off. In addition, because each voter must agree with any decision, there can never be any coercion of minorities by larger groups.

Unfortunately, a rule of unanimity poses several practical shortcomings. As anyone who has ever tried to get a group of people to agree to anything, generating consensus takes enormous amounts of time and energy. One skeptic can hold up any measure, no matter how worthwhile that measure might be.

Even worse, once the last skeptic realized how powerful he was, he could blackmail those who favored the measure. If a $100 million pollution-control

Figure 19-4 Collective actions can improve or hurt all or simply redistribute incomes.

Starting at the laissez-faire point E, we can distinguish three kinds of outcomes. Optimistically, we might make everyone better off by moving to point P. Or there might be massive government failures (like wars) which make everyone worse off as society moves from E to W. Very often programs are redistributive, taking resources from group B and transferring them to group A, as in the movement from E to R.

Incomes Available with Collective Action
Figure 19.5 Collective decisions under unanimity and majority rule

The left panel illustrates outcomes when decisions require unanimity: no one can be made worse off if each person must agree to each decision. Hence, starting at E, all outcomes must lie in the region EXY.

Under majority rule, shown on the right, group A can decide issues and would vote for any proposal improving its income or moving rightward into the shaded region. Some decisions may be efficient and fair (as in movement to L) or inefficient and unfair (as in movement to N).

or road-building program could be vetoed by a single person, this person could hold out for any number of pet projects, delaying the vote and enriching himself or his constituents in the process. Such a problem is occasionally seen in majoritarian voting systems on close votes, but it would occur more frequently and be far more intractable under a system requiring unanimous consent.

In the end, it is likely that the unanimous voting system would be so rife with bargaining and blackmail and delay that virtually nothing would be accomplished. No laws would be passed. The system would be at an impasse or have to creak along with existing arrangements. Instead of moving northeast from point E, it could simply stay at point E (wherever E might happen to be). Thus government by unanimity is likely to preserve the status quo, however bad or good it is.

Majority Rule

Virtually all representative institutions, as well as participatory groups, rely on majority rule for making decisions. Under this system, a law or rule is adopted when more than half the voters approve it. Majority rule is used in the U.S. Congress, in the Supreme Court, in state and local governments, as well as in most corporate boards and clubs.

An idealized description of majority rule is shown on the right side of Figure 19.5. Assume that group A is in the majority. In a pure economic calculation, it will vote for any measure that increases its real income. Thus any of the three points shown—L, M, or N—would win over point E by majority vote. Of the three, M produces the highest income for group A and would be the ultimate winner in majority voting among the four choices.
The outcomes shown in Figure 19-5(b) suggest some important points about majority rule. First, majority rule does not guarantee Pareto improvements. The majority would prefer point M to point E, but point M makes one group of voters (those in group B) worse off. In addition, majority rule may lead to a "tyranny by the majority." Majorities can impose their political will on minorities, through discrimination, income distribution, or even slavery. Such tyranny is not possible under unanimity.

But note that majority decision making does rule out what we have called government failure. In choosing among alternatives, the electorate might well make some people worse off, but, except by mistake, it will not choose an alternative that makes everyone worse off. So majority decisions rule out events represented by the arrow leading to W in Figure 19-4.

Avoiding Tyranny by the Majority The possibility of tyranny by the majority has haunted political thinkers for three centuries. Because deep thinkers like James Madison and Alexander Hamilton feared such coercive political activity, they proposed the use of supermajorities in many important issues. (Supermajorities require that a measure obtain more than a simple majority, say, two-thirds of the votes, in order to pass.) The U.S. Constitution requires supermajorities for constitutional amendments and for overriding presidential vetoes. These are cases in which, in the interests of protecting minorities, a preference is given to protecting the status quo.

During the last decade, many people have proposed extending rule by supermajority to the federal budget process. Critics argue that the usual budget process allows majorities to pass extravagant spending laws, expanding the scope of government and incurring large budget deficits. We are witnessing, they say, a big-spending majority using majority rule to impose its beliefs upon the minority.

The proposed solution is to require supermajorities for the passage of economic legislation that would lead to budget deficits or to an expansion of government expenditure programs. In the early 1980s, conservatives proposed a constitutional amendment to balance the federal budget: this would require a supermajority of 60 percent, rather than the usual 50 percent, to increase the share of government spending or to run a budget deficit. When the constitutional amendment failed, Congress passed the Gramm-Rudman bill, which mandated a gradual reduction of federal budget deficits and a balanced budget in the early 1990s; moreover, the bill established certain procedures that required supermajorities when budget deficits exceeded certain stated targets.

Cyclical Voting and the Voting Paradox

We hear much about the "will of the majority" and "letting the majority have its way." In one of the deepest criticisms of majority rule, Nobel laureate Kenneth Arrow of Stanford demonstrated certain fundamental flaws and inconsistencies that could result from majority decisions. We will illustrate Arrow's results with the help of a simple example of three individuals choosing among three different options.

The situation is illustrated in Table 19-1 on the next page. Each of three individuals has one vote. They must choose among three different levels of defense spending: high, medium, and low. Moreover, the three different people have quite different ideas about the way the country should be defended. Jones is a hawk, but his second choice is a small army rather than a middle-sized one. Smith is a centrist: she likes both guns and butter. Brown is a pacifist, preferring the smallest possible army.

Now line this group up and try to decide the defense issue by majority vote. As Table 19-1 shows, low spending beats medium spending; medium spending beats high spending; high spending beats low spending. We see here the voting paradox:

The voting paradox arises when no single program can command a majority against all other programs.

Setting the Agenda There are many important implications of the voting paradox, but one particular one should be mentioned. This is the importance of the agenda, or the order of business. Because of the need to economize on time, legislatures must have a set of procedures. They cannot allow endless cycling around on issues where opinions are divided.
This example suggests why chairpersons and rules committees are so important in legislatures; the power to set the agenda is often the power to determine the outcome.

Arrow's Theorem Have political theorists devised a way of eliminating cycling and making good decisions? Certainly unanimity will never solve the problem, for no program in Table 19-1 commands a majority against all other possible programs. Kenneth Arrow investigated the question of whether any good voting scheme exists that would avoid cyclical outcomes. His surprising conclusion is that there exists no majority-rule voting scheme that guarantees efficiency, respects individual preferences, and does not depend on the agenda. Put differently, no voting scheme has ever been devised—and Arrow proved it is impossible to find one—that can guarantee majority voting will be consistent and will move the society to its most desirable point. In other words, the cyclical voting outcome illustrated in Table 19-1 cannot be ruled out no matter how ingenious are the rules or procedures.

APPLICATIONS OF PUBLIC-CHOICE THEORY

Public-choice theory is fascinating not only for the light it throws on the democratic process. It also helps us understand important aspects of American and other political systems—their strengths as well as their weaknesses.

People today sometimes dwell upon wasteful government activities—pointing to the purchase by the military of a screwdriver for $250 or to a foolish regulation about the height of toilet seats. And who can doubt that governments sometimes make foolish decisions? But we must not overlook the fact that governments have built roads, conquered diseases, safeguarded borders, and provided the countless socially necessary ingredients for an advanced civilization. Recall Hobbes’ saying that without government to protect us, life would be nasty, brutish, and short.

But while governments play a central role in modern economies—combating externalities, stabilizing the business cycle, and redistributing income—they
are no more perfect than the market. Just as capitalism never attains the perfection of atomistic markets, so do democracies sometimes fail to respond to market failures in the most effective way. There are government failures as well as market failures:

Government failure arises when state actions fail to improve economic efficiency or when the government redistributes income to the wrong people.

What are the important kinds of government failures?

The Bureaucratic Imperative

Few can resist the temptation to increase their own influence or power. Governments are the same. They often do too much for too long. One reason for the tendency of government to overexpand is that there is no profit check (or what businesspeople call "the bottom line") on individual projects. If the government builds too many dams, too many bombers, too many fancy government office buildings—there is no profit-and-loss statement by which the economic worth of these projects can be calculated. The only support such projects need is a legislative majority, and this may be obtained by the small minority's providing campaign financing for a sufficient number of legislators. Once they have come into existence, programs develop a strong constituency from those who work in them or those who benefit from their activities.

Whatever the source, it seems clear that governments often have a great deal of trouble stopping a project once it has started. A classic example is the "breeder reactor." This project involved an advanced nuclear power system to replace the current generation of nuclear reactors when uranium runs out. The government designed the Clinch River Breeder Reactor in the late 1960s when everyone thought nuclear power would grow very rapidly. By the mid-1970s, studies showed that the breeder reactor was going to be economically unviable. By the late 1970s, it was clear that nobody was ordering nuclear power plants any more, and many utilities were canceling plans under construction. Yet the government continued spending hundreds of millions of dollars funding the Clinch River project until 1983.

As one wit said in this regard, governments often behave like the little boy who said, "I know how to spell 'banana,' but I don't know when to stop."

Short Time Horizons

Elected political leaders in the United States must face elections frequently—every 2, 4, or 6 years—and often compete in hotly contested districts. Electoral pressures may lead to inopportunity or short time horizons in political decisions.

The syndrome of short time horizons was illustrated time and again during the 1980s by battles over the federal budget deficit. Almost everyone agreed that the high budget deficit was harmful to saving and investment—the Congress, the President, economic experts, and business spokespersons. Almost everyone agreed that if the budget deficit were not reduced, productivity and prosperity would be imperiled. Yet, again and again, the federal government was unable to take the necessary steps.

What was the source of the failure? The rub came because deficit reduction required painful steps today to improve economic performance in the future. Taxes would have to be raised or spending cut in the present in order to increase saving, investment, and productivity. But Congress had great difficulty taking the necessary steps. In 1982, 1984, 1986, and 1988, politicians were running for office, they were more concerned about their reelection than about economic problems arising in the distant future. And the political aspirants thought that voters would pay more attention to the taxes raised or spending cuts enacted than to the long-term benefits of deficit reduction. Thus Congress decided to procrastinate—again and again. This defect is, in essence, a case of nonrepresentative voting, for only today’s citizens cast a vote.

The tendency to focus only upon the next election may lead governments to introduce and maintain programs with short payoff periods and to steer clear of those with immediate costs and diffuse future benefits. It may also lead to a "political business cycle," with a splurge of spending right before elections.

However, a tendency toward short time horizons does not necessarily lead to government that is too big or too small; rather, it may lead to a proconsumption bias in government programs. That is, programs receive favorable treatment when they boost present consumption relative to future consumption, and
long-term investments (research, conservation, and protection of the environment) may experience rough sledding in periods of particularly close political elections.

This review of government failures may suggest that public choice in political democracies is always shortsighted, venal, and antisocial. No reading of history could justify such a cynical conclusion. History is also full of political leaders who have taken far-sighted and wise measures—some popular, some unpopular. But public choice reminds us that collective choice in democracies is not guided by an invisible hand that always leads to an optimal or even efficient outcome. Democracies have elected Hitler and Mussolini and Peron, along with Lincoln and Churchill and Kennedy. Just as economists must concern themselves with corrections for market failures, so must public-choice analysts examine ways of avoiding government failures.

C. PUBLIC CHOICE AND EXTERNALITIES

Of all the economic problems requiring government action, some of the most serious arise when a market generates external effects or externalities. It is here that the need for sound decisions tests a nation’s mechanisms for public choice and its legislature’s ability to avoid short time horizons and interest-group politics. In this final section we explore the nature of externalities, describe why they produce economic inefficiencies, and analyze potential remedies.

Begin with the definition of an externality:

An externality or spillover effect occurs when production or consumption inflicts involuntary costs or benefits on others; that is, costs or benefits are imposed on others yet are not paid for by those who impose them or receive them. More precisely, an externality is an effect of one economic agent’s behavior on another’s well-being, where that effect is not reflected in dollar or market transactions.

Externalities come in many guises. Some are positive (external economies), while others are negative (external diseconomies). Thus when I dump a barrel of acid into a stream, it kills fish and plants. Since I don’t pay anyone for this damage, an external diseconomy occurs. When you discover a better way to clean up oil spills, the benefit will spill over to many people who do not pay for it. This is an external economy.

Some externalities are pervasive, while others have only small spillover components. When a carrier of bubonic plague entered a town during the Middle Ages, a quarter of the population could be felled by the Black Death. On the other hand, when you chew an onion at a football stadium on a windy day, the external impacts are hardly noticeable.

Public vs. Private Goods

To illustrate the concept of external effects, we consider the extreme example of a public good, which is a commodity that can be provided to everyone as easily as it can be provided to one person.

The case par excellence of a public good is national defense. Nothing is more vital to a society than its security. But national defense, as an economic good, differs completely from a private good like bread. Ten loaves of bread can be divided up in many ways among individuals, and what I eat cannot be eaten by others. But national defense, once provided, is enjoyed automatically by all persons. It matters not whether you are hawk or dove, pacifist or militarist, old or young, ignorant or learned—you will receive the same amount of national security from the army as does every other resident of the country.

Note therefore the stark contrast: the decision to provide a certain level of a public good like national defense will lead to a number of submarines, cruise missiles, space lasers, and tanks to protect each of us. By contrast, the decision to eat a private good like bread is an individual act. You can eat four slices, or two, or a whole loaf; the decision is purely your own and does not commit me to eat a particular amount of bread.

The example of national defense is a dramatic and extreme case of a public good. But when you think of
smallpox vaccine, a park concert, the damming of a river upstream to prevent flood damage downstream—indeed, when you think of almost any government activity—you will often find elements of public goods involved. In summary:

Public goods are ones whose benefits are indivisibly spread among the entire community, whether or not individuals desire to purchase the public good. Private goods, by contrast, are ones that can be divided up and provided separately to different individuals, with no external benefits or costs to others. Efficient provision of public goods often requires government action, while private goods can be efficiently allocated by markets.

In addition to public goods, we often see public "bads," which are public goods that impose costs uniformly across a group. Most public bads, or externalities, are associated with processes of production and are unintended by-products of firms’ activities. One critical externality is the "greenhouse effect," which results from the buildup of carbon dioxide and other atmospheric trace gases. Scientific studies indicate that, in the coming decades, these gases will cause the climate to become warmer, oceans to rise, and monsoons to shift. Nobody is producing carbon dioxide in order to change the climate. Rather, this externality results unintentionally from the burning of fossil fuels and from other economic activities.

Other examples of public bads or externalities include: the air and water pollution that results from chemical production, energy production, and use of automobiles; "acid rain," which appears to come from long-distance transportation of sulfur emissions from power plants; radioactive exposure from atmospheric tests of nuclear weapons or from accidents like that at the Soviet plant in Chernobyl; depletion of the ozone layer from buildup of chlorofluorocarbons; and many other examples. Note that in all these cases, those who caused the external effect did not desire the outcome. The externalities were the unintentional but noxious side effects of productive activities.

The economy generates favorable as well as unfavorable externalities. The most important favorable externalities are those associated with the generation of knowledge. When inventors at Bell Telephone Laboratories invented the transistor in 1948, this invention ushered in the electronic age, producing fast computers, electronic telephone switches, stereo equipment, digital watches, and countless other useful products. Did Bell Labs profit from the value of the inventions outside the telephone industry? Very little. Rather, the transistor revolution was an externality whose benefits accrued to consumers around the world.

Nor is the transistor an isolated example. Inventions and discoveries over the ages—from the wheel and fire to the personal computer and superconductivity—inevitably spill over to benefit consumers many times more than they do their inventors.

MARKET INEFFICIENCY WITH EXTERNALITIES

Our discussion of public goods and externalities suggests that public goods will not be efficiently provided by a pure market mechanism. No one can capture and sell the benefits of national defense, so this role is left to the government; the benefits of basic science are too diffuse for profit-oriented firms to find economically attractive, so basic science is supported by government and takes place in universities; firms will not voluntarily restrict emissions of noxious chemicals or abtain from dumping PCBs in landfills, so government must regulate pollution. These are generally held to be legitimate government functions, according to Abraham Lincoln’s dictum that government is "to do for the people what needs to be done, but which they cannot, by individual effort, do at all, or do so well, for themselves." Let us explore the implications of Lincoln’s view for government policy on externalities.

Analysis of Inefficiency

Why do external diseconomies like pollution lead to economic inefficiency? Take a hypothetical coal-burning steel firm, American Steel, Inc., that generates an external diseconomy by spewing out tons of noxious sulfur dioxide fumes. Some of the sulfur harms the steel company, requiring more frequent repainting and raising the firm’s medical bills. But
most of the damage is "external" to the firm, settling throughout the region, harming vegetation and buildings, and causing various kinds of respiratory ailments in people.

Being a sound profit-maximizing enterprise, American Steel needs to decide how much pollution it should emit. With no pollution cleanup, its workers and plant will suffer. Cleaning up every little speck, on the other hand, will require heavy expenses for low-sulfur cleaner fuels, recycling systems, scrubbing equipment, and so forth—so much expense, indeed, that American Steel could not hope to compete with other steelmakers.

The managers therefore decide to clean up just to the point where the firm's extra cost of pollution damage (marginal private damage) is equal to the extra cost of cleanup (marginal cost of abatement). The firm's engineers tell management that at the designated pollution rate of 200 tons per period, an extra ton of pollution will cost $10 in damages to the firm; at the same time, cleaning up an additional ton of pollutant will cost $10. The firm has found its private optimal level of pollution: at 200 tons of pollution the marginal private damage to the firm just equals the marginal cost of abatement. Put differently, when American Steel produces steel in a least-cost manner, it will set its pollution limit at 200 tons.

At this point, an environmental specialist decides to undertake an audit of the steel firm. The auditor is interested in costs to society as well as private costs to American Steel. In examining social costs, the auditor finds that the social costs—including health and property damage in neighboring regions—are 4 times the private costs to American Steel. The damage from each extra ton costs American Steel $10, but the rest of society suffers additional damage of $30 per ton. Why doesn't American Steel include the $30 of additional social damages in its cost calculations? The $30 is excluded because these damages are "external" to the firm and cost it nothing.

We now see how pollution and other externalities lead to inefficient economic outcomes. Allowing firms to pollute in a laissez-faire and unregulated way generates social costs greater than the social benefits—the damages from the extra unit of pollution are much greater than the costs of cleaning up that unit.

In a laissez-faire or unregulated environment, firms will determine their pollution levels by equating the marginal private damage from pollution with the marginal cost of abatement. When the pollution spillovers are significant, the private equilibrium will produce inefficiently high levels of pollution and too little cleanup activity.

Socially Efficient Pollution Let's go a step further and ask about the optimal level of pollution. Why should we allow any pollution? Surely, you might think, a well-managed economy should clean up all its pollution. The surprising answer is that the socially efficient level of pollution is not zero. Efficiency requires that the marginal social damage from pollution equal the marginal social costs of abatement. This equality occurs when the benefits to health and property of reducing pollution by 1 unit just equal the costs of that reduction, and equality is unlikely to be attained at a "zero-discharge" level of pollution.

How might an efficient level of pollution be determined? Economists recommend an approach known as cost-benefit analysis, in which efficient standards are set by balancing the costs of abatement against the benefits of pollution reduction. In the case of American Steel, suppose that engineers and public-health authorities study the cost data for abatement and environmental damage. They determine that incremental costs and benefits are equalized when the amount of pollution is reduced from 200 tons to 100 tons. At the efficient pollution rate, they find that the marginal cost of abatement is $20 per ton, while the marginal damage from one extra ton is also $20.

Why is 100 tons the efficient level of pollution? Because at this emissions rate the net value of production (i.e., the utility of the product less the damages from pollution) is maximized. If American Steel were to emit more than 100 tons of pollution, the incremental damage from pollution would outweigh the savings from lower levels of abatement. On the other hand, if pollution were to be cut below 100 tons, the costs of pollution cleanup would be greater than the gains from cleaner air. Here again, as in many areas, we find the most efficient outcome by equating marginal cost and marginal benefit of an activity.3

3A geometric approach to understanding American Steel's laissez-faire equilibrium and the optimal pollution level is given in question 10 at the end of this chapter.
Use of cost-benefit analysis will show why the extreme environmentalist position of "no risk" or "zero discharge"—to prohibit any pollution—will generally be wasteful. To reduce pollution to zero will generally impose astronomically high costs, while the marginal benefits of reducing the last few grams of pollution may be quite modest. In some cases, it may even be impossible to continue to produce with zero emissions, so a no-risk philosophy might require closing down the steel industry or banning all vehicular traffic. In most cases, economic efficiency calls for a compromise—a substantial but not complete reduction of emissions—balancing the value of the industry's output against the damage from pollution.

An unregulated market economy will generate levels of pollution (or other externalities) such that the marginal private damage of pollution equals the marginal private costs of abatement. The efficient outcome arises when marginal social damage equals marginal social abatement costs. Thus in an unregulated economy there will be too little abatement and too much pollution.

Spillovers from Research The case of external economies is similar. Take research on corn farming. A single farmer will reap but a small benefit from improving the state of corn technology; the bulk of any benefits will spill over to others. Therefore, no profit-maximizing farmer will invest much in agricultural research. Nevertheless, the overall economy will benefit greatly from learning about and adopting new miracle seeds or improved crop rotation in corn farming. Adding up all the millions of marginal private benefits leads to a very substantial marginal social benefit of corn research—but individuals will not undertake much of this beneficial research on their own.

Indeed, it was just this externality that led to the Schumpeterian hypothesis. Schumpeter reasoned that, because monopolies could capture almost all the returns to innovation, externalities would be less pernicious for monopolistic than for competitive industries. Because monopolies could appropriate a significant portion of the economic gains from invention, according to Schumpeter, invention and innovation would be relatively rapid in concentrated industries.\(^4\)

POLICIES TO CORRECT EXTERNALITIES

A casual observer of modern society will note the pervasive presence of externalities. Harmful externalities include air and water pollution, unsafe factories and accidental nuclear releases, perils from drunk drivers or gargantuan trucks, strip-mined land or abandoned buildings. In earlier centuries, unsuspecting people could be struck down by plague or smallpox, while today the deadly AIDS virus can infect health-care professionals or unwary partners in drugs or sex. Such externalities are realities that call for government action in modern society.

We benefit from positive externalities as well. Inventors like Edison (light bulb and phonograph), Bell (telephone), Salk (polio vaccine), Farnsworth (television), Carrier (air conditioning), and Carlson (xerography) garnered but a small fraction of the profound benefits of their work. Think also of the radio and TV signals that we receive free of charge or of the public-health policies that have all but eradicated smallpox, polio, typhus, and malaria. For all these externalities, governments have alleviated inefficient, laissez-faire outcomes by taking collective action. What are the weapons that government can use to combat inefficiencies arising from externalities?

Government Policies

Governments today take a number of different steps to combat externalities, using either direct controls or financial incentives to induce firms to decrease harmful externalities or to increase beneficial activities. In this section we focus primarily upon government steps to restrain pollution and other harmful activities.

Direct Controls For almost all pollution, as well as health and safety externalities, governments rely on direct controls. Here, a firm is ordered to reduce the external effect in question.

For example, under the 1970 Clean Air Act, allowable emissions of three major pollutants were reduced by 90 percent. In 1977, utilities were told to reduce sulfur emissions on new plants by 90 percent. In 1984, firms were required to reduce the amount of asbestos in their plants to no more than two fibers per

\(^4\) See Chapter 12 for a further discussion of the Schumpeterian hypothesis.
cubic centimeter of air. And so it goes with regulation.

How does the government enforce a pollution regulation? Let us continue our example of American Steel, which might have been told that it can emit no more than 100 tons of particulate matter. The state Department of Environmental Protection would not tell American Steel how to meet the standard, as long as the standard is met. If standards are appropriately set, and if the firm duly complies, then the outcome might approach the ideal, efficient pollution level described in the last section.

Unfortunately, pollution-control programs seldom work in such an ideal fashion. Rather, direct controls have been shown to suffer from severe government failures of the kind discussed in section B of this chapter.

What failures arise in government pollution-abatement programs? We described above the necessity for comparing costs and benefits in determining the most efficient level of pollution. In reality, cost-benefit comparisons are often not performed. Indeed, for some regulatory programs, the law prohibits a cost-benefit comparison as a way of setting standards. Rather, the 1970 Clean Air Act has often been interpreted to require that the marginal social damage be essentially zero. Taken literally, this policy would require zero emissions—an absurdly costly approach in most cases, as we sketched in the last section.

Second, enforcement is often haphazard. If the penalties for exceeding the standard are very harsh, the firm does face the right incentives. But for most programs, the penalties for noncompliance are minimal (a few thousand dollars plus legal fees). As a result, the firm has a very strong incentive to ignore or evade the pollution standard. Only fines in the hundreds of millions of dollars could correct this incentive problem.

Finally, standards are inherently a very blunt tool. They are generally the same for large firms and small firms, for steel mills in cities and in rural areas, and for acutely hazardous substances and mildly toxic ones. Such rules do not efficiently allocate pollution reduction among firms so that those whose marginal costs of pollution abatement are lowest do the most abatement. In numerous studies it has been shown that, because of the bluntness of pollution standards, the nation is paying about twice as much as it would for the same pollution reduction efficiently engineered.

Emissions Taxes In order to avoid some of the pitfalls of direct controls, many economists have suggested a new instrument: pollution or emissions taxes requiring firms to pay a tax on their pollution equal to the amount of external damage. If American Steel were imposing external costs of $30 per ton on the surrounding community, then the appropriate emissions charge would be $30 per ton. In calculating its private costs, American Steel would find that each ton of pollution would cost it $10 of direct costs plus $30 in fees, for a total of $40 per ton of pollution. By equating the total cost (direct plus emissions fee) with the abatement cost, the firm would be led to curb its pollution back to the efficient level of pollution. If the emissions fee were correctly calculated—a big if!—then profit-minded firms would be led as if by a repaired invisible hand to the optimal point where marginal social costs and marginal social benefits of pollution are equal.

Emissions taxes (or externality taxes more generally) have been proposed by economists on numerous occasions as a way of reducing pollution or externalities in a flexible and efficient manner. Legislatures have been loath to adopt this suggestion, and today only a handful of externality taxes exist, as compared with thousands of regulations.

Private Approaches

Surprisingly, not all solutions involve direct government action. Two private approaches may provide a moderately efficient outcome: private negotiations and liability rules.

Negotiation and the Coase Theorem Let's say that the government decides not to intervene. A startling analysis by Chicago's Ronald Coase suggested that voluntary negotiations among the affected parties would in some circumstances lead to the efficient outcome.5

The conditions under which this might occur arise.

when there are well-defined property rights and the costs of negotiations are low. Thus, say that I am spilling chemicals upstream from you and doing damage to your fish ponds. Further, say that you can sue me for damage to your fish. In such a case, Coase argued, the two of us would have a powerful incentive to get together and agree on the efficient level of dumping.

Some have tried to take Coase’s suggestion even further, arguing that efficient bargains will occur. But this conclusion is surely too optimistic. To say that there is room for an efficient, cost-saving bargain does not mean that a deal will always be struck—as the history of war, labor-management disputes, and the theory of games amply demonstrate.6

Nevertheless, Coase’s analysis does point to certain cases where private bargains may help alleviate externalities—namely where there are few parties and where the gainers and losers from the externalities are clearly identified.

Liability Rules A second approach relies on the legal framework of liability laws or the tort system rather than upon direct government issuance of rules or regulations. Here, the generator of externalities is legally liable for any damages caused to other persons.

In some areas, this doctrine is well established. Thus, in most states, if you are injured because of negligent behavior of the driver of an automobile, you can sue for damages. Or, if a company’s workplace is demonstrably unhealthful, a worker can sue the company for compensation (indeed, a number of asbestos-producing companies are in bankruptcy proceedings because of such claims).

Returning to our steel example, how would a perfect liability system contain the externality? If American Steel caused $30 of damages per ton of output, the victims would recover these damages through the courts. Thus the total cost faced by the firm would be $40 per ton ($10 of direct costs plus $30 of legal damages). Faced with such costs, firms would have strong incentives to reduce pollution back toward the efficient level analyzed above.

Unfortunately, liability rules have shortcomings no less than other systems of attacking externalities. The major difficulty of a liability system resides in the high costs of litigating damages.

* * *

We have now completed our introductory survey of the theory of government’s role in the economy. This review is a sobering reminder of the responsibilities and shortcomings of collective action. On the one hand, responsible and representative governments must defend their borders, stabilize their economies, protect the public health, and regulate pollution. On the other hand, many policies to pursue the public interest suffer from inefficiencies and inconsistencies.

Does this mean we should abandon the visible hand of government for the invisible hand of markets? Economics cannot answer such a deep political question; all it can do is examine the strengths and weaknesses of both collective and market choices, and point to mechanisms (such as pollution taxes or liability rules) where a repaired invisible hand may be more efficient than the extremes of either pure laissez-faire or unbridled bureaucratic rule making.
A. Government’s Role in a Modern Economy

1. The economic role of government has grown vastly. More and more activities in our complex, interdependent society have come under direct regulation and control.
2. A modern welfare state performs four economic functions: (a) It sets the economic framework—laws, constitutions, and rules of the economic game. (b) It establishes macroeconomic stabilization policy to even out the peaks and troughs of unemployment and to contain inflation. (c) It allocates resources to collective goods by taxing, spending, and regulating when market failure becomes important. (d) It redistributes resources by social welfare transfers.

B. Public-Choice Theory

3. In the normative theory of the state, government has the four functions discussed in section A. Public-choice theory analyzes how governments actually behave. In a complex and interdependent modern economy, government actions can serve to increase society’s real income.
4. Public choice involves the aggregation of individual preferences into a collective choice. Under unanimity, all decisions must be made by consensus. Unanimity has the ideal property that all decisions are Pareto improvements (no one can be hurt), but the costliness of persuading everyone is so great that, in practice, no decisions are likely to be made under unanimity.
5. Thus most committees and legislative bodies use majority rule, which ensures that decisions will improve the welfare of at least half the voters. But majority rule suffers from a problem of ‘‘tyranny by the majority,’’ and of the possibility of cyclical voting whereby, in the face of diverse tastes, no single program may command a majority.
6. Just as the invisible hand can break down, so there are government failures. These are cases where, because of the need for less-than-unanimous decisions, inefficient or inequitable outcomes can arise. Important cases are capture of a legislature by well-financed minorities or lobbies, the tendency of governments to finance too large programs for too long, and the short time horizons that plague competitive electoral arrangements.

C. Public Choice and Externalities

7. One major example of market failure that may require collective actions is external effects. These occur when the costs or benefits of an activity spill over to other people, without those other people being paid (or paying) for the costs (or benefits) received.
8. The most extreme example of an externality arises for public goods, like defense, where all consumers in a group share equally in the consumption and cannot be excluded. Less extreme examples like public health, inventions, parks, and dams also show public-good properties. These contrast with private goods, like bread, which can be divided and provided to a single individual.
9. Markets with externalities like pollution exhibit economic inefficiency: they will have laissez-faire or market equilibria in which the private marginal abatement costs and private marginal damages are equalized, rather than the social marginal abatement costs and social marginal damages being equal.

10. There are numerous steps by which governments can internalize or correct the inefficiencies arising from externalities. Alternatives include decentralized solutions (such as negotiations or legal liability rules) and government-imposed approaches (such as pollution emission standards or emissions taxes). Our experience indicates that all approaches show considerable inefficiency.

CONCEPTS FOR REVIEW

- four functions of government:
 - framework, stabilization, allocation, and distribution
- market failures:
- private vs. public goods
- public choice by: unanimity, majority rule
- voting paradox
- government failures: capture, myopia, bureaucracy, externalities
- inefficiency of externalities
- social vs. private cost
- remedies for externalities: bargaining, liability, standards, and taxes

QUESTIONS FOR DISCUSSION

1. Name things government does now that it once didn’t do. Can you think of things government used to do that it no longer does? What does this changing pattern of government activity indicate about the changing role of government in steering the economy?
2. Between now and 2000, would you expect the government’s share in the national income to change? Why? What factors affect your answer?
3. It is useful to think of a spectrum of goods from purely public to purely private. On a piece of paper, draw a continuum and fill it with examples that are purely private, mostly private, half-and-half, mostly public, purely public. Under what conditions would you allow the market to allocate resources and when would you have the government make the economic decisions?
4. "The radical doctrines of three decades ago are the conservative doctrines of today." Is this ever true? Always true? Evaluate.
5. Evaluate critically the statement on the proper role of government attributed to Abraham Lincoln on page 425. Could believers in big government as well as believers in small government both agree with it?
6. "Local public goods" are ones that mainly benefit the residents of a town or state—such as beaches or schools open only to town residents. Is there any reason to think that towns might act competitively to provide the correct amount of local public goods to their residents? If so, does this suggest an economic theory of "fiscal federalism" whereby local public goods should be locally supplied?
7. Consider each of the following externalities. Decide whether it is serious enough to warrant collective action, and which of the four remedies considered in the chapter you would think to be most efficient.
 (a) Steel mills emitting sulfur oxides into the Birmingham air
 (b) Drunk drivers running into people or bushes
 (c) People smoking in airplanes
 (d) Students smoking in their single rooms
 (e) Drivers under the influence of alcohol involving 25,000 fatalities per year
 (f) Drivers under 21 under the influence of alcohol

8. Can you see why a market allocation of bread proceeds by unanimity? Why is this not possible for national defense? Does this difference suggest why the bread allocation may lead society to the utility-possibility frontier, while the national defense allocation may not?

9. In considering whether you want a pure laissez-faire economy or government regulation, discuss whether there should be government controls over: prostitution, drugs, and alcohol. Should there be a free market for body organs, adopted babies, and surrogate parenting?

10. Advanced problem: Figure 19-6 illustrates the pollution example of American Steel discussed in section C. The downward-sloping black curve shows the marginal cost of reducing pollution at each pollution level, while the solid red line measures the

SUPPLY AND DEMAND WITH EXTERNALITIES

![Graph showing supply and demand with externalities](image)

Figure 19-6 Inefficiency arising from externalities
marginal social damage exacted by American Steel's pollution. The dashed line, by contrast, shows the marginal private damage done by American Steel to itself.

Explain why point P represents the inefficient laissez-faire and unregulated outcome. Further explain why point E is the efficient outcome.

For extra credit, try to show how each of the four policy approaches (see pp. 427–429) moves the private equilibrium from P to E.

11. W. Averell Harriman, the eminent American diplomat who negotiated the nuclear test-ban treaty, once stated, "The difficulty of negotiating an agreement rises with the square of the number of participants." What is the implication of Harriman's Law for
(a) the feasibility of unanimity as a method of choosing the defense budget?
(b) the workability of the Coase approach as a market solution to externalities like pollution?
(c) the need for governments to pass coercive laws—ones that interfere with some individuals' choices—deciding where nuclear wastes are stored?
(d) Justice Holmes' dictum that "taxes are the price we pay for a civilized society"?
CHAPTER 20
ECONOMIC ROLE
OF GOVERNMENT:
EXPENDITURE
AND TAXATION

The spirit of a people, its cultural level, its social structure, the deeds its policy may prepare, all this and more is written in its fiscal history. . . He who knows how to listen to its messenger here discerns the thunder of world history more clearly than anywhere else.

Joseph Schumpeter

The last chapter analyzed the purposes underlying government intervention. We now examine the actual tax and spending behavior of different levels of American government. Section A begins with a brief discussion of the expenditures of government on the federal, state, and local level. We see, as well, some of the major changes in fiscal programs wrought under the Reagan administration. Section B then turns to the principles of taxation. We survey the federal tax system, and then review taxation at the state and local levels.

Finally comes the problem of tax incidence—upon whom does the burden of each tax ultimately fall? How does the tax burden on rich and poor compare with the transfer payments (such as welfare or social security benefits) received by each income group? The answers to these questions will help us to understand the message of fiscal history for different groups in our society.
A. GOVERNMENT EXPENDITURES

FEDERAL, STATE, AND LOCAL FUNCTIONS

Each American faces three levels of government: federal, state, and local. Before the twentieth century, local government was by far the most important of the three. The federal government did little more than pay for national defense, meet pensions and interest payments on past wars, finance a few public works, and pay salaries of government officials. Most of its tax collection came from liquor and tobacco excises and tariffs levied on imports. Life was simple. Local governments performed most functions and depended primarily on property taxes for their finance.

Figure 20-1 plots the trends in government spending. You can see that the share of federal spending in GNP tripled during the Great Depression and bulged temporarily during World War II. Since 1940, federal spending has surpassed state and local spending.

Federal Expenditures

The U.S. government is the world’s biggest business. It buys more automobiles and steel, meets a bigger

![Trends in Government Spending, 1929–1988](image)

Figure 20-1 The share of government spending grew in war and peace

Federal spending rose rapidly in the Great Depression and bulged during World War II. In the 1960s and 1970s, government spending on income-support payments showed the steepest trends, while in the 1980s interest payments and defense spending grew most rapidly. Note how little the Reagan administration’s policies succeeded in slowing the trend toward larger government spending. (Source: U.S. Department of Commerce.)
payroll, and handles more money than any organization anywhere. The numbers involved in federal finance are astronomical—in the billions and trillions of dollars. The federal budget for 1989 is projected to be $1094 billion; this enormous number amounts to $4380 for each American or approximately 2.6 months of annual GNP.

Table 20-1 lists the major categories of federal expenditure for fiscal year 1989 (the federal fiscal year 1989 covers October 1, 1988, through September 30, 1989). By far the largest item is national security and international affairs, which includes the cost of equipping and staffing the Department of Defense. The most rapidly expanding item in the last two decades has been “entitlement programs”—those that provide benefits or payments to any persons who meet certain eligibility requirements set down by law. The major entitlements are social security (old-age, survivors, and disability insurance), health programs (including Medicare for those over 65 and Medicaid for indigent families), and income security programs (including payments for food, unemployment insurance, and cash payments to the poor).

Another category includes programs for specific sectors of the economy: supporting agriculture, giving grants to local governments for sewage systems, and supporting space exploration. A final category is general government, those traditional functions of government such as paying for Congress, the judiciary, and the President. It is surprising to see that these traditional functions are dwarfed by all the rest.

Looking back at Figure 20-1, you might wonder why government’s share in the economy has grown so rapidly in recent years. Virtually the entire growth in federal spending can be accounted for by entitlement programs, which have grown from 20 percent of the budget in 1960 to 45 percent in 1989. Taken together, all other programs have actually shrunk since 1960.
The federal government budget has grown during the last quarter-century because the populace has voted larger and larger transfer payments to itself.

State and Local Expenditures

Turn now to spending by state and local governments. Although outlays at lower levels are but two-thirds of federal amounts, many essential functions are performed by these smaller jurisdictions. Figure 20-2 illustrates the way states and localities spend their money. By far the largest item is education, for most of the nation’s children are educated in schools financed primarily by local governments. Only at the college level does the private sector become a significant part of education expenditures. By attempting to equalize the educational resources available to every child, the nation helps to level out the otherwise great disparities in economic opportunity.

Fiscal Federalism

Students of American government are familiar with a division of political responsibilities among the different levels of government. A similar division of labor occurs in economic affairs. Ours is a fiscal federalism as well as a political federalism. The federal government is firmly entrenched in affairs that concern the entire nation—paying for defense, space, and foreign affairs. Local governments educate children, police streets, and remove garbage. States build highways and administer welfare programs.

As you examine Table 20-1 and Figure 20-2, you can see how the different kinds of expenditures are parcelled out among the three levels of governments. Designing the appropriate system of fiscal federalism requires understanding the degree of spillover or externality in government programs (recall the discussion of externalities in Chapter 3 and in the last chapter). Generally, localities are responsible for “local public goods,” activities whose spillovers to other regions are small. Since libraries are used by townspeople and streetlights illuminate city roads, these are appropriately paid for by local residents. Many federal functions, by contrast, spill over to all the nation’s citizens (that is, federal activities cover “national public goods”). For example, an AIDS vaccine would benefit people from every state, not just those living near the laboratories where it is discovered; similarly, missiles sitting in North Dakota silos defend the entire country, not just the borders of the state where they are housed. Hence an efficient system of fiscal federalism will take into account the nature of the spillovers in government programs.¹

The boundaries between the fiscal functions change over time. Hamilton, Roosevelt, and Johnson were leaders who broadened the federal role, while Presidents Jefferson, Coolidge, and Reagan attempted to check or reverse the accretion of fiscal powers at the

¹What about world public goods like the global environment and climate, or global peril to species or rain forests, or the condition of the oceans? Does the lack of a world government suggest that global spillovers or externalities receive inadequate government attention?
B. ECONOMIC ASPECTS OF TAXATION

Taxes are what we pay for a civilized society.

Justice Oliver Wendell Holmes

Obviously the government needs money to pay for its expenditure programs. It gets this money mainly from taxes, and also, in recent years, from borrowing. But if we look behind the money flows, what the government needs to build a missile or run a school is real economic resources. Government needs aluminum and teachers, or more generally, government has to draw upon the economy's scarce land, labor, and capital.

In choosing the structure of taxation, governments are in reality deciding how the needed resources shall be drawn from the nation’s households and businesses and put into collective consumption and investment. So the money raised through taxation is the vehicle by which real resources are transferred from private goods to collective goods.

PRINCIPLES OF TAXATION

In the distant past, taxes were levied by those in power against those out of power. A nobleman in the court of Louis XIV might go scot-free, while a peasant in Normandy was heavily burdened. Such arbitrary distribution of taxes eventually gave way to more thoughtful fiscal principles as economists and political philosophers developed more rational approaches to tax policy.

Benefit vs. Ability-to-Pay Principles

Of the many principles underlying optimal taxation, two can be distinguished:

* That different people should be taxed in proportion to the benefit they receive from government programs. Just as people pay private dollars in proportion to their consumption of private bread, isn't it reasonable that a person's taxes should be related to his or her use of public roads or parks? This is the benefit principle.

* That the amount of taxes people pay should relate to their income, wealth, or ability to pay. Stated differently, taxation should be arranged to help accomplish what society regards as the proper and equitable distribution of incomes.³ This is the ability-to-pay principle.

Horizontal and Vertical Equity: In addition to these general principles, tax systems attempt to incorporate modern views about fairness or equity. One important principle is that of horizontal equity, which states that those who are essentially equal should be taxed equally.

The notion of equal treatment of equals has deep roots in Western culture. If you and I are alike in every way except the color of our eyes, all principles of taxation would hold that we should pay equal

³Economists following in the utilitarian tradition (see the discussion of utilitarianism in Chapter 6) used to argue that the utilities or satisfactions of different people can be added together to form a total social utility or satisfaction. Thus, if each extra dollar brings less and less extra satisfaction to each of us, and if the rich and poor are alike in their capacity to enjoy consumption, a dollar taxed away from a millionaire and given to a poor person is supposed to add more to total social utility than it subtracts. This suggests that, because those with higher income (or higher "abilities to pay") have less extra satisfaction from their last dollars than do poorer people, putting a larger tax share on higher-income people will increase total social satisfaction. See Chapter 6 for a discussion of the law of diminishing marginal utility, the appendix of Chapter 11, and especially Figure 11A-2, provides an illustration of how redistributing income from high-income to low-income individuals can raise the average utility or satisfaction of the population.
taxes. In the case of benefit taxation, if we receive exactly the same services from the highways or parks, the principle of horizontal equity states that we should therefore pay equal taxes. Or if a tax system followed the ability-to-pay approach, horizontal equity would dictate that people who have equal incomes should pay the same taxes.

In the last decade, unequal treatment in the American income-tax system led many to question its fairness. In 1976 President Carter called the tax code a "disgrace to the human race," and in 1986 President Reagan successfully negotiated a massive tax reform bill that tended to equalize taxation of equal incomes.

A more difficult issue, that of vertical equity, concerns the treatment of unequal, or the treatment of people in different circumstances. A traditional statement of this principle is: If equals are to be taxed equally, then unequals should be taxed unequally.

Unfortunately, this doctrine provides little guidance for resolving society’s tax-policy issues. Imagine that A and B are alike in every respect except that B has 10 times the property and income of A. Does that mean that B should pay the same absolute tax dollars for police protection as A? Or that B should pay the same percentage of income in taxes to defray police expenses? Or if the police need more time to protect the property of well-to-do B, is it not fair for B to pay a larger fraction of income in taxes?

The principles of public finance simply cannot provide the best tax formula. It is one thing to say that the rich have greater ability to pay taxes than the poor or that they receive greater benefits. But general and abstract principles of taxation cannot resolve fundamental political questions of how differently unequals should be treated or how to define equity.

Pragmatic Compromises in Taxation

How have societies resolved these thorny philosophical questions? Governments have generally adopted pragmatic solutions that are based on neither benefit nor ability-to-pay approaches. Political representatives know that taxes are highly unpopular. After all, the cry of "taxation without representation" helped launch the American Revolution. Modern tax systems are an uneasy compromise between lofty principles and political power. As the canny French finance minister Colbert wrote three centuries ago, "Raising taxes is like plucking a goose: you want to get the maximum number of feathers with the minimum amount of hiss."

What practices have emerged? Where various public services at the local and national levels primarily benefit recognizable groups, and where those groups have no special claim for favorable or unfavorable treatment by virtue of their average incomes or other characteristics, modern governments generally rely on taxes of the benefit type.

Thus, local roads are usually paid for by local residents. Water and sewage treatment are often treated like private goods. Taxes collected on gasoline may on the whole be specifically devoted (or "earmarked") for roads.

Progressive and Regressive Taxes On the other hand, considerable reliance has been placed on graduated income taxes. A family with $50,000 of income is taxed more than one with $20,000 of income. Not only does the higher-income family pay a larger income tax, but it in fact pays a progressively higher fraction of its income.

This "progressive" tax is in contrast to a strictly "proportional" tax, which makes all taxpayers pay exactly the same proportion of income. A "regressive" tax takes a larger fraction of income in taxes from poor than from rich families.

A tax is called proportional, progressive, or regressive depending upon whether it takes from high-income people the same fraction of income, a larger fraction of income, or a smaller fraction of income than it takes from low-income people.

The different kinds of taxes are illustrated in Figure 20-3 on the next page. What are some examples? A personal income tax that is graduated to take more and more out of each extra dollar of income is progressive. A comprehensive sales tax will be mildly regressive. But a tax that is strictly proportional to the size of one’s estate left at death is progressive since the person with twice the income tends on the average to have and bequeath more than twice the wealth. (It should be noted that the words "progressive" and "regressive" are technical economic terms relating to the proportions that taxes bear to different incomes. Do not interpret them in emotional or political terms.)
Direct and Indirect Taxes
Aside from their degree of progressivity, taxes can also be classified as direct or indirect. Indirect taxes are usually defined as taxes that are levied on goods and services and thus "indirectly" on individuals. Examples are excises and sales taxes, cigarette and gasoline taxes, tariff duties on imports, and property taxes.

Over the last century, legislatures in all democracies have increasingly relied upon direct taxes, which are levied directly upon individuals or firms. Examples of direct taxes are personal income taxes, social security or other payroll taxes, and inheritance and gift taxes. Corporation income taxes are also treated as direct taxes, because people receive the income of corporations. A major reason direct taxes have become increasingly popular is that these taxes can easily be tailored to fit personal circumstances, such as size of family, income, age, and more generally the ability to pay. By contrast, adjusting indirect taxes for personal situations is relatively difficult.

FEDERAL TAXATION
Let us begin our analysis of taxation with a survey of the federal system of taxation in place in the late 1980s. Table 20-2 provides an overview of the major taxes and shows whether they are progressive, proportional, or regressive.

Sales and Excise Taxes
Although no national sales tax has been passed, there are a number of federal excise taxes on specific commodities such as cigarettes, alcohol, and gasoline. Sales and excise taxes are generally regressive, because consumption in general, and purchase of these items in particular, takes a larger fraction of the income of a poor family than of a rich one.

Many economists and political leaders have argued for relying much more heavily on sales or consumption taxes than the United States has up to now. They reason that the country would like to encourage people to work hard and to earn income, and similar to the reason that people should plough back those incomes into investment in plant and equipment rather than spend their earnings on consumption goods. To bring about this change in behavior, they argue, the country should substitute consumption taxes for income taxes. Critics of consumption taxes hesitate to move in that direction because of the regressive nature of sales taxes.

This debate is unlikely to be resolved in the near future. Nonetheless, these issues will be vital as the nation decides how to reduce its government deficits, whether to raise taxes, and what role consumption taxes should play in the coming years.

Social Insurance Taxes
Virtually all industries now come under the Social Security Act. Workers receive retirement benefits that depend upon their earnings history and past social security taxes. The social insurance program also funds a disability program and health insurance for the poor and elderly.

To pay for these benefits, employees and employers are charged a "payroll tax." In 1988, this con-
FEDERAL TAX RECEIPTS, FISCAL YEAR 1989

<table>
<thead>
<tr>
<th>Type of Tax</th>
<th>Receipts (billions of dollars)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Progressive</td>
<td></td>
</tr>
<tr>
<td>Individual income taxes</td>
<td>412</td>
</tr>
<tr>
<td>Death and gift taxes</td>
<td>8</td>
</tr>
<tr>
<td>Corporation income taxes</td>
<td>118</td>
</tr>
<tr>
<td>Proportional</td>
<td></td>
</tr>
<tr>
<td>Payroll taxes</td>
<td>355</td>
</tr>
<tr>
<td>Regressive</td>
<td></td>
</tr>
<tr>
<td>Excise taxes</td>
<td>52</td>
</tr>
<tr>
<td>Tobacco and alcohol</td>
<td>11</td>
</tr>
<tr>
<td>Customs duties</td>
<td>17</td>
</tr>
<tr>
<td>Highways and airports</td>
<td>18</td>
</tr>
<tr>
<td>Other</td>
<td>6</td>
</tr>
<tr>
<td>Other taxes and receipts</td>
<td>20</td>
</tr>
<tr>
<td>Total</td>
<td>965</td>
</tr>
</tbody>
</table>

Table 20-2 Income and payroll taxes are the main federal revenue sources. Graduated progressive taxes are still the leading source of federal revenues, but proportional payroll taxes are closing fast. *(Source: Office of Management and Budget, Budget of the U.S. Government, Fiscal Year 1989.)*

The corporation income tax is probably the most controversial of federal taxes. Many economists oppose this tax, arguing that the corporation is but a legal fiction. By taxing first corporate profits, then the dividends paid by corporations and received by individuals, the government subjects corporations to double taxation. The double taxation means that income from corporations is the most heavily taxed part of the economy, and corporate investment is thereby discouraged.

Some economists advocate abolition of the corporation income tax. They would instead credit corporate-source income to the corporation’s owners and tax the income at personal tax rates. Studies indicate that this step would improve the efficiency of the economy by a few billion dollars.

Those who advocate retaining the corporation tax do so on several grounds. They argue that the corporation tax is our most progressive tax, so its abolition would lower the degree of progressivity of the overall tax system (a result they do not favor). Some feel that a wide variety of taxes at low rates is a good idea. Others think that it is impractical to tax individuals on corporate income which has not actually been paid out to individuals. Some worry that the political system would be unwilling to write a more efficient substitute for the corporate tax and would probably increase regressive sales taxes. Some simply lean on the adage, “An old tax is a good tax.”

While economists debated the corporation tax, circumstances changed. Businesses attacked the tax, and its revenues fell sharply as tax credits were enacted and depreciation allowances became more generous. The share of federal revenues raised by the corporation tax fell from 33 percent in 1951 to 9.8 percent in 1987. By the mid-1980s, many large corporations paid no taxes, and liberal groups pilloried a tax system under which a working family that earned $15,000 paid more taxes than some multinational companies with $10 billion of sales.

The Tax Reform Act of 1986 placed a hefty new tax...
burden on corporations. It repealed the investment tax credit and repealed a number of generous tax shelters. The net effect was to increase federal taxes on companies by about one-quarter for the late 1980s.

Value-Added Taxes

Finally, mention should be made of a tax that has been widely used by the Common Market countries of Europe. The value-added tax, or VAT, as it is called for short, collects taxes at each stage of production. Thus, for a loaf of bread, VAT is collected at the farmer's wheat stage of production, also at the miller's flour stage of production, at the baker's dough stage, and finally, at the grocer's delivered-loaf stage of production.

How, then, does it differ from a so-called turnover tax, widely used in the U.S.S.R. and by Common Market countries before VAT? A turnover tax simply taxes every transaction made: wheat, flour, dough, bread. VAT is different because it does not include in the tax on millers' flour that part of its value which came from the wheat bought from the farmer. Instead, VAT taxes millers only on the wage and salary cost of milling, and on the interest, rent, royalty, and profit cost of this milling stage of production. That is, the raw-material costs used from earlier stages are subtracted from the selling price in calculating "value added" and the VAT on the value added.

It is easily seen, then, that VAT is essentially the same as a national sales tax.

From time to time, Congress becomes infatuated with the idea of a value-added tax. Why so? In part, the appeal arises because the VAT is a tax on consumption, and many economists think that the United States should change its tax structure toward one based on consumption and away from one based on income.

In addition, some people may support VAT as a tax which has a good public image—it is a politically palatable sales tax, a sales tax that has been presented in a way that the electorate might accept. One pundit called VAT "the Sexy European."

Overall, is VAT a good idea? As with old age, it depends on the alternative. The most objective way of analyzing it would be to call VAT a national sales tax and then to compare it with other taxes.

The Individual Income Tax

The most important and complex tax— affecting everybody in the nation—is the individual income tax. All advanced industrial countries tax the incomes of their residents and citizens, but this tax is particularly important in the United States. Of all taxes, this one is most carefully tailored to the individual's ability to pay.

The individual income tax arrived late in our nation's history, for the Constitution forbade any direct tax that was not apportioned among the states according to population. In 1913, the Sixteenth Amendment to the Constitution provided that "Congress shall have power to lay and collect taxes on income, from whatever source derived, without apportionment among the several States. . . ."

The individual income tax raised much controversy but little revenue until World War II. Then, to raise money for the war effort, tax rates were increased sharply with the top tax rate reaching 94 percent in 1944-1945. After the war, the income tax continued as the most significant federal tax with the tax rate paid by those with highest incomes reduced to 70 percent in 1965, 50 percent in 1982, and 28 percent in 1988.

Periodically, the country rises up and, literally or figuratively, revolts against its tax system. The most recent revolt occurred in the mid-1980s when the perceived inequities in the system led political figures as disparate as liberal Senator Bill Bradley and conservative President Ronald Reagan to join forces in an assault on the tax code. The result was the landmark Tax Reform Act of 1986, which represented the most sweeping change in the tax code in a generation (some of the major features will be discussed below).

How does the federal income tax work? The principle is simple, although the forms are complicated. You start by calculating your income; you then subtract certain expenses, deductions, and exemptions, obtaining taxable income; you then calculate your taxes from a tax table.

The calculation of individual taxes is illustrated for a simple case in Table 20-3. This table shows the taxes faced by a family of four in 1988, after the 1986 Tax Reform Act was fully phased in.
<table>
<thead>
<tr>
<th>(1) ADJUSTED GROSS INCOME (before exemptions and deductions)</th>
<th>(2) INDIVIDUAL INCOME TAX</th>
<th>(3) AVERAGE TAX RATE, PERCENT (\frac{(2)}{1} \times 100)</th>
<th>(4) MARGINAL TAX RATE (= tax on extra dollar)</th>
<th>(5) DISPOSABLE INCOME AFTER TAXES (= (1) - (2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ 5,000</td>
<td>$ -700</td>
<td>-14.0%</td>
<td>-14%</td>
<td>$ 5,700</td>
</tr>
<tr>
<td>10,000</td>
<td>-800</td>
<td>-8.0</td>
<td>14</td>
<td>10,800</td>
</tr>
<tr>
<td>20,000</td>
<td>1,080</td>
<td>5.4</td>
<td>15</td>
<td>18,920</td>
</tr>
<tr>
<td>50,000</td>
<td>5,148</td>
<td>10.3</td>
<td>28</td>
<td>44,852</td>
</tr>
<tr>
<td>100,000</td>
<td>16,348</td>
<td>16.3</td>
<td>33</td>
<td>83,652</td>
</tr>
<tr>
<td>150,000</td>
<td>29,563</td>
<td>19.7</td>
<td>33</td>
<td>120,437</td>
</tr>
<tr>
<td>200,000</td>
<td>42,763</td>
<td>21.4</td>
<td>28</td>
<td>157,237</td>
</tr>
<tr>
<td>1,000,000</td>
<td>221,816</td>
<td>22.2</td>
<td>28</td>
<td>778,184</td>
</tr>
<tr>
<td>10,000,000</td>
<td>2,237,816</td>
<td>22.4</td>
<td>28</td>
<td>7,762,184</td>
</tr>
</tbody>
</table>

Table 20-3 Federal income tax for a family of four, 1988

The table shows the average and marginal federal tax rates as well as total taxes and disposable incomes for a representative four-person family in 1988. Because of the earned-income tax credit, low-income workers with children get a tax rebate (this being a small "negative income tax"). Income is taxed first at 15 percent, then at 28 percent, then at 33 percent for high-income families until the average tax rate on taxable income reaches 28 percent. For the very highest incomes, the marginal tax rate is again 28 percent. [Source: U.S. Internal Revenue Service. This table assumes that deductions are the greater of the standard deduction ($5,000 for 1988) or 20 percent of income.]

Column (1) shows different levels of "adjusted gross income"—that is, wages, interest, dividends, and other income earned by the household.

Assuming that our household has four people, and takes certain deductions, column (2) shows the tax due. Note that the tax is actually negative for those with wage incomes of $5000 and of $10,000, indicating that the government is transferring income to low-income families. For people with positive taxes, the lowest "marginal-tax rate," or extra tax per dollar of extra income, is 15 percent. Taxes then rise rapidly in relation to income. Indeed, when income climbs to $10 million, around 22 percent will go to the government. The current top marginal rate of 28 percent is well below the 70 percent rate of the late 1960s or the 94 percent rate of the 1940s.

Column (3) shows just how progressive the personal income-tax code really is. A $30,000-a-year family is made to bear a relatively heavier burden than a $20,000-a-year family—the former pays 10 percent of income in taxes, while the latter pays only 5 percent. Someone earning $1 million each year is made to bear a still heavier relative burden.

Column (4) records the important marginal tax rate at each level of income. This begins at minus 14 percent for poor families, rises to 15 percent for those just entering the positive tax system, increases to 33 percent, then has a tax rate at the highest incomes of 28 percent.

Column (5) shows the amount of "disposable income left after taxes." Note that it always pays to get more income: even when a star tennis player moves into a higher tax bracket, the move gives her more income to keep. Confirm that the government never takes more than 33 cents out of each extra dollar.

*"Note our friend "marginal," meaning extra. The notion of marginal tax rates is extremely important in modern economics. Remember the idea that people are affected by the extra costs or benefits that occur "let bygones be bygones." Under this principle, the major effect of any taxes on incentives to supply capital or labor comes from the marginal tax rate. This notion has formed the intellectual core of modern "supply-side economics."
Erosion of the Tax Base

The U.S. government collects a larger fraction of its revenues from income taxes than most countries. It is interesting to note that the United States also has the lowest tax rates of any major industrial country. Table 20-4 shows that, after the Reagan economic revolution, the United States now has top individual tax rates far below those of other major industrial countries. How can the United States raise so much in taxes with such low tax rates? This paradox is easily answered: the American tax system includes more items in the definition of "taxable income" than do other countries. That is to say, the number of exclusions and deductions from taxable income are fewer here than elsewhere.

At the same time, while most people face marginal tax rates of 15 or 28 percent, individual income taxes nonetheless average less than 10 percent of GNP. The difference arises because several items of income are excluded from taxation. Some call these untaxed items "loopholes," while more neutral terms are "tax preference" and "tax expenditure." The nature of tax expenditures is that these sources of income receive preferential tax treatment. What are some of the untaxed items?

First, there are exemptions of $1950 per person for 1988. In addition, a married couple may take a "standard deduction," or subtraction from income, of $5000 in 1988. (Both these amounts increase each year with inflation.)

Second, some income avoids taxation by going to the "underground economy": cheating by farmers, doctors, or sales agents with fake expense accounts. In recent years the government estimates that 10 percent of taxable income is not reported.

Third, and more important than evasion, is legal tax avoidance. This is possible because Congress legislates many tax preferences that let certain income go lightly taxed or not taxed at all. There are so many preferences that they could fill a book (indeed, they do fill the IRS Code!). Examples include interest on state and local bonds, partial exclusion of social security benefits and payments for pensions, deductibility of most state and local taxes, and special treatment of income in certain industries such as oil and gas. Many tax preferences were trimmed in the 1986 tax act, and Table 20-5 shows the most important remaining ones.

The Flat Tax

Because of the continual erosion of the tax base by expansion of tax preferences, many have suggested a fundamental reform of the personal income-tax system called the "flat tax." This suggestion would include two steps: 5

- Eliminate all loopholes by taxing all income once.
- Tax all income above an exemption level at a fixed (or flat) rate of around 20 percent.

At a stroke, this system would eliminate the preference for housing and medical care, while lowering the tax rate on capital income and high wages and sala-

TAX EXPENDITURES, 1989

<table>
<thead>
<tr>
<th>Description</th>
<th>Billions</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Exclusion of pension contributions</td>
<td>$53.5</td>
</tr>
<tr>
<td>2. Deductibility of mortgage interest on owner-occupied homes</td>
<td>32.2</td>
</tr>
<tr>
<td>3. Exclusion of employer contributions for medical expenses</td>
<td>27.7</td>
</tr>
<tr>
<td>4. Deductibility of state and local taxes (other than on owner-occupied homes)</td>
<td>17.3</td>
</tr>
<tr>
<td>5. Exclusion of social security benefits</td>
<td>13.5</td>
</tr>
<tr>
<td>6. Capital gains carryover at death</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Total:
- **Top 6 items**: $156.7
- **All individual tax expenditures**: $246.7

Table 20-5 Tax preferences erode the tax base

Analysts have devised the term “tax expenditures” to reflect the fact that Congress can spend money directly by writing a check or indirectly by giving a tax break. The table shows the major tax preferences or tax expenditures. These are calculated by determining the amount of income excluded from the tax base and multiplying these numbers by the applicable tax rate. (Source: Office of Management and Budget, *Budget of the U.S. Government, Fiscal Year 1989*.)

Rories. It would put thousands of tax lawyers out of business. The economy would become more efficient as people spent less time worrying about the impact of their actions on taxes and more time worrying about production of aircraft and computers and generation of innovations.

The rationale behind the flat tax was influential in the 1970s and 1980s and helped pave the way to the landmark Tax Reform Act of 1986.

THE REAGAN FISCAL REVOLUTION

From the election of Franklin Roosevelt in 1932 to the defeat of Jimmy Carter in 1980, the United States experienced a steady growth in the scale and scope of government. As we have seen, the federal government assumed countless new tasks, undertook to build dams and regulate power plants, increased its tax take and bolstered income-support programs, enacted social security, and printed food stamps. At the end of the 1970s, conservatives demonstrated that the United States was becoming a planned economy.

President Reagan came into office in 1981 with a different vision of how the economy should be managed. This view held that individual initiative and unfettered markets would produce the best possible economic outcome. President Reagan stated his philosophy succinctly:

> My program [is] a careful combination of reducing incentive-stifling taxes, slowing the growth of federal spending and regulations, and a gradually slowing expansion of the money supply... That environment will be an America in which honest work is no longer discouraged by ever-rising prices and tax rates.

In February 1981 the Reagan administration introduced its “New Economic Policy.” Although some shifts occurred, the fundamental tenets were generally followed closely through the next 8 years.

Overall Economic Policy

The Reagan years stressed managing the “supply side” rather than the “demand side” of the economy. In practice, this meant that economic policy should take microeconomic measures to improve productivity and economic efficiency rather than focusing upon macroeconomic steps to stabilize the overall economy. Under the Reagan approach, macroeconomic policies, such as those involving the rate of growth of the money supply or the level of government spending, should be set with long-run expenditure goals in mind and not be “fine-tuned” in reaction to the business cycle. The Reagan economic philosophy advocated a return to the policy of the pre-Depression era, when the federal government took no active responsibility for managing the macroeconomy.

The performance of the economy during the Reagan years, as sketched briefly in Table 20-6, showed little improvement in most of the major indexes of economic policy: unemployment was higher than in the previous two decades; inflation averaged approxi-
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic policy and performance</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Growth of money supply (% per year)</td>
<td>5.5</td>
<td>8.6</td>
</tr>
<tr>
<td>Unemployment rate (%)</td>
<td>5.6</td>
<td>7.5</td>
</tr>
<tr>
<td>Inflation rate (% per year)</td>
<td>5.1</td>
<td>4.7</td>
</tr>
<tr>
<td>Productivity growth (% per year)</td>
<td>1.9</td>
<td>1.5</td>
</tr>
<tr>
<td>Personal savings rate (% of income)</td>
<td>7.3</td>
<td>5.2</td>
</tr>
<tr>
<td>Budget policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spending/GNP (%)</td>
<td>20.2</td>
<td>24.0</td>
</tr>
<tr>
<td>Non-defense spending/GNP (%)</td>
<td>13.2</td>
<td>17.8</td>
</tr>
<tr>
<td>Taxes/GNP (%)</td>
<td>19.1</td>
<td>19.9</td>
</tr>
<tr>
<td>Deficit/GNP (%)</td>
<td>1.1</td>
<td>4.1</td>
</tr>
<tr>
<td>Tax policy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Income taxes/total taxes (%)</td>
<td>60</td>
<td>73</td>
</tr>
<tr>
<td>Top tax rate (% of end of period)</td>
<td>50</td>
<td>28</td>
</tr>
</tbody>
</table>

Table 20-6 Economic performance in the Reagan and prior years

During the Reagan years, little improvement occurred in overall economic performance or in the share of GNP devoted to spending or taxation. The burden of the individual income tax grew relative to other taxes, and non-defense programs were trimmed. [Source: Economic Report of the President 1988 (GPO, Washington) and updated by authors.]

mately the same rate (although it fell relative to the 1970s); while productivity growth and the personal savings rate deteriorated from the previous two decades. It is clear that “Reaganomics” produced no dramatic changes in American economic performance during the 1980s.

Budget Policy

The Reagan administration advocated a strong military buildup, maintenance of middle-class income-support programs like social security, and a draconian cutback of other civilian programs. The military buildup was based on the Reagan administration’s belief that the Soviets had outpaced American military power. The attempt to cut nonmilitary programs stemmed from the President’s philosophy that government intervention stifled initiative and innovation.

The Reagan budgetary philosophy was only partially successful. Defense spending grew rapidly during the Reagan period, but the other goals were blunted. Overall, government spending as a share of GNP grew from 20 percent in the 1960s and 1970s to 24 percent in the Reagan years. Moreover, whereas Reagan took office preaching the doctrine of balanced budgets, the 1980s were a period of the highest peacetime budget deficits in half a century. Finally, the attempt to cut civilian spending was thwarted by political forces that successfully protected their own spending programs.

Regulatory Relief

The 15 years prior to the Reagan government represented the heyday of regulatory institution-building. The United States legislated programs to deal with traffic safety, air and water pollution, hazards of the workplace, mine safety and strip mining, the dangers of nuclear power and toxic wastes, and even the safety of lawn mowers and toys. The Reagan administration believed that this regulation was overambitious in intent and overzealous in administration—and that the United States needed “regulatory relief.”

The Reagan administration’s attack on regulatory
programs was less visible but in many ways more effective than the budget or economic programs. No major regulatory programs were ended, and no major regulatory legislation was repealed. But virtually all regulatory programs were curbed; few new regulations were issued, enforcement was relaxed, and rules were generally interpreted in ways sympathetic to free-market advocates. In contrast to the late 1970s, by the end of the 1980s few voices were heard to argue that excessive regulation was hamstringing American business.

Tax Policy

The Reagan years produced a string of tax changes, with landmark legislation enacted in both 1981 and 1986. The 1981 Economic Recovery and Tax Act (ERTA) produced a major cut in both business and individual taxes. In keeping with the essence of supply-side economics, personal tax rates were cut across the board by 25 percent. The supply siders had contended, and the Reagan administration appeared to accept, that this major cut in tax rates would not markedly reduce tax revenues (this contention is further discussed in the section on the Laffer curve, pages 449–451 below). Evidence to date suggests, however, that the tax cuts led to a roughly proportional drop in tax revenues.

A further step came when President Reagan embraced the flat tax advocated by both tax reformers and supply siders (see pages 444–445 above). The monumental Tax Reform Act (TRA) of 1986 included a number of important new features:

- Marginal tax rates were lowered from a top rate of 50 percent to a top rate of 28 percent for individuals and from 46 percent to 34 percent for corporations.\(^6\)

- The overall impact of the TRA was "revenue neutral"—meaning that it neither raised nor lowered total revenues. However, this neutrality was attained by raising taxes on corporations by $25 billion per year and lowering taxes on individuals by the same amount over the 1987–1991 period.

- Numerous tax preferences were trimmed. The most significant changes were that capital gains (income earned from sale of assets like common stocks and houses) are now taxed as ordinary income rather than at preferential rates; sales taxes are no longer deductible from income; interest paid on consumer loans and student debt is no longer deductible. In addition, the investment tax credit, a kind of fiscal "discount" for purchases of investment goods, was repealed.

Critics of the tax bill point to three shortcomings: First, as Table 20-5 shows, many tax preferences remain. Second, some believe that the increase in the burden of the corporation income tax will harm business investment. Finally, those whose primary concern is the federal budget deficit argue that tax reform is a glitzy distraction from the premier economic problem of the decade, the bloated deficit.

The overall impact was to trim back many tax preferences, lessening the erosion of the tax base and allowing marginal tax rates to be cut in ways undreamt of a decade ago. Many hope that the new tax system will tilt the balance more toward rewarding honest labor than tax avoidance.

Distributional Impact What is the impact of the 1986 Tax Reform Act upon the distribution of income? At first blush, it might appear that high-income individuals will benefit by the quantum reduction in the marginal tax rates (from 50 percent to 28 percent at the top). In fact, because the tax base is significantly broadened, and in particular because the effective rate of corporation tax was raised significantly, the effect on taxes of the 1986 TRA was mildly progressive. Table 20-7 shows estimates of the percent change in total tax liabilities by income group. It finds that taxes will be lowered for the bottom end of the income distribution and raised for the top tenth. The higher tax in the top tenth results mainly from the higher corporation tax, which is assumed to fall on the owners of capital.
IMPACT OF TAX REFORM

<table>
<thead>
<tr>
<th>INCOME GROUP</th>
<th>PERCENT CHANGE IN:</th>
<th>FEDERAL INDIVIDUAL AND CORPORATE INCOME TAXES</th>
<th>TOTAL FEDERAL TAXES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Top tenth of households</td>
<td>+3</td>
<td>+2</td>
<td></td>
</tr>
<tr>
<td>Top 5%</td>
<td>+4</td>
<td>+3</td>
<td></td>
</tr>
<tr>
<td>Top 1%</td>
<td>+5</td>
<td>+5</td>
<td></td>
</tr>
<tr>
<td>Second tenth</td>
<td>-6</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>Third</td>
<td>-6</td>
<td>-3</td>
<td></td>
</tr>
<tr>
<td>Fourth</td>
<td>-7</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>Fifth</td>
<td>-8</td>
<td>-4</td>
<td></td>
</tr>
<tr>
<td>Sixth</td>
<td>-12</td>
<td>-6</td>
<td></td>
</tr>
<tr>
<td>Seventh</td>
<td>-16</td>
<td>-7</td>
<td></td>
</tr>
<tr>
<td>Eighth</td>
<td>-24</td>
<td>-10</td>
<td></td>
</tr>
<tr>
<td>Ninth</td>
<td>-32</td>
<td>-11</td>
<td></td>
</tr>
<tr>
<td>Bottom tenth</td>
<td>-44</td>
<td>-16</td>
<td></td>
</tr>
</tbody>
</table>

Table 20-7 Change in federal taxes as a result of the 1986 Tax Reform Act

The 1986 Tax Reform Act broadened the tax base, increased personal exemptions and deductions, and lowered marginal tax rates. Overall, the impact was to lower the tax burden on the low-income groups and raise taxes on the highest tenth of households. In this calculation, income from corporations is imputed to households according to their ownership of stocks, and the corporation tax is assumed to fall upon the owners of capital. [Source: Joseph A. Pechman, "Tax Reform: Theory and Practice," The Journal of Economic Perspectives (Summer 1987), p. 20.]

Overall Assessment

What will be the impact of the Reagan fiscal revolution on the overall economy? The answer will become clear only in the years to come. The evidence to date suggests that the large fiscal deficits have led to major changes in the patterns of saving and investment, significantly lowering private saving in response to higher levels of public dissaving in the form of budget deficits. Many reform proposals—particularly tax and regulatory reform—will need a decade or more before potential benefits can be assessed. Perhaps the most important impact lies in the changing attitudes about government. In the 1980s, for the first time in half a century, a President consistently spoke of the need for self-reliance and of the perils when a free people lean too heavily on the economic intervention of government. Public attitudes indicate that at decade's end many Americans continue to share President Reagan's vision of minimal government.

TAXES AND EFFICIENCY

The recent tax reforms lead to one of the most important questions about taxation, especially progressive taxation. Is there an adverse effect of high marginal tax rates? Do high tax rates discourage work, saving, and risk taking?

The impact of tax rates on work effort is unclear. We have seen in Chapter 15 that taxation has an ambiguous effect on the total number of hours worked because the labor supply curve may be backward-bending. Some people may, as a result of progressive taxes, prefer more leisure to more work. Other people may work harder in order to make their million. Many
doctors, artists, celebrities, and business executives, who enjoy their jobs and the sense of power or accomplishment that they bring, will work as hard for $150,000 as for $200,000.

The effect of high taxes on property income is more clear-cut. Studies have determined that taxing a particular kind of capital or property will cause resources to move to lower-taxed sectors. For example, if corporate capital is double-taxed, some of people's savings will flow to non-corporate sectors like housing. If risky investments are treated unfavorably, then investors will prefer safer havens.

The most important effect may arise not from levels of taxation, but from differences in tax rates. There are a sufficient number of respectable "tax shelters" open to wealthy people so that they may typically pay much less than the high tax rates shown in Table 20-3. They may invest in tax-exempt bonds, drill for oil and gas, or put their money in vacation homes. In these sheltered sectors, investors may face low taxes or no taxes at all. Hence high marginal tax rates may have the effect of diverting economic activity to lightly taxed sectors.

The Laffer Curve

From this brief review of the effects of tax rates on economic activity, we can turn to an important movement that sprang up around 1980. The supply-side school argued that the disincentive effects of high marginal tax rates were responsible for many of the nation's ills—low saving, recession, stagnant productivity, and high inflation. Led by Arthur Laffer, along with Jude Wanniski, Norman Ture, and Paul Craig Roberts, this group emphasized the importance of low marginal tax rates for good economic perform-

Figure 20-4 Evidence indicates that lowering tax rates would lower revenues

The Laffer curve predicts that tax revenues respond to different tax rates. In the theoretical Laffer curve on the left, a tax rate of 50 percent produces maximal revenues. By reducing taxes from point A to point B, revenues might rise even as tax rates fall.

Careful empirical studies, such as in (b) at right, find a curve that leans sharply to the right, with the U.S. tax system approximately at point C. In this realistic case, small movements in tax rates will have roughly proportional effects on revenues. [Source: Don Fullerton, "Relationship between Tax Rates and Government Revenue," *Journal of Public Economics* (October 1982).]
ance. One of the major analytical tools introduced by this group was the Laffer curve.

The theoretical Laffer curve is shown on the left side of Figure 20-4 on the previous page. The general shape can be seen in the following way: clearly at a zero tax rate there will be no revenues. Also, when taxes reach 100 percent, no one would be silly enough to work, so again there would be no revenues. The two ends of the curve are thus tacked down.

What lies in between? As tax rates rise from zero, according to this view, total revenues rise. Then, at some point, people begin to work less, save less, and divert their activity to the underground economy. Thus at, say, point M in Figure 20-4(a), the total revenue received by the Treasury is maximized. The curve is sometimes drawn so that the peak of the Laffer curve comes at a 50 percent tax rate, although it is not clear that Laffer or other members of the supply-side school consistently argued that the maximum revenue point comes at a tax rate of 50 percent.

What happens when the tax rate rises above point M in Figure 20-4(a)? The disincentive effect outweighs the revenue effect. So government tax revenues actually begin to decline even though tax rates are raised. If you believe that the economy is to the right of the maximum-revenue point in Figure 20-4(a), then you could recommend a policy of having your cake and eating it too—lower tax rates, increase economic efficiency, and raise revenues.

How did mainstream economists react to this radical new theory? Of course, if the Laffer curve were as depicted in Figure 20-4(a), who would not endorse a cut in tax rates at point A? But the economic evidence did not support the supply-side proposition. Figure 20-4(b) shows a real-world Laffer curve constructed by Virginia’s Don Fullerton after examining several econometric studies of the response of work effort to tax rates. The maximum-revenue point appears to be far to the right of the tax rates that the economy has seen in the last few decades. The current tax rates are shown as point C. Fullerton’s survey predicts that a cut in taxes would produce an almost-proportional reduction in tax revenues.

The Supply-Side Experiment Supply-side economists in 1980 proposed a bold solution to America’s economic ills. They argued, in effect, that the U.S. economy was on the wrong side of the great revenue-divide, say at point A in Figure 20-4(a). They persuaded President Reagan, and he persuaded Congress, to cut personal tax rates by 25 percent by 1983.* Supply siders promoted the cuts as the needed stimulants for America’s sick economy and argued that the cuts would produce no side effects such as increasing budget deficits.

What is the evidence to date? History gives little comfort to the supply-side prescription. Personal savings rates declined, rather than rose, after the tax cuts. The Laffer-curve prediction that revenues would rise following the tax cuts has proven false; indeed, federal revenues shrank and the federal budget consequently moved from approximate balance in 1979 to a gaping $200 billion deficit after 1983. Subtle effects

*One of the puzzles about the supply-side revolution is how an obscure idea, which received virtually no support from empirical studies or from mainstream economists, could have achieved such legislative success in a few months. This question is addressed by David Stockman. Stockman was one of the architects of supply-side policies when he served as Director of the Office of Management and Budget during the Reagan administration from 1981 to 1984. This is how Stockman describes President Reagan’s conversion to the Laffer curve:

In January 1980, Governor Reagan’s campaign managers had sent him to school for a few days to get brushed up on the national issues. There, Jack Kemp, Art Laffer, and Jude Wanniski thoroughly hosed him down with supply-side doctrine.

They told him about the “Laffer curve.” It set off a symphony in his ears. He knew instantly that it was true and would never doubt it a moment thereafter.

He had once been on the Laffer curve himself. “I came into the Big Money making pictures during World War II,” he would always say. At that time the wartime income surtax hit 90 percent.

“You could only make four pictures and then you were in the top bracket,” he would continue. “So we all quit working after four pictures and went off to the country.”

High tax rates caused less work. Low tax rates caused more. His experience proved it.

The quotation is from Stockman’s The Triumph of Politics (Avon, New York, 1987).
may yet appear, and, given the difficulty of performing controlled experiments in economics, no definitive appraisal of the supply-side tax cuts may be possible. But the central prediction of the supply-side economists—that working and saving would increase dramatically as marginal tax rates were cut—has up to now been far off the mark. By conventional scientific standards, the supply-side experiment suggests that the underlying theory should be rejected.

STATE AND LOCAL TAXES

Turn now to public finance other than federal. Although the federal government raises more taxes than other levels of government, these lower levels are important in their own right.

To see the main sources of funds that finance state and local expenditures, turn to Figure 20-5.

Property Tax

The property tax accounts for about 30 percent of the total revenues of state and local finance. Figure 20-5 shows that localities are the main recipient of property taxes.

The property tax is levied primarily on real estate—land and buildings. Each locality sets an annual tax rate. Chicago, for example, sets a nominal tax rate of 10.2 percent of "assessed value" (i.e., of the value as determined by the city). If my house has been assessed at $100,000, my tax is $10,200. However, in most places assessed valuations tend to be but a fraction of true market value. In Chicago, assessments are about 16 percent of market value, so the true tax rate is only 1.63 percent of market value.

The property tax became controversial in the 1970s. During the housing boom of the 1970s, housing valuations and taxes skyrocketed. Taxpayers revolted. In Massachusetts, voters passed Proposition 2½, limiting tax payments to 2½ percent of market value. Today, almost half the states have imposed limitations on property or other taxes; these will prevent state and local taxes from rising as rapidly as they did in the 1970s. They have also led several cities and states into severe fiscal crises as these governments ran out of tax funds and were forced to cut services.

SOURCES OF STATE AND LOCAL TAX REVENUE, FISCAL YEAR 1985

Property

Sales

Highway User (Gasoline, etc.)

Individual Income

Corporate Income

Death and Gift

All Other*

*Does not include federal revenue sharing

Figure 20-5 Property and sales taxes dominate at state and local levels

Note especially the heavy reliance of localities on the property tax. Houses, land, and other fixed real-estate assets are one of the few tax bases that cannot easily flee to the next town to avoid a city's tax. (Source: U.S. Bureau of the Census, Government Finances in 1984–85.)

Sales Taxes

States get most of their revenues from general retail sales taxes. Each purchase at the department, drug, or clothing store incurs a percentage tax. (Sometimes food and other necessities are exempt.)

Also, states usually add their own liquor and tobacco excises to the federal excises. Such taxes are often tolerated because most people—including many cigarette smokers and moderate drinkers—feel that there is something vaguely immoral about tobacco and alcohol. They think these "sin taxes" stun two birds with one stone: the state gets revenue, and vice is made more expensive.

Other Taxes

Most states tax the net income of a corporation and collect miscellaneous other fees from business enter-
prises. Forty-five states imitate the federal government, but on a much smaller scale, by taxing individuals according to the size of their incomes. Even a few cities tax incomes earned by those who live or work there.

There are other miscellaneous revenues. Many states tax bequests. Some states, such as Nevada and New Jersey, tax slot machines and racetrack betting or legitimate gambling by operating lotteries. And most states levy "highway user taxes" on gasoline.

Intergovernmental Grants-in-Aid
A further revenue source for lower levels of government are grants-in-aid, which represent financial aid that states and localities receive from higher levels of government.

Many public-finance specialists feel that the federal government is a more efficient tax collector than are states and localities. Below the national level, people can avoid taxes by going to other states or towns. On the other hand, few people emigrate from the United States to avoid taxes. Hence, taxes levied at the national level are less likely to cause distortions than those levied on mobile people or capital at the state and local level.

In the 1960s and 1970s, the federal government stepped up its grants-in-aid to states and localities through general revenue sharing (transfers not tied to particular government programs). By 1980, states and cities received one-fifth of all revenues from Washington. But the federal grants-in-aid were cut sharply during the Reagan years. He viewed these as a kind of public dole, and by 1988 general revenue sharing had been abolished.

CONCLUSION: THE THORNY PROBLEM OF TAX INCIDENCE

In concluding this survey of taxes, let us turn to the issue of tax incidence. Even if the electorate has made up its mind about how it would like the tax burden to be allocated, the following difficult issues remain:

Who ultimately pays a particular tax? Does its burden stay on the person or firm who actually pays the tax? Or is the tax shifted? We should not assume that the people or firms who send the tax monies to the government will end up paying that tax. Businesses may be able to shift the tax "forward" onto their customers by raising their price as much as the tax, or businesses may shift the tax "backward" onto their suppliers (owners of labor, land, and other factors), who find themselves with lower wages, rents, and other factor prices than they would have enjoyed had there been no tax.

Economists therefore are concerned primarily with the final incidence of the tax—the way its burden ultimately is borne and its total effects on work effort, saving, commodity prices, factor prices, resource allocations, and the composition of production and consumption.

Tax-incidence questions include: Does a 5-cent-a-gallon tax on gasoline raise the price at the pump by 5 cents, so that the incidence is on the consumer? Or does the tax lower the price of crude oil so that the incidence is on the oil producers? Or is the incidence somewhere in between? Does it change coal prices? And does the tax kill off oil production, so that it has incidence effects beyond those which show up in money prices and wages and even beyond the burdens that you can allocate among the different citizens?

Parts Two and Three developed some of the important tools that are needed to tackle this thorny problem. In some simple cases, involving only supply of and demand for a single commodity, incidence analysis is straightforward. In other cases, there are effects that cascade through the economy, making analysis extremely complex and sometimes requiring general-equilibrium approaches.

What is the fiscal incidence of the government tax and transfer system as a whole? Economists have attempted to answer this question of the overall degree of progressivity or regressivity by allocating all taxes and transfer payments to different groups. Such a study can be only approximate, since no one is sure how the corporation tax or the property tax gets shifted.

The conceptual experiment we want to make is:

* To measure incomes without taxes and transfers
* Then to measure incomes with taxes and transfers
* And finally to measure incidence as the difference between these two situations
Of course, economists are not magicians who can make such controlled experiments, but they take careful measurements and use good judgment to estimate the effects of taxes and spending as best they can.

Incidence of Federal Taxes and Transfers

Figure 20-6 shows the results of a recent study of the incidence of all federal taxes and transfers. The federal tax system is slightly regressive at the low end, and then it becomes roughly progressive at higher incomes.

However, taxes are only half the story. Transfers are a substantial fraction of income for low-income households; that is, the poor receive proportionally much more in government programs than do the middle classes or the upper classes. Therefore, when the transfers and taxes are added together to get net fiscal incidence, we find that government programs as a whole are very progressive.
This pattern of net fiscal impact is similar to that found in most modern welfare states. As one recent survey of the subject concluded:

The evidence for almost all countries suggests that the tax system overall has almost no effect on income distribution. ... This results from the progressive impact of income taxes being offset by regressive taxes, notably employers' social security contributions and indirect taxes. ... When tax, transfer, and expenditure programmes are viewed together, it is apparent that public expenditure programmes, particularly the provision of cash transfers, have been almost totally responsible for the changes in income distribution which governments have brought about. ... 8

SUMMARY

A. Government Expenditures

1. The American system of public finance is one of fiscal federalism. The federal government concentrates its direct spending on issues of national concern, on national public goods like defense and space exploration. States and localities generally focus on local public goods—those whose benefits are largely confined to local or state boundaries.

2. Government spending and taxation today takes approximately one-third of total GNP. Of this total, 70 percent is spent at the federal level, and the balance is divided between state and local governments. Only a tiny fraction of government outlays is devoted to traditional activities like police and the courts.

B. Economic Aspects of Taxation

3. Notions of “benefits” and “ability to pay” are two principal theories of taxation. Justice implies taxing equals equally, unequals unequally. A tax is progressive, proportional, or regressive as it takes a larger, equal, or smaller fraction of the incomes from rich families than from poor families. Direct and progressive taxes on incomes are in contrast to indirect and regressive sales and excise taxes.

4. More than half of federal revenue comes from progressive personal and corporation income taxes. The rest comes from proportional or regressive taxes on payrolls or consumption goods. Local governments raise most of their revenue from property taxes, while sales taxes are most important for states.

5. The individual income tax is levied on “income from whatever source derived,” less certain exemptions and deductions. The 1986 Tax Reform Act completely overhauled the federal income tax, trimming many tax preferences and lowering marginal tax rates substantially. Even with its lower tax rates, the individual income tax is progressive, placing higher average tax burdens on rich than on poor people.

6. The fastest-growing federal tax is the payroll tax, used to finance social security. This is an “earmarked” levy, with funds going to pay public pensions and health and disability benefits. Because there are visible benefits at the end of the stream of pay-
ments, the payroll tax has elements of a benefit tax. The corporation tax had almost withered away over the last four decades but was reinvigorated in the 1986 Tax Reform Act.

7. The Reagan fiscal revolution (1981–1988) stood on four pillars: an economic policy that moved away from Keynesian demand management toward concern with promoting free and unfettered private enterprise; a budget policy that bolstered defense, cut civilian programs, and gave little weight to the potential damage done by fiscal deficits; a regulatory program reducing the burden of federal regulations, especially those in health, safety, and the environment; and, most important, lower tax rates and burdens. While many Reagan initiatives fared poorly, the tax programs, especially the supply-side tax cuts of 1981–1983 and the tax reform of 1986, changed the tax structure more drastically than any changes since World War II.

8. Economists are divided on the extent to which taxes hurt incentives to work or save. An extreme view of this debate is provided by the supply siders. According to the theory shown in the Laffer curve, tax rates in the late 1970s were so high that revenues were actually reduced. This extreme view has not received empirical support.

9. The incidence of a tax refers to its ultimate economic burden and to its total effect on prices and other economic magnitudes. Those upon whom a tax is first levied may succeed in shifting part of its burden forward or backward. The tools of Parts Two and Three help in tackling this difficult problem. The progressiveness in benefits of transfer programs offsets the regressiveness of our tax structure at low incomes, so the net fiscal impact of government in today's welfare state is highly progressive.

CONCEPTS FOR REVIEW

- benefit and ability-to-pay principles
- direct and indirect taxes
- progressive, proportional, regressive taxes
- tax incidence and shifting
- Reagan fiscal revolution: four elements
- 1986 Tax Reform Act
- incentive effects
- Laffer curve in theory and reality
- fiscal federalism and local vs. national public goods
- fiscal incidence

QUESTIONS FOR DISCUSSION

1. Make a list of different federal taxes in order of their progressiveness. If the federal government were to trade in income taxes for consumption or sales taxes, what would be the effect in terms of overall progressiveness of the tax system?

2. "Since people don't change their smoking habits much as a result of taxation, and since the poor smoke, a tax on cigarettes is really no different from a tax on bread." Do you agree? If so, what ought to be done? Is there a way of providing economic incentives not to smoke (drink, gamble, ...) and not hurt lower-income groups as a whole?
3. Should marijuana and other drugs be made legal and taxed to raise revenue? Should gambling be made legal everywhere, as it is in some states, to provide a cheerful source of tax revenues?

4. "I favor progressively taxing what people spend to consume, not what they earn. My consumption tax would encourage more saving and investment—since we'd then no longer double-tax both saving and the fruits of that saving." Analyze this argument in favor of taxing consumption.

5. Proponents of supply-side economics point to the experience of the 1960s as evidence that the United States was in 1960 on the wrong side of the peak of Mt. Laffer in Figure 20-4(a). They note, "After the Kennedy-Johnson tax cuts of 1964, federal revenues actually rose from $110 billion in 1963 to $133 billion in 1966. Therefore, cutting taxes raises revenues." What fallacies are being committed here? (Hint: Post hoc, ergo propter hoc.) What would be a proper analysis?

6. Is it possible that some taxes promote economic efficiency? Consider, for example, taxes on sulfur emissions or firms with a poor safety record. Construct a list of taxes that you think would increase rather than decrease efficiency. How many are on the books? Can you think of reasons why Congress passes so few efficiency-promoting taxes?

7. The following table gives the data for a hypothetical tax system:

<table>
<thead>
<tr>
<th>(1) ADJUSTED GROSS INCOME</th>
<th>(2) DEDUCTIONS AND EXEMPTIONS</th>
<th>(3) TAXABLE INCOME</th>
<th>(4) INDIVIDUAL INCOME TAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>5,000</td>
<td>5,000</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>10,000</td>
<td>9,000</td>
<td>1,000</td>
<td>150</td>
</tr>
<tr>
<td>20,000</td>
<td>12,000</td>
<td>8,000</td>
<td>1,200</td>
</tr>
<tr>
<td>50,000</td>
<td>20,000</td>
<td>30,000</td>
<td>4,500</td>
</tr>
<tr>
<td>100,000</td>
<td>30,000</td>
<td>70,000</td>
<td>14,500</td>
</tr>
<tr>
<td>500,000</td>
<td>100,000</td>
<td>400,000</td>
<td>97,000</td>
</tr>
</tbody>
</table>

At each income level, calculate the marginal and average tax rates on taxable income. If adjusted gross income is used as an income base, is this system one which is progressive, proportional, or regressive?

8. Using the data from columns (1) and (2) in question 7, construct a hypothetical flat tax with a tax rate of 20 percent on taxable income (for a discussion of the flat tax, see page 444). Calculate the average tax as a percent of adjusted gross income. Is such a flat tax progressive or proportional using adjusted gross income as an income base? Is it more or less progressive than the conventional income tax that is illustrated in question 7?
9. Consider the following data on taxes, wages, and hours of work:

<table>
<thead>
<tr>
<th>TAX RATE</th>
<th>PRE-TAX WAGE RATE</th>
<th>POST-TAX WAGE RATE</th>
<th>HOURS OF WORK</th>
<th>PRE-TAX EARNINGS</th>
<th>TAX REVENUES</th>
</tr>
</thead>
<tbody>
<tr>
<td>0%</td>
<td>$10/hour</td>
<td></td>
<td>2,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>10</td>
<td></td>
<td>2,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>10</td>
<td></td>
<td>1,950</td>
<td></td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>10</td>
<td></td>
<td>1,900</td>
<td></td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>10</td>
<td></td>
<td>1,850</td>
<td></td>
<td></td>
</tr>
<tr>
<td>50</td>
<td>10</td>
<td></td>
<td>1,800</td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>10</td>
<td></td>
<td>1,700</td>
<td></td>
<td></td>
</tr>
<tr>
<td>70</td>
<td>10</td>
<td></td>
<td>1,600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>80</td>
<td>10</td>
<td></td>
<td>1,300</td>
<td></td>
<td></td>
</tr>
<tr>
<td>90</td>
<td>10</td>
<td></td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>100</td>
<td>10</td>
<td></td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Complete the blank items in the table. Draw a Laffer curve on a sheet of graph paper.

At what tax rate does the government collect maximal revenue? Explain in words what is happening in the economy as the tax rate increases.

10. Some public goods are local, spilling out to residents of small areas; others are national, benefiting an entire nation; some are global, having an effect upon the entire globe. A private good is one where the spillover is negligible. For the following goods or services, describe the extent of the spillover, indicate the level of government that could design policies most efficiently, and suggest one or two appropriate government actions that could solve the externality:

(a) An AIDS vaccine.
(b) A pollution-abatement program to prevent acid rain from killing off lakes in the northeast that are dying as a result of sulfur emissions from states in the midwest.
(c) Coastal defenses on the south coast of Britain.
(d) Noise from a factory in a residential area.
(e) A glass of orange juice.
(f) Global chlorofluorocarbon emissions that deplete stratospheric ozone and increase the incidence of skin cancer.
CHAPTER 21 —
POVERTY, EQUALITY, AND EFFICIENCY

The conflict between equality and efficiency is our biggest socioeconomic tradeoff, and it plagues us in dozens of dimensions of social policy. We can’t have our cake of market efficiency and share it equally.

Arthur Oku (1975)

We live in a double-standard economy. Our laws proclaim the rights of man and woman, the principle of one-person one-vote, and equality of opportunity. This is the rhetoric of modern democracy. But the institutions of modern capitalism speak otherwise. On city streets, people are told, "Work or go hungry" and "Economic power goes to those who are white, male, and well connected."

Which face is reality? The answer is both, to some degree. Democracies countries value equality of opportunity and of outcome. They have taken steps to raise all toward the living standards and political power of the more fortunate. But in some areas, the steps are tentative. The modern welfare state has found limits to its affluence. And as nations attempt to equalize incomes among their citizens, they encounter greater and greater effects on incentives and efficiency. Today, people are asking, how much of the social pie is being sacrificed in order to divide it more equally?

In earlier chapters, we have met each of these problems separately. In Chapter 13, we first began to discuss issues of income distribution—its measures as well as sources of inequality. The next chapters fo-
cused in on how markets determine incomes, as well as on the possible inefficiencies from taxation.

In this chapter, we return to the problem by examining poverty and its eradication, along with the possible inefficiencies that arise from policies to enhance equality. We begin by analyzing the definition and sources of poverty. The next section examines the tradeoffs between equality and efficiency, asking whether attempts to distribute the nation’s income more equally might make it smaller. In the final section we review antipoverty programs in the United States along with proposals for reform.

MEASUREMENT AND TRENDS IN POVERTY

The Bible says, “The poor, ye shall always have with you.” And this was the view of the classical economists and most people until very recently; the classical economists preached an economics that was the dismal science of unalterable distribution of income.

The wages of labor, the rent of land, the profit of capital were determined by economic laws, and not by political power. If labor unions or reform political parties tried to use the state to modify these facts of life, they would be ineffective in the end. Such well-meaning attempts would beget a smaller national output, which would probably still get distributed in about the same way. Vexation and violence brought about by trying to alter this would merely produce chaos and class warfare. This was the doctrine that the classical economists believed.

In the 1960s, the United States would not accept limited aspirations. We would send a man to the moon, banish unemployment, and export democracy to every corner of the globe. Persuaded by those who held ours was a boundlessly affluent society, President Kennedy, before his 1963 assassination, mapped out a “war on poverty.” And the first head of the poverty program prophesied that by 1976, for our bicentennial, poverty could be abolished in the United States.

Before we learn the fate of these lofty dreams, we must carefully examine the definition of poverty, a surprisingly elusive concept.

What Is Poverty?

The word “poverty” means different things to different people. While virtually everybody agrees that poverty occurs when people have inadequate incomes, nonetheless the exact line between the poor and the non-poor is hard to draw. Economists have therefore devised certain techniques which provide the official definition of poverty.

To begin with, analysts adopted from social-service workers budgets that purport to measure the cost of living at the subsistence level. As a check, economists have noted that poor families generally spend one-third of their income on food; hence, from calculations on the cost of a subsistence food budget, they can calculate a minimum-subsistence income by multiplying the minimum-food budget by a factor of 3.

These two methods agree fairly well. They indicate that the subsistence cost of living for an urban family of four is about $12,100 in 1988; this figure represents the “poverty line” or demarcation between those the government labels poor and non-poor. The poverty line also varies by family size and is adjusted over time by the consumer price index to reflect changes in the cost of living.

While an exact figure for measuring poverty is helpful, its use raises numerous conceptual issues. In measuring income, only cash payments are included; therefore, some important in-kind benefits such as food stamps or medical care are omitted. Because of these omissions, the extent of poverty is overestimated. In addition, “poverty” is a relative term. The notion of a subsistence budget includes subjective questions of taste and social convention. Today’s minimal food budget of $4000 per year in the United States would please an Indian maharaja and far surpasses the physiological minimum of $360 per year (see footnote 1 in Chapter 2). Minimal housing standards today include plumbing that would have been out of reach of the most affluent citizen of the seventeenth century.

We should keep these conceptual issues in mind as we listen to debates about changes in the poverty population, the hardships visited upon the poor, and issues of income redistribution.
POVERTY IN MAJOR GROUPS

<table>
<thead>
<tr>
<th>POPULATION GROUP</th>
<th>PERCENT OF GROUP IN POVERTY</th>
</tr>
</thead>
<tbody>
<tr>
<td>White</td>
<td>11.0</td>
</tr>
<tr>
<td>Black</td>
<td>31.1</td>
</tr>
<tr>
<td>Hispanic</td>
<td>27.3</td>
</tr>
<tr>
<td>Black children under 15</td>
<td>44.0</td>
</tr>
<tr>
<td>Elderly (i.e., 65 and over)</td>
<td>12.4</td>
</tr>
<tr>
<td>College education (=1 yr)</td>
<td>5.0</td>
</tr>
<tr>
<td>Families headed by women</td>
<td>38.3</td>
</tr>
<tr>
<td>Average</td>
<td>13.6</td>
</tr>
</tbody>
</table>

Table 21-1 Incidence of poverty in different groups, 1986

What is the percent of each group whose cash incomes fell below the 1986 poverty line of $11,203? Whites, college-educated persons, and, surprisingly, the elderly have lower-than-average poverty rates. Blacks, Hispanics, and female-headed households have much higher poverty rates than average. (Source: U.S. Bureau of the Census, *Money Income and Poverty Status of Families and Persons in the United States, 1986*.)

Who Are the Poor?

Poverty does not occur randomly across the population; some groups are more poverty-prone than others. Table 21-1 shows the incidence of poverty in different groups for 1986. While 13.6 percent of the total population was counted as falling below the 1986 poverty line of $11,203, the rate among black families was almost 3 times that of whites. Perhaps the most ominous trend is that among families headed by women—a rapidly growing group—38 percent fell below the poverty line.

No discussion of poverty would give an accurate picture without an analysis of the position of minorities. Blacks, Hispanics, and American Indians find almost one-third of their members with below-standard incomes. What are the characteristics of minority groups like black families?

Table 21-2 shows at a glance the relative economic position of the white and black populations. Thirty-one percent of the black population has less than a minimum-subsistence income. The U.S. population is only 12 percent black, but the poor are 28 percent black.

Many of the poor are untrained, stuck in economically stagnant rural areas, or isolated in city ghettos. Yet many are also active job seekers in urban labor markets.

Why is it that so many female-headed or black families are poor? Experienced observers insist, as we saw in Chapter 15, that blatant racial or gender discrimination that pays men or whites higher rates for the same kind and volume of work is becoming rare.

How can we reconcile this sanguine view of labor markets with the economic inequalities that clearly prevail among the sexes and races—as shown in Tables 21-1 and 21-2? Two answers stand out: First, poorer groups often have less education and training and therefore do not qualify for high-paying jobs. A second answer to the paradox lies, as we saw in our analysis of discrimination in Chapter 15, in the phenomenon of noncompeting groups. Discrimination today generally works not by blatantly excluding blacks and minorities from schools or jobs but by the more subtle means of disqualifying them, by reason of lack of suitable education and training, from the best positions in the professions or in executive and managerial areas.

Sources of Poverty

Why do so many people remain poor while others enjoy fabulous wealth? Let’s review some of the major sources of income inequality that were uncovered in Chapter 13.

Differences in Property Wealth The greatest disparities in income arise from differences in wealth—from the fact that the poor have virtually no assets while the wealthiest have net worths in the millions. After John D. Rockefeller gained a fortune by shrewd combinations of oil and steel firms, his heirs moved to the top of the pyramid of wealth, status, and power. The history of such great fortunes—associated with names like Mellon or Ford or Getty or MacArthur, read on the walls of museums or college buildings or foundations—shows that differences in wages and personal characteristics are dwarfed by differences in wealth and property income.
<table>
<thead>
<tr>
<th>WORKER CHARACTERISTICS</th>
<th>WHITE</th>
<th>BLACK</th>
</tr>
</thead>
<tbody>
<tr>
<td>Income</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Median income of families</td>
<td>$30,809</td>
<td>$17,604</td>
</tr>
<tr>
<td>Percent of persons in poverty</td>
<td>11.0</td>
<td>31.1</td>
</tr>
<tr>
<td>Percent of families with incomes of $25,000 or more</td>
<td>58.5</td>
<td>33.1</td>
</tr>
<tr>
<td>Education</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent of persons 25–29 years old who have completed high school</td>
<td>86.9</td>
<td>79.0</td>
</tr>
<tr>
<td>Percent of persons 25–34 years old who are college graduates</td>
<td>25.9</td>
<td>13.1</td>
</tr>
<tr>
<td>Unemployment rates (percent)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Adult men</td>
<td>5.2</td>
<td>12.9</td>
</tr>
<tr>
<td>Adult women</td>
<td>4.9</td>
<td>11.4</td>
</tr>
<tr>
<td>Teenagers</td>
<td>15.3</td>
<td>42.4</td>
</tr>
<tr>
<td>Occupation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Percent of labor force who are scientists or engineers</td>
<td>2.01</td>
<td>0.44</td>
</tr>
<tr>
<td>Percent of labor force who are doctors</td>
<td>0.47</td>
<td>0.15</td>
</tr>
</tbody>
</table>

Table 21-2 Discrimination and inequality of opportunity, 1985 or 1986

Because of racial discrimination and less education, blacks still find fewer good jobs. The incidence of unemployment compounds the inequality. Black Americans tend to be particularly underrepresented in managerial and professional positions. (Source: U.S. Bureau of the Census; U.S. Bureau of Labor Statistics.)

The Rockefellers and the Gettys are but the smallest splinter on the top of the pyramid of wealth. At the bottom lie people who come into this world with little more than a gasp for air and leave their children with but a few precious memories. The poor own few material goods and therefore earn no income on their nonexistent wealth.

Differences in Personal Ability Some of the income differences among people arise from different skills and abilities. With the emphasis on test scores, people sometimes think that intelligence quotient (IQ) plays an important role in how much people earn. Measured abilities are probably overemphasized; traits like energy, luck, willingness to run risks, and ambition can be just as important. As Mark Twain might have said, “You don’t have to be smart to make money. But you do have to know how to make money.”

What are the roots of economically advantageous abilities? Some are inherited, but even within families there are generally major differences in physical and mental abilities. Indeed, social scientists today think that the importance of inheritance is often exaggerated. Our traits are determined as much by our environment as by our parents’ genes. Children of the affluent probably don’t start ahead of the poor, but they are helped by their environment at every stage. As the Bible tells us, “To those who have shall be given.” A child of poverty often experiences crowding, poor nutrition, run-down schools, and overcrowded teachers. Some believe that the scales are tipped against many inner-city children before they are 10 years old.

Differences in Education and Training In addition to early influences, lack of education has been one of
Figure 21-1 Trends in poverty and inequality

This shows three important indicators of the trends in poverty.

The upward-sloping heavy red line shows the average family income (in constant 1988 prices) of a family in the bottom fifth of the population. Note how sharply it has risen since 1929, and how incomes of the poor have fallen in the 1980s.

However, this rise in the absolute incomes of the poor has been mainly due to a rise in average income. The lighter red line shows that the share of the bottom fifth of the population has changed little since the late 1940s.

The black line shows the fraction of the population that is below the official poverty line. It shrank sharply during the 1960s, but has actually risen in the last few years.

(Source: U.S. Bureau of the Census.)

the greatest barriers to equality over the ages. Before the twentieth century, there was a vast gulf between the educated upper classes and the illiterate masses. Many groups and classes were excluded from important educational institutions. Until 1954, blacks were segregated into separate school systems in the south of the United States. The poor simply could not afford the time or the funds for a college education, and few could succeed in working their way through medical or law school. Women were excluded from many of the best colleges and universities. Some schools barred women from entry into fields like medicine or engineering. In short, college was until recently the province of the privileged.

Such class differences persist even today, for few poor families can afford to send their children to business school or medical school—and these children are thus excluded from a whole set of high-paying professions.

Trends in Inequality and Poverty

Many social and political changes have shaken our society over the last century. How have these affected
poverty and inequality? The country has experienced increased levels of educational attainment, the drive for racial and sexual equality, government transfer programs, and progressive taxation. How have these affected the share of the population living in poverty?

Figure 21-1 shows the trends in poverty as measured by three important indicators. In absolute terms, the bottom fifth of the population has fared well over this century: the real income of the bottom fifth of the population has grown sharply since the 1920s. The poor have shared the growing prosperity with the middle class and the affluent. Indeed, as the light red line shows, the share of the national pie taken by the poorest fifth has increased slightly since the numbers were first collected.

What about poverty as officially measured? The black line in Figure 21-1 shows that the percent of the population in poverty dropped sharply from the late 1950s to the early 1970s. Since 1980, however, rising unemployment, declining generosity of transfer programs, and the increasing number of female-headed households have reversed the earlier trend, producing a sharp increase in the poor population.¹

Recall that people predicted that poverty could be abolished by the mid-1970s. In fact, the millennium did not arrive in 1976. Let’s turn to see why many people retreated from the heady ideas of the 1960s and instead began to trim back the antipoverty programs in the 1980s.

THE COSTS OF EQUALITY

Although the poor earn but a small fraction of national income, they have made great strides in absolute living standards. Real wages have risen steadily over the last century; manufacturing workers today earn real wages 10 times what their great-grandfathers got. Few socialists or communists today doubt that capitalism has been a mighty engine for increasing the real wages of poor as well as rich. These facts lead apologists for today’s order to say:

Our system is the best hope for poor people; look at the national doughnut and see how it has grown.

But these cheerful tales will not still the critics of capitalism. They reply:

Don’t talk to me about growing doughnuts; look at the gaping hole that still remains.

Good is not good enough, they say. Why not the best? Why should we permit children to go hungry or homeless in this most affluent of societies?

Political philosophers over the ages have debated the proper extent of equality, wondering how much inequality society should permit. A democratic society holds central the principle of equality of political rights. The United States guarantees such things as the right to vote, trial by jury, free speech and practice of religion, and so forth. These rights have been universally recognized only late in human societies, but most people accept the desirability of these fundamental political birthrights.

A more radical view of a political democracy argues that people should also have equal economic opportunity. In this view, all people should play the economic game by the same rules on the same field. All would have equal access to the best schools and training and jobs. Discrimination on the basis of race or gender or religion would have long since disappeared. Rich parents could not buy admission to top colleges or jobs in the family firm for their fortunate offspring. This world of equal opportunity was pursued by liberals of the 1960s and 1970s, but inequalities of opportunity have proven very stubborn, and even America of the 1980s falls far short of this ideal.

A third and most far-reaching ideal is equality of economic outcome. In this radical utopia, people would have the same consumption whether they are smart or dull, eager or lazy, lucky or ill-fated. Wages would be the same for doctor and nurse, lawyer and

¹Official statistics overstate the extent of poverty because they omit noncash benefits. Including noncash benefits poses measurement problems because it is difficult to estimate the value of noncash benefits to recipients. Should they be valued (A) at the market value of the goods even though the household would not have bought them or (B) at the beneficiary’s stated valuation? The Census Bureau used a number of techniques and found that the standard definition of poverty overestimates the number of poor people. In 1985, for example, the official poverty rate was 14 percent of the population, while the poverty rate including noncash benefits of food and housing was calculated to be 12.5 percent using technique A and 12.8 percent using technique B.
secretary. People could live in large houses and drive fancy cars even if they were lazy workers or refused to save from their incomes. While this utopian dream was pursued by idealists of the nineteenth century, even the most radical socialist or communist today recognizes that some differences in economic outcome are necessary if the economy is to function efficiently. Without some differential reward for different kinds of work, how can we ensure that different jobs get done, that people will do the unpleasant as well as the pleasant work, that labor will flow into new occupations, and that people will work at night as well as day and on offshore oil derricks as well as in pleasant cities? Insisting on equality of outcomes would severely hamper the functioning of the economy.

Equality vs. Efficiency

This discussion suggests that steps to reduce the extent of inequality may harm the efficiency of the economy. In taking steps to redistribute income from the rich to the poor, we may reduce the amount of national income available to distribute. On the other hand, if equality is an ethical good, it is one worth incurring some cost for. The question of how much we are willing to pay in reduced efficiency for greater equity was addressed by Arthur Okun in his “leaky bucket” experiment:

If we value less inequality, we'll approve when a dollar is taken in a bucket from the very rich and given to the very poor.²

But suppose the bucket of redistributive taxation has a leak in it. Suppose only a fraction—maybe two-thirds—of each dollar the rich lose actually reaches the poor. Then redistribution in the name of equity has harmed another economic goal, efficiency.

Okun has thus raised a fundamental dilemma. While there are many public programs (such as child nutrition or free public education) that may both increase equality and increase total output, in other cases a conflict between equity and efficiency arises.

Redistributinal measures like the progressive income tax analyzed in Chapter 20 will probably reduce real output somewhat by reducing incentives to work and save. In the end, the optimal amount of redistribution will be affected by the extent to which redistribution changes the size of the total national output. As a country considers its income-distribution policies, therefore, it will want to weigh the increased fairness of redistribution against the reduction in national income that occurs because of redistribution.

Economic Costs of Redistribution Okun’s analysis suggests that policies to redistribute income from one group to another are likely to reduce the total output of an economy. We can illustrate how attempts to achieve greater equality may retard efficiency using the “income-possibility curve” of Figure 21-2. This graph shows the incomes available to different groups when government uses tax and transfer programs to redistribute income.

We begin by dividing the population into two
halves; the real income of each group is measured on the axes of Figure 21-2. Start by examining point A, which is the pre-redistribution point. At point A, no taxes are levied and no transfers are given, so people simply live with their market incomes. If the economy is workably competitive, point A will contain no economic distortions, so the outcome is efficient and national income is maximized.

What is the problem? At point A, the upper-income group receives substantially more income than the lower half. The Congress might object to the extent of inequality and take steps to move the distribution toward the point of equal incomes at E. If such steps could be taken without reducing GNP, the economy would move along the light red line from A to E. The slope of the AE line is \(-45^\circ\), reflecting the assumption about efficiency that every dollar taken from the upper half increases the income of the lower half by exactly \(\$1\). Along the 45\(^{\circ}\) line, total national income is constant, indicating that redistributive programs have no impact upon the total size of GNP.

Generally, however, redistributive programs will affect the efficiency of the economy. If a country redistributes income by imposing high tax rates on the wealthiest people, their saving and work effort may be reduced or misdirected, thereby lowering total national output. They may spend more money on tax lawyers, send funds to Swiss bank accounts, decide to save less for retirement, or put less money into the risky ventures that speed technological change. Similarly, if a guaranteed floor beneath the incomes of the poor is high enough, they may look less hard for jobs, or they may stay on welfare programs longer. All these reactions to redistributive programs reduce the total size of real national income.

Put differently, when high tax rates and generous transfer programs reduce saving and work effort, this results in a lower total national income. For every \$100 of taxation on the rich, the income of the poor might increase by only \$80 or \$60 or \$40, with the rest dissipated in wasted effort or administrative costs. In this case, the bucket of redistribution has developed a leak, so that only a fraction of the resources taken from the rich are actually delivered to the poor. We can depict the case of costly redistribution by the heavy ABZ curve in Figure 21-2. Here, the hypothetical frontier of real incomes bends away from the 45\(^{\circ}\) line because taxes and transfers cause inefficiencies.

Indeed, experience has shown that in some cases the distortions due to interference can become so great that the attempt to help one social class at the expense of another can end in hurting them both. Or, in the opposite case, an action that looks like it is aimed to benefit the rich finally ends by benefiting all.

A recent example will illustrate why equity and efficiency are not always at war. In 1981, President Reagan completed the decontrol of oil prices. Some complained that the decontrol was a giveaway to the rich. Yet oil and gasoline prices fell after decontrol, and many believe that the greater efficiency allowed by a freer oil market was responsible. The movement was as if from point C to point B in Figure 21-2. Even though it was attacked as a pro-oil-company action, this step may have improved the fortunes of virtually all Americans.

How Big Are the Leaks?

Okun characterized our redistributive system of taxes and transfers as a leaky bucket. But how big in fact are the leaks? Is the economy closer to Figure 21-2's point A, where the leaks are negligible? Or to B, where they are substantial? Or to Z, where the redistributive bucket is in fact a sieve? To answer this, we must examine the major inefficiencies induced by high tax rates and by generous income-support programs: administrative costs, damage to work and savings incentives, and socioeconomic costs.

Administrative Costs The government must hire tax collectors to gain revenue and social security accountants to disperse it. These are clear inefficiencies or regrettable necessities, but they are small: the Internal Revenue Service spends only half a penny on administrative costs for each dollar of collected revenues.

Damage to Work Effort As the taxman's bite is larger and larger, might I not find myself discouraged and end up working less? (Recall last chapter's Laffer curve, which convinced some that tax rates were so high that total revenues are actually lower than they would be at more modest tax rates.)
Whatever the rhetoric, the empirical evidence suggests that the actual damage of taxes on work effort is very limited. Chapter 15 found that the labor supply curve may actually be backward-bending, indicating that a tax on wages would increase rather than decrease work effort. Of the many studies of this subject, few find the effect of taxes on work effort to be very substantial. More important, perhaps, are the impacts of welfare and transfer systems on poor people, a controversial topic to which we will shortly return.

A Drain on Saving? Perhaps the most important potential leakage from the revenue bucket is in the savings component. Many analysts believe that high tax rates discourage saving and investment, and this belief has triggered the major reduction in taxes on property income over the last decade.

This claim was assessed by Okun long before the rise of supply-side economics:

If progressive taxation had had a massive and dominant effect on saving and investment, the evidence would be loud and clear in the aggregate data. In 1929, when all federal tax rates were low and barely progressive, the nation saved and invested 16 percent of GNP; in 1973, with all the allegedly onerous "soak the rich" taxes, it saved and invested 16 percent of GNP.³

And, it should be added, after the major "supply-side" tax cuts of the early 1980s, the national savings rate fell to the lowest levels since the Great Depression.

Whatever are recent trends, the potential for an adverse effect on saving is present. Economists will be looking for it in coming years.

Social Costs or Benefits Some claim that the leaks cannot be found in the cost statistics of the economist; instead, the costs of equality are seen in attitudes rather than in dollars. Is the business ethic downplayed? Are students so turned off by the prospect of high taxes that they turn on to drugs and idleness? Is the welfare system leading to a permanent underclass, a society of people who are trapped in a culture of dependency?

³Okun, Equality and Efficiency, p. 98.

Studies of such questions are few. But, some argue, the opposite case looks just as strong. Doesn't the drive for equality allow many more talents to compete in the mainstream? Don't many low-income programs improve health, education, and the long-run productivity of poor groups and of the nation as a whole? Aren't invention, the arts, and politics likely to be more vital when 80 percent of the population is not excluded by discrimination?

Many analysts would go further, criticizing the notion that policies to improve the lot of the poor necessarily invoke a dilemma of efficiency against equality, arguing as follows. The sources of poverty are rooted in disadvantaged backgrounds, malnourishment in the early years, broken families, illiteracy at home, poor education, and lack of job training. Poverty begets poverty. What the nation needs, then, are programs that break through the vicious cycle of malnutrition, poor education, low productivity, low incomes, leading to yet another generation of poverty. Programs providing health care and adequate food for poor families [such as the Federal Women, Infants, and Children (WIC) Program] will increase productivity and efficiency rather than decrease output. By breaking the vicious cycle of poor education, high unemployment, and low incomes today, we will be raising the skills and human capital of poor people thus raising their efficiencies tomorrow. In this view, then, programs to break the cycle of poverty are investments in humans; like all investments, they require resources set aside today to increase productivity tomorrow. It would hence be a tragic error, in this approach, to view programs to assist the poor as a drain on the nation's productive resources.

Adding Up the Leaks

We can try to add up all the leaks from the bucket of redistribution. How big are they? Okun argued that the leaks are small, particularly when funds for redistributive programs are drawn from the tap of a broad-based income tax. As we will see in the next section, other people disagree, pointing to the dizzying array of tax loopholes and transfer programs as confusing and destructive of economic efficiency.

What is the truth? In fact, while economists have firm opinions on the cost of redistribution, the truth
has proved elusive. A final estimate of the cost of equality awaits the findings of much painstaking research by future generations of social scientists.

ANTIPREPOVERTY POLICIES: PROGRAMS AND CRITICISMS

We have taken the measure of poverty and have faced the social dilemma involved in trading off efficiency for equality. What weapons can a nation deploy to reduce the social and economic hardships of low incomes? Have these programs produced counterproductive responses in the low-income population? What reforms could ameliorate the problems of today’s welfare system? We address these issues in this final section.

The Rise of the Welfare State

We noted at the beginning of this chapter that the early classical economists believed the distribution of income was unalterable. They argued that attempts to alleviate poverty by government interventions in the economy were foolish endeavors that would simply end up reducing total national income.

By the end of the nineteenth century, however, political leaders in Western Europe took steps that marked a historic turning point: the beginning of the welfare state. Bismarck in Germany, Gladstone and Disraeli in Britain, followed by Franklin Roosevelt in the United States introduced a new concept of government responsibility for the welfare of the populace. More specifically, the welfare state is a society in which the government modifies market forces to protect individuals against specified contingencies and to guarantee people a minimum standard of living irrespective of their market incomes.

Important provisions in the welfare state include public pensions, accident and sickness insurance, unemployment insurance, health insurance, food and housing programs, family allowances, and income supplements for certain groups of people. These policies were introduced gradually from 1880 through the modern era, although some programs have not been universally provided (e.g., unlike many countries, the United States does not offer universal national health insurance).

Voting-Class Interests What forces led to the creation of the welfare state? In retrospect, there is no mystery about the spread of this social movement over the last century. With the rise of mass democracies and universal male suffrage, the poor began to outnumber the rich at the ballot box. Chapter 19’s public-choice theory would predict that the low-income groups, the elderly, and labor unions would press for legislation to redistribute income away from the few rich to the poor, old, or laboring classes. Today, there is wide support for the programs of the welfare state, and even the conservative governments of the 1980s were unable to roll back the generosity of public pensions and similar programs. These are taken for granted as economic birthrights in all modern industrial democracies.

Income-Support and Welfare Programs

What are the major income-support or welfare programs of today? They are the following.

Food Stamps: After the people rediscovered hunger in this most affluent of societies in the 1960s, the United States instituted the food-stamp program. Under this program, low-income families receive stamps or coupons that permit them to purchase food at a small fraction of its market cost.

Welfare Assistance: In every locality there exists some apparatus for help to the destitute. These programs offer “in-kind” aid (that is, direct aid in food, clothing, or housing) as well as straight income transfers.

The most visible and controversial form of welfare assistance is AFDC (Aid to Families with Dependent Children). This income support goes to poor parents with small children. Governments also provide income support for the aged, blind, and disabled who demonstrate a need for aid.

Because the minimum standards for income support provided by the modern welfare state rose rapidly, the costs of welfare programs rose almost tenfold from 1960 to 1975. But in the late 1970s, taxpayers became uneasy about supporting a growing group of indigents. Public opinion began to swing
FEDERAL PROGRAMS FOR THE POOR, 1989

<table>
<thead>
<tr>
<th>PROGRAM</th>
<th>AMOUNT (billions)</th>
<th>PERCENT OF TOTAL FEDERAL SPENDING</th>
</tr>
</thead>
<tbody>
<tr>
<td>All income-support programs</td>
<td>$435.3</td>
<td>39.8</td>
</tr>
<tr>
<td>General programs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Social security</td>
<td>334.2</td>
<td>30.5</td>
</tr>
<tr>
<td>Medicare</td>
<td>233.8</td>
<td></td>
</tr>
<tr>
<td>Unemployment insurance</td>
<td>84.0</td>
<td></td>
</tr>
<tr>
<td>Programs for the poor</td>
<td>16.4</td>
<td></td>
</tr>
<tr>
<td>Aid to aged, blind, disabled</td>
<td>101.1</td>
<td>9.2</td>
</tr>
<tr>
<td>Aid to families with dependent children</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Medicaid</td>
<td>10.8</td>
<td></td>
</tr>
<tr>
<td>Food stamps and child nutrition</td>
<td>32.7</td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td>20.8</td>
<td></td>
</tr>
<tr>
<td>Housing</td>
<td>14.9</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td>9.4</td>
</tr>
</tbody>
</table>

Table 21-3 Most federal income-support dollars go for general programs like social security

Federal programs for income support are largely concentrated on the population as a whole, rather than on the poor. Only $23 billion is spent on programs that increase poor families’ incomes. Note as well the high cost of health programs for both the poor and non-poor. (Source: Office of Management and Budget, Budget of the United States Government, 1989.)

against welfare programs, and their fiscal support was cut sharply after 1978.

Medicaid One of the most rapidly growing programs is medical care for low-income families. This program is unusual in that its benefits are generally not reduced as income rises; a family either qualifies or does not.

Other Programs There are numerous other income-support programs, some of which are more or less targeted at poor families. Housing programs, social security, and disability benefits tend to bolster the incomes of the poor more than the population as a whole—even though they are not always specifically designed for low-income families.

Overall Totals How much do all federal programs add up to in terms of budget expenditures? Table 21-3 shows the level of federal spending for income-support programs for both the general population and poor households. All federal poverty programs today amount to 9 percent of the total federal budget.

Even though the federal programs to assist the poor form a relatively modest part of the budget, they have dulled the sharp edge of poverty. They have provided a financial safety net that has all but eradicated the grinding poverty of earlier periods (for an estimate of the way government transfer programs raise the incomes of the worst-off families, look back to Figure 20-6).

Two Views of Poverty

Debates about policies to cure the poverty problem are sometimes rooted in divergent views of the roots of poverty. Proponents of strong government action see poverty as the result of social and economic conditions over which the poor have little control. They stress malnutrition, poor schools, broken families, lack of job opportunities, and a host of similar factors as central determinants of the fate of the poor. Some-
one holding this view would quite naturally tend to think that government bears a responsibility to alleviate poverty—either by providing income to the poor or by curing the conditions that produce poverty.

A second view holds that poverty grows out of maladaptive individual behavior—behavior which is the responsibility of individuals and is properly cured by the poor themselves. In earlier centuries, this view held that the poor were shiftless, lazy, or drunk, as in the case of a charity worker who wrote almost a century ago that "want of employment... is, as often as not, [caused by] drink." Today, people often point to the government as culprit, arguing that the patchwork quilt of welfare programs leads people to be dependent upon government programs rather than upon their own ingenuity. Such views often lead critics to advocate cutting back on welfare programs so that people will develop their own resources.

This debate was succinctly summarized by the eminent social scientist William Wilson:

Liberals have traditionally emphasized how the plight of disadvantaged groups can be related to the problems of the broader society, including problems of discrimination and social class subordination. ... Conservatives, in contrast, have traditionally stressed the importance of different group values and competitive resources in accounting for the experiences of the disadvantaged.

Few analysts of the problems of poverty and the welfare system fall into either of these two extreme categories. Nonetheless, much of today's debate about welfare can be better understood once these two views and their implications are factored into the political equation.

Are We Losing Ground?

The American welfare system has been a social battleground for half a century. The debate heated up with the publication of Charles Murray's 1984 study, *Losing Ground.* Murray starts with the paradoxical observation that, even though federal antipoverty programs expanded greatly in the 1960s, the number of poor people has risen sharply. He traces the cause of this trend to the increasing tendency during the 1960s to view poor people as victims of circumstance rather than as personally responsible for their economic distress. The result was to change the rules of the game, extending notions of equality beyond earlier notions of equality of opportunity to equality of outcome. As a result, dependency on government programs rose and the number of poor people *increased* over time. Let's examine his analysis in detail.

Incentive Problems of the Poor Murray pointed out, as have many other analysts in the past, that the current welfare system severely reduces the incentives of low-income adults to seek work. He noted that the "effect of the new rules was to make it profitable for the poor to behave in the short term in ways that were destructive in the long run."

It might be surprising, after all the publicity aired about how people pay such high taxes, to hear that the worst incentive problems are faced by low-income families. Poor people face high marginal "tax" rates (or, more accurately, "benefit-reduction rates") because welfare benefits get sharply reduced as earnings rise. If a person on welfare gets a job, the government will trim back food stamps, cash welfare payments, and rent subsidies. If the wage earner is unlucky enough to land a good job, the family may even lose its public medical benefits.

The following calculation for a family of three (mother and two children) will illustrate the problem. We choose the example of Pennsylvania because the AFDC benefits in that state are close to the national average. In 1987, if the mother did not have a job, the family would receive AFDC benefits of $4584 and food stamps worth $1549, for a total disposable income of $6133. Suppose the parent takes a full-time job earning $8000 a year. She would lose all the AFDC benefits, but would retain $1306 worth of food stamps. After child-care and work-related expenses of $2400, disposable income would equal $6906. The net gain from taking this $8000 job would be a gain in

disposable income of $773 a year; the increase in disposable income is only 9.7 percent of the increase in earnings. In this example we can see why people sometimes say that the "tax rate" on low-income people is often around 90 percent. [This example is actually not the worst case. The family may also lose medical benefits (Medicaid) worth $1537, indicating that the family may actually have a lower living standard after the parent takes a full-time job.]

We can usefully consider benefit reductions as a kind of "tax." In these terms, the tax rates on the working poor can easily reach 90 percent—far above the rate faced by the richest Americans and surely a major disincentive to the avid pursuit of work.

One of the harshest criticisms of the current welfare system is that it provides incentives for family dissolution—and that this is occurring at a time when intact families are already an endangered species. Most states refuse to provide welfare support to a family in which both parents are present, reasoning that the second parent can be expected to support the children. In such cases, the parent (usually the father) of a family on welfare may find that his family's income rises sharply if he leaves home and disappears. Only then can his wife and children continue to get welfare support.

In this age of concern about the dulling effect of high taxes, it is ironic that our current welfare system of cash aid, food stamps, and other benefits contains major disincentives for the poor. A person on welfare can lose 80 or 90 or even 100 percent of any earnings because benefits are reduced as earnings increase.

While the perverse incentives faced by the poor have been lamented by liberals and conservatives for decades, Murray pursues the argument a step further by arguing that the programs have torn the social fabric of poor families. Not only did the programs demonstrably fail to cure poverty, but they also created dependency by discouraging work, reduced the labor-force participation of poor groups, helped break up families, and promoted out-of-wedlock births and single-parent families. In short, instead of curing poverty, the welfare system was creating a population sinking slowly and inescapably into the quicksand of dependency on federal welfare programs.

Murray then goes on to consider changes:

The proposed program... consists of scrapping the entire federal welfare and income-support structure for working persons, including AFDC [Aid to Families with Dependent Children], Medicaid, Food Stamps, Unemployment Insurance, Workers' Compensation, subsidized housing, disability insurance, and the rest. It would leave the working-aged person with no recourse whatever except the job market, family members, friends, and public or private locally funded services.7

Murray’s analysis proved extremely influential in shaping the Reagan administration’s policies on income-support programs. While not proposing to repeal any major income-support programs, during most of his term President Reagan labored to curb their benefits in a war of attrition on antipoverty programs. The extent of success can be seen in the fact that from 1981 to 1988, the share of the federal budget spent on low-income support programs rose from 8.9 to 9.2 percent of total federal spending.

Alternative Approaches Murray’s analysis was severely attacked by other social scientists. While the basic facts were accepted, Murray’s interpretation, critics charged, fell prey to the post hoc fallacy.8 Critics made the following points:

- The increase in poverty appeared to be attributable more to slow economic growth and high unemployment than to changes in federal programs.
- Other factors than welfare programs appear to lie behind the major decline in the fraction of black and other poor youths with jobs—high overall unemployment, changing schooling patterns, regional migration, and a smaller army being the most important.
- Murray points to declining SAT (Scholastic Aptitude Test) scores as an indication of the increasing gap between black and white students. Careful study of the data indicates that black students have improved their relative performance between 1965 and 1980.

7Murray, Losing Ground, pp. 227-228.
- On the most controversial issue of whether the welfare system promotes family breakup and whether young women are encouraged to have children to get on the welfare rolls, careful studies by researchers such as Harvard's David Ellwood and Mary Jo Bane find some evidence that the welfare system promotes single-parent families. But they, along with virtually all others who have studied the problem, find no evidence that generous welfare payments encourage out-of-wedlock births or a higher birth rate among those likely to be on welfare. Ellwood and Bane conclude that "welfare simply does not appear to be the underlying cause of the dramatic changes in family structure of the past few decades."

- A study at the University of Michigan, following a large number of families for 18 years, uncovered some startling facts concerning the behavior of "poverty families." Contrary to stereotype, they found that poverty typically lasts at most a few years, that most welfare recipients work while on welfare, and that welfare dependency is not transmitted from generation to generation. (See Question 6 at the end of this chapter for an analysis of the informational transmission of poverty.)

The Negative Income Tax

Contemplating the enormous potential effects on the efficiency of the economy as well as on the social structure of the country, economists of varied political persuasions have concluded that the welfare system needs a fundamental reform. Conservatives like Milton Friedman of Chicago and liberals like James Tobin of Yale agree that it will be both cheaper and more humane to replace or supplement the incoherent set of income-support programs with a single unified program of cash assistance.

This reform, analyzed and supported by many economists, is sometimes called the **negative income tax**. Other plans with different (and more appealing) names have been put forth over the years. Most of them share the goal of creating a uniform, national income-support program that maintains sufficient economic incentives for poor people to work. We will analyze a typical plan below, labeling it a "negative income tax."

How It Works The basic notion is simple. When I make $20,000 a year, I pay positive income taxes (as seen back in Table 20-3). When I earn an extra thousand dollars, I pay extra taxes of $150, leaving me $850 of additional disposable income. Thus the incentive to earn more is preserved.

Next consider a poor family earning, say, $8000 in 1988. The Congress might decide that such a family deserves an income above $8000, especially if it has earned its $8000 by work and if the family has small children to support. The government wants to provide further income support. Put differently, the family should not pay taxes on its income but receive a **negative income tax**.

A major problem arises: How can the government provide income support without hurting the family's incentives to work? The negative income tax might aim to raise the incomes of the poor and still maintain incentives to work hard. The way to do this, argue proponents of the negative income tax, is to provide a basic allowance and then allow the family to keep a significant portion of any earnings. By this reasoning, just as people with high incomes can keep most of their earnings if they earn more money, similarly a poor family could keep much of its additional earnings if a family member gets a job.

Possible Formula How might a negative income tax work in practice? The idea is to provide each household with a basic allowance, say $4500 for a family of four. The family would then keep a fraction of any additional earnings (perhaps 40 percent) and the basic allowance would be reduced by the complementary fraction (in this example, by 60 percent). This kind of scheme was proposed by Presidents Nixon and Carter in the 1970s.

Table 21-4 shows a hypothetical negative income tax with a basic allowance of $4500 and a "tax rate" or benefit-reduction rate of 50 percent. This example shows the government can simultaneously support the poorest families and maintain an incentive for families to seek gainful employment. Compare this approach with that of the current welfare system, examined in the last section, to see how the current system destroys incentives while the negative income tax enhances incentives.
POSSIBLE FORMULA FOR NEGATIVE INCOME TAX

<table>
<thead>
<tr>
<th>MARKET EARNINGS</th>
<th>ALGEBRAIC TAX (+ if tax; – if benefits received)</th>
<th>AFTER-TAX INCOME</th>
</tr>
</thead>
<tbody>
<tr>
<td>$ 0</td>
<td>– $4,500</td>
<td>$4,500</td>
</tr>
<tr>
<td>4,000</td>
<td>– 2,500</td>
<td>6,500</td>
</tr>
<tr>
<td>7,000</td>
<td>– 1,000</td>
<td>8,000</td>
</tr>
<tr>
<td>8,000</td>
<td>– 500</td>
<td>8,500</td>
</tr>
<tr>
<td>9,000</td>
<td>0</td>
<td>9,000</td>
</tr>
<tr>
<td>10,000</td>
<td>+ 500</td>
<td>9,500</td>
</tr>
</tbody>
</table>

Table 21-4 Negative income tax sets minimum-income standards, preserving incentives and efficiency

Above an exemption level, people naturally expect to pay positive taxes that rise with their incomes. Under a negative income tax plan, the principle is extended below the poverty line by allowing the poor to receive income support—in essence, to receive negative taxes.

The plan in the table starts with a “basic allowance” of $4500 and then reduces benefits (or “taxes income”) at the rate of 50 percent of any earnings. Under this plan, incentives to work are maintained, as can be seen in the last column: after-tax income rises significantly when the family increases its market income.

In the design of a negative income tax, crucial economic and social questions arise: Should the program include single persons along with families? Should supported persons be required to work (in a system known as “workfare”)? How should college students be treated? And, most important, should the support levels be minimal so that welfare provides an inadequate living standard, thereby interfering minimally with work incentives and keeping the welfare rolls small (the approach traditionally favored by conservative groups)? Or should the negative income tax be generous, supplementing incomes at or above the poverty line, risking major disincentive effects and swelling the welfare rolls?

Pros and Cons The negative income tax has been actively debated in the economic and political arena for four decades, yet it has never been enacted. What are the terms of the debate?

Advocates point to numerous advantages over the current complex system of benefits. A negative income tax would help set a national minimum standard of living for the poor; it would be much less demeaning than the current system; it could be simply administered by the Internal Revenue Service or another agency; and it could help reduce incentives for people to migrate to high-benefit states. Most important, it could replace the current system, with its virtually prohibitive work disincentives, with one that provides incentives for the poor to provide for themselves.

Opponents of the system raise a number of questions. Wouldn’t it end up costing the government a great deal more money? Shouldn’t we leave provision of aid to the poor to the states, who have to live with the results? Do we really want to make it easier and more dignified for people to be on the dole? Shouldn’t people be required to work if they are to get welfare? Isn’t it better to have government aid in kind, with provision for food, shelter, and medical care, rather than give cash to those who may have not succeeded in managing their finances in the past? And most important, won’t more generous cash assistance reinforce the cycle of dependency, hurt the incentive to work, and be a drain on the economy? Opponents feel that the answers to these questions support restricting rather than expanding the welfare system.

Experimental Evidence It is often difficult to test economic theories or policies in the laboratory of real-world human experience. But in the case of the nega-
tive income tax, economists helped undertake an impressive set of real-world experiments to measure the effects of a negative income tax on people's behavior.

The "negative income tax experiments" involved several thousand families in New Jersey, Indiana, Seattle, and Denver. The experiments divided a randomly selected group of families into "control" groups that would receive no special treatment and "experimental" groups that would live under a negative income tax plan for a few years. The central question was how people would react to income supplements such as those sketched in Table 21-4.

These information experiments showed that families in the more generous plans (say, obtaining 100 percent of the poverty line as the basic allowance) reduced their hours of work markedly—by as much as 15 percent. When extrapolated to the entire population, this work reduction—the leak in Okun's redistributive bucket—would reduce GNP by 15 to 30 percent of the measured budget cost of the program. On the other hand, experiments with smaller benefit levels produced much smaller reductions in work effort of the affected people.

Recent Reforms Are these costs large or small? Those who care more about the poor than about economic efficiency find much justice in a generous negative income tax program. By contrast, those primarily concerned with efficiency and who hold the poor responsible for their own economic condition argue for curbing existing welfare programs.

How has the electorate responded to the tug-of-war between efficiency and redistribution? In fact, beginning about 1975, cash assistance to low-income families has been steadily reduced. A clear message about the responsibility of people to provide for themselves came in the 1988 Welfare Reform Act, which will require many welfare recipients to work or to enter training programs. Faced with the alternative approaches to poverty, America has moved away from the carrots of government assistance and toward the sticks of market necessity.

SUMMARY

1. In the last century economists believed that inequality was a universal constant, unchangeable by public policy. This view does not stand up to scrutiny. Poverty has made a glacial retreat over the last few decades; absolute incomes of the bottom part of the income distribution have risen sharply.

2. Poverty is essentially a relative notion. In the United States, poverty was defined in terms of the adequacy of spending on food in the early 1960s. By this standard of measured income, little progress has been made in the last decade.

3. Poverty has many roots. The important ones are: (a) discrimination against minorities, (b) little property wealth, (c) a less advantageous home background, and (d) impediments to education, job opportunities, or training.

4. Political philosophers point to three types of equality: (a) equality of political rights, such as the right to vote; (b) equality of opportunity, providing equal access to jobs, education, and other social systems; and (c) equality of outcome, whereby people are guaranteed equal incomes or consumptions. Whereas the first two types of equality are today widely accepted in most advanced democracies like the United States, equality of outcome is extremely controversial and unacceptable to many.

5. Equality has costs as well as benefits; the costs show up as drains from Okun's "leaky bucket." That is, attempts to reduce income inequality by progressive taxation or welfare payments may harm economic incentives to work or save and may thereby reduce the size of national output. Potential leakages are administrative costs and reduced hours of work or savings rates, along with intangible socioeconomic impacts.
Murray argued that the leakages are so high that in the long run the poor are actually losing ground under the current welfare system, although other analysts question Murray's results.

6. Major programs to alleviate poverty are: welfare payments, food stamps, Medicaid, and a group of smaller or less targeted programs. As a whole, these programs are criticized because they impose high benefit-reduction rates (or marginal "tax" rates) on low-income families when families begin to earn wages or other income.

7. Prominent among proposals to reform the income-support system for the poor stands the negative income tax. This would replace the dizzying array of existing programs with a unified, cash income supplement. The supplement would be reduced (that is, income would be "taxed") at a moderate rate (say one-third or one-half), so that low-income families would have a significant incentive to seek market employment. Because of debates about the effects of such an income-supplement plan on the work ethic, on family structure, and on the federal budget, no such plan has yet been politically acceptable.

CONCEPTS FOR REVIEW

poverty
welfare state
equality: political, of opportunity, of outcome
Okun's "leaky bucket"
income-possibility curve: ideal and realistic cases
two views of poverty
Murray's theory of losing ground
causes of inefficiency in redistribution:
administration, work, saving, social impacts
income-support programs: welfare, food stamps, Medicaid
negative income tax: basic allowance, tax rate
benefit-reduction rate (marginal tax rate)

QUESTIONS FOR DISCUSSION

1. From 1945 to 1988, measured inequality of incomes in the United States didn't change much. Is this an indictment of American capitalism, in your view? Or is it a symptom of the difficulty of constructing programs to lower income inequalities?

2. Discuss the three different kinds of equality. Why might equality of opportunity not lead to equality of outcome? Should persons of different abilities be given the same access to jobs and education? What might be done to ensure equality of outcome? How might such steps lead to economic inefficiencies?

3. Analyze Murray's viewpoint on the theory of losing ground and that of his critics. Which view coincides with your personal experience or reading of history? Where would your views lead you on the issue of the pros and cons of the negative income tax?

4. Many people continue to argue about what form assistance for the poor should take. One school says, "Give people money and let them buy health services and the foods they need." The other school says, "If you give money for milk to the poor, they will..."
spend it on beer. Your dollar goes further in alleviating malnourishment and disease if you provide the services in kind. The dollar that you earn may be yours to spend, but society's income-support dollar is a dollar that society has the right paternalistically to channel directly to its targets."

The argument of the first might rest on demand theory: let each household decide how to maximize its utility on a limited budget. Chapter 6 shows why this argument might be right. But what if the parents' utility includes mainly beer and lottery tickets and no milk or clothing for the children? Might you agree with the second view? From your own personal experience and reading, which of these two views do you think is more accurate? Explain your reasoning.

5. One of the central dilemmas in designing a negative income tax is the necessity to raise benefit-reduction (or tax) rates when basic allowances increase. If you examine Table 21-4, consider different constant-tax-rate programs that have a breakeven point (or zero-tax point) at $9000. What is the benefit-reduction rate when the basic allowance is $2700? $7200? $9000?

Does the rise of the tax rate as the basic allowance increases suggest that there will be increasing inefficiency as equality is pursued more vigorously—that Okun's bucket will become leaker as antipoverty programs become more egalitarian? Does this suggest why Figure 21-2 curves inward as more income is transferred from rich to poor?

6. Advanced problem (using probability theory): Critics of the welfare system argue that poverty programs have created "a spider web of dependency," fostering a culture in which the "breakdown of the family . . . has reached crisis proportions" (President Ronald Reagan, "State of the Union," 1986). Using the theory of transition probabilities, we can calculate the extent to which welfare dependency may be transmitted from one generation to another.

Say that society is divided into two classes, a class on welfare or AFDC (theWs) and a class not on welfare (theNs). Studies of family patterns show the following intergenerational patterns of welfare dependency, focusing on females:

<table>
<thead>
<tr>
<th>WELFARE DEPENDENCE OF PARENTS:</th>
<th>WELFARE DEPENDENCE OF DAUGHTERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>NO</td>
</tr>
<tr>
<td>No</td>
<td>0.90</td>
</tr>
<tr>
<td>Yes</td>
<td>0.60</td>
</tr>
</tbody>
</table>

This table shows that only 10 percent of daughters of non-welfare parents are observed on welfare when they are young adults, whereas 40 percent of daughters of parents on welfare were found on welfare as young adults. That is, of 100 daughters of W parents, 40 are found on welfare as young adults and 60 are not on welfare. Of 100 daughters of N parents, only 10 daughters are on welfare as young adults.

Assuming that a population of 100 (million) is initially equally divided between Ns and Ws, calculate the experience of the daughters of the Ns and Ws for a few generations. (Hint: Apply the transition probabilities in the table to each group to get the new
number of Ns and Ws for each generation.) Can you estimate the ultimate (or equilibrium) number of Ns and Ws?

Say that the social structure was in equilibrium and a welfare reform proposal like a negative income tax changed the second row to (0.80, 0.20). Trace out the new pattern of Ns and Ws. How would this reform change the equilibrium number of welfare families? If the average time between generations is 20 years, how many years would it take for the social structure to get 99 percent of the way from its AFDC equilibrium to its negative-income-tax equilibrium? Does the length of time to equilibrate suggest why social movements like civil rights or women's liberation take so long to bear fruit?
CHAPTER 22 —
THE WINDS
OF CHANGE:
ALTERNATIVE
ECONOMIC
SYSTEMS

Come writers and critics
Who prophesize with your pen
And keep your eyes wide
The chance won't come again
And don't speak too soon
For the wheel's still in spin
For the times they are a-changin.

Bob Dylan

THIS BOOK FOCUSES most of its attention upon the workings of mixed capitalist economies like the United States. This attention is warranted given the economic role of the advanced democracies—accounting for 60 percent of world income and serving as models for an increasing number of middle-income countries.

But we cannot ignore a world filled with competing economic ideologies and alternative economic systems. Marxism claims the allegiance of nearly 2 billion people, while socialism has been championed by many of the great Western thinkers. Above all, we must remember that neither economies nor economic theories remain untouched by time: economics evolves incessantly in a Darwinian struggle of ideas, technologies, and armies.

We turn in this chapter, therefore, to look backward in time and outward in space—backward to see how economic theories have evolved over time, and outward to see how other economies are organized and how they perform. Such travel in foreign lands will help us better understand our own.
A. EVOLUTION OF ECONOMIC THOUGHT

We begin with an excursion into the history of economic thought. This trip will deepen our understanding of the roots of the language of modern economics just as studying Latin enriches our understanding of modern languages. Once you know how today’s economic theories grew out of the past, you will be better prepared for the modifications those theories will surely undergo in the future.1

THE GROWTH OF MAINSTREAM ECONOMICS

Early Roots

Economic thinking began with Aristotle and continued through the teachings of the medieval Scholastics. These early stirrings dealt largely with normative doctrines such as the idea of a “just price,” which purported to tell the genuine value of a commodity. The Scholastics rejected interest on unearned “usury,” and prohibitions of usury survive today as interest-rate ceilings in many states and countries.

Perhaps the first systematic thinkers were the mercantilists of the seventeenth and eighteenth centuries. This group of pamphleteers devised policies to buttress the military and economic powers of emerging nation-states. Especially powerful in England and France, they espoused the accumulation of gold and silver and promoted protectionist steps like Britain’s Navigation Acts that eventually kindled the American Revolution.

Mercantilist practices spawned numerous ideas. David Hume (1711–1776) propounded his brilliant gold-flow mechanism (see Chapter 27) to demonstrate how the mercantilists’ gold inflow would eventually end up raising prices rather than output. The group known as the Physiocrats (or “philosophes”) reacted powerfully to the excesses of French mercantilism under Colbert, Louis XIV’s finance minister. This group pronounced agriculture the only source of economic surplus and attempted to remove trade restrictions from corn and other sectors. A remarkable depiction of the economy as a circular flow, still used in today’s texts (see page 42), was made by Quesnay, Louis XIV’s court physician. His scheme stressed that the different elements of the economy are as integrally tied together as are the blood vessels of the body.

Classical Economics: Smith, the Prophet of Laissez-Faire

The family tree of economics, shown on the back endpaper, traces the lineage of modern economics. The early influences converge in the publication in 1776 of The Wealth of Nations by Adam Smith (1723–1790), which we can mark as the birthdate of modern economics.

After beginning his career as a moral philosopher, Smith turned to the study of political economy, which culminated in his classic work. Smith’s contributions were legion. He discussed the foundation of prices and the distribution of income, analyzed various theories of wages, and performed one of the earliest empirical studies of inflation.

But of all his contributions to economic analysis, the boldest was his recognition that the market mechanism is a self-regulating natural order and that the price system organizes the behavior of people and does so in an automatic fashion without central direction. To mercantilists who were eager to interfere with markets, Smith’s message in effect said:

You think that you are improving the economy with your well-meaning laws and regulations. You are not. In a laissez-faire system, the oil of self-interest will keep the economic gears turning in a miraculous fashion. No planners are necessary; no government need issue edicts to control prices or mandate production. The market will solve all our problems.

Adam Smith was a worldly student of history, politics, and economics. He drew upon his vast store-

house of knowledge, not on purely deductive reasoning, when he wrote his famous words about the invisible hand:

Every individual . . . neither intends to promote the general interest, nor knows how much he is promoting it. He intends only his own security, his own gain. And he is in this led by an invisible hand to promote an end which was no part of his intention. By pursuing his own interest he frequently promotes that of society more effectually than when he really intends to promote it.

Smith was unable to prove the essence of his invisible-hand doctrine. Indeed, until the 1940s no one knew how to prove, or even to state properly, the kernel of truth in this proposition about perfectly competitive markets.

Smith’s approach, instead, was to prove by example. He enumerated countless cases of government follies. He mined ancient and contemporary history for illustrations of how well-meaning government interferences in economic affairs had had harmful effects upon nations.

His book is a masterpiece. It is a practical handbook that might be entitled, How to Make the GNP Grow. And at the same time, it lays the foundations for modern general-equilibrium analysis of supply and demand.

Spirit of the Bourgeois Age But, of course, its many excellences are not enough to explain why The Wealth of Nations had so dramatic an impact on the century to follow. Just as important was the fact that the rising business classes needed a spokesperson for their interests. Smith provided them with the laissez-faire ideology that served their purposes, offering intellectual support for free enterprise with minimal government interference.

This does not imply that Smith was a flunky for the business classes. Actually, he had a healthy distrust of business owners. He wrote, for example, “People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends in a conspiracy against the public, or in some contrivance to raise prices.”

Smith was definitely on the side of the common people. But his advocacy of laissez-faire was derived from his conviction that the road to economic inefficiency is paved with good intentions. To replace monopolistic businesses with government regulation of the economy would, he thought, probably make a bad situation worse rather than better.

Smith’s eclectic and pragmatic views ushered in the Industrial Revolution and the golden age of capitalism.

Classical Economics: Malthus and Ricardo

In the half-century after The Wealth of Nations appeared, the law of diminishing returns was discovered. Ironically, just as the Industrial Revolution in the West was offsetting the dire workings of that dismal law, The Reverend T. R. Malthus (1766–1834) enunciated the iron law of wages, holding that population growth will inevitably drive workers’ wages down to the bare margin of subsistence.

The central figure of the age, however, was David Ricardo (1772–1823), from whose thinking both neoclassical and modern economics derive. Ricardo never went to college. Born to an affluent family, he was cut off by his father with £800 for having married outside his Jewish faith. Within 12 years, he retired from being a stockbroker with a nest egg in the millions.

Once established and affluent, he chanced to read Adam Smith. Fascinated, Ricardo believed that there were basic errors in Smith’s analysis and also gaps in his macroeconomic writings. Had it not been for the insistent advice of James Mill, father of John Stuart Mill, Ricardo would have remained no more than a pamphlet writer and member of Parliament. But the elder Mill browbeat Ricardo into writing his Principles of Political Economy and Taxation (1817), and Ricardo’s fame was secure.

One of Ricardo’s contributions lay in a thorough analysis of the nature of economic rent—a theory that survives almost intact today in the form seen in Chapter 14. He presented a careful analysis of the labor theory of value (of which more is to come in our analysis of Marxist theories). His analysis of the burden of the public debt is an apt warning for the 1980s. But his major accomplishment was to analyze the laws of income distribution in a capitalist economy.
Stagnant Wage Predictions and Class Oppositions. For a full half-century, from 1820 to 1870, Ricardo kept economists and statesmen hypnotized. Yet, like Malthus, he bet on the wrong horse of diminishing returns just when the technological advances of the Industrial Revolution were outpacing that law.

Ricardo’s vision was that rents would rise and land would form the bottleneck to economic growth. In the century to come, in fact, landowners would wither away in importance, and capitalists would replace them as captains of the economic order.

For Ricardo, the law of distribution was the most important part of economic theory. He studied the distribution of the national product among the major classes of society: wages for workers, profits for capitalists, and rents for landowners. With a total social product limited by diminishing returns, Ricardo emphasized that what was gained by one social class had to be taken away from another one. Ricardo presented an autumnal view of capitalism—of an economy on its way to an inevitable rendezvous with pervasive poverty—that attracted both intellectuals and the general public, both capitalists and socialists, over the next century.

No wonder the capitalists liked Ricardo. They could find quotations in his work to prove that trade unions and reforms can do little for the masses.

No wonder the socialists liked Ricardo. They found in him a proof that capitalism would have to be destroyed if workers were to win their rightful share of national output.

Decadence in Classical Economics. Historians of science observe that the progress of science is discontinuous. New schools of thought rise, spread their influence, and convince skeptics. But schools, like people, are subject to hardening of the arteries. Students learn the embalmed truth from their teachers and sacred textbooks. The imperfections in the orthodox doctrines are ignored or glossed over as unimportant.

Decadence and senility set in. Thus, John Stuart Mill, an outstanding economist of the mid-nineteenth century, could write in his classic, Principles of Political Economy: “Happily, there is nothing in the laws

of Value which remains for the present and any future writer to clear up....”

Classical economics had grown stale. The time had come for new blood.

The Great Schism. A century ago the family tree of economics branched. One branch grew from Karl Marx’s Capital (1867, 1885, 1894) and his earlier writings. This line, important for understanding the economic organization of communist countries, will be analyzed in section B of this chapter. The other branch continued the tradition of Smith and Ricardo, through the neoclassical thinkers and Keynesian economics to the present-day era of modern mainstream economics.

Neoclassical Economics. Classical writers emphasized costs to the neglect of demand. It was as if they were working with horizontal supply curves and ignored the role of demand curves. Around 1870, three scholars independently laid the foundation for modern economics by devising an analysis that could synthesize both demand elements and cost elements. They were W. Stanley Jevons (1835–1882) in England, Carl Menger (1840–1921) in Austria, and Léon Walras (1834–1910) in Switzerland.

The key element in the neoclassical revolution was to understand how consumer preferences (called “utility”) enter into the demand for commodities. The neoclassical economists showed that demand depends upon marginal utility and thereby provided the missing link in a complete theory of the market mechanism. (A modern version of the neoclassical theory of utility forms the basis of the theory of demand derived in Chapter 6.)

Finally, particularly in the deep mathematical analysis of Léon Walras, the analysis of general competitive equilibrium was achieved. Walras discovered how to analyze the economy as a whole—as a simultaneous general equilibrium of all the labor, land, and product markets. The late Joseph Schumpeter (1883–1950) used to say that of all great economists, surely Walras was the greatest—for it was he who discovered general equilibrium.
Welfare Economics and Policy Concerns

Economists have always been concerned with applying their theories to public policy. Ever since Adam Smith began to analyze the harmful effects of government regulation of the market, economists have devised technical tools—such as consumer surplus and Pareto efficiency—that could measure the losses that arise from misplaced government interferences with a competitive equilibrium. But don’t think neoclassical economists were devotees of laissez-faire. A few were, but most were not. Since the Industrial Revolution, the great economists on the whole have been critical of capitalism’s inequality. Around the time of World War I, Cambridge economist A. C. Pigou emphasized the case against laissez-faire and in favor of government action: he argued that government is necessary to mitigate inequality, offset monopoly distortions, and correct for externalities.

Even as economics became more “scientific,” it never lost its interest in policy. Most of the great economists tell us in their autobiographies that they became economists to help improve the world. Many were radical believers in the need for drastic changes in the established regimes. But, however much the great economists wanted to bring about a more just economic order, they insisted that plans for alternative economic systems be practical.

A fascinating biography of a radical is that of the great Scandinavian economist Knut Wicksell (1851–1926). Wicksell was a counter-culture bohemian who believed in birth control—heresy in the 1870s. When the Czar’s army stood on the Swedish borders, Wicksell disregarded the prevalent nationalism of the day and advised his fellow citizens to dismantle their army.

Though he never hesitated to speak out on behalf of unpopular causes, in economic issues Wicksell was a hard-headed realist who criticized utopian socialist ideas. His practical reform proposals anticipated the modern Swedish welfare state, with its income redistribution and transfer benefits.

Today as well, the giants of modern economics keep one eye upon the policy implications of their theoretical studies. Economists of the late twentieth century study government deficits, the money supply, energy markets, and poverty not only because they are fascinated by economic behavior. They also search endlessly for better ways that the government can help (or stop hindering) economic progress.

The Keynesian Revolution

In the years after World War I, economics made great strides in describing and analyzing the economic world of developed and developing regions. One enormous hole, however, still remained. Economists had gone far in describing the business cycle. But neoclassical economics lacked a well-developed macroeconomics to match its microeconomics.

Finally, with the Great Depression came the breakthrough in the General Theory of Employment, Interest, and Money (Macmillan, London, 1936) by John Maynard Keynes. Economics would never be the same.

Keynes’ breakthrough mortally wounded belief in Say’s Law (that held overproduction to be impossible). The neoclassical theories of money and the price level earlier developed by Alfred Marshall (1842–1924) and Yale’s Irving Fisher (1867–1947) were given a more fruitful restatement in terms of the Keynesian concepts. And the insights and challenges of the Keynesian revolution have inspired a new generation of theorists to try to understand why wages and prices tend to be sticky, why nominal variables like money have real impacts, and how government fiscal and monetary policies can affect the macroeconomy.

Mainstream Economics

As we move on from Keynesian thought, we encounter the primary subject of this book, the modern mainstream economics that prevails in the mixed capitalist economies of North America, Western Europe, and Japan. The better understanding of both microeconomics and macroeconomics has led to a markedly better working of the mixed economy. The era since World War II has witnessed a growth in world output and living standards unmatched in recorded history.

But we should not glorify past achievements. The
advanced industrial economies have not attained economic nirvana. They cannot attain stable prices and full employment; poverty is on the rise; the international banking system is threatened by staggering debts of developing countries; American farmers are in bankruptcy courts in droves; tens of thousands of toxic waste sites plague our landscape; unemployment in Europe is at its highest levels since the Great Depression.

This sobering reminder of the ailments of a mixed economy should make us sensitive to the critiques of mainstream economics that have prevailed in the past and will undoubtedly continue to flourish in the future.

MODERN CRITIQUES

Modern economics is not without its critics. They range from dissenters who question small points here or there to those who reject the entire logical structure. We concentrate here on the major non-Marxist critics, reserving Marxist thought for section B of this chapter.

Chicago School

Starting at the right end of the political spectrum, we encounter first a group of libertarians—those who emphasize the central importance of personal freedom in economic and political affairs. These modern-day apostles of laissez-faire and the minimal state include primarily economists associated with the University of Chicago: Frank Knight, Henry Simons, and Milton Friedman, along with Austrian-born economist Friedrich Hayek.

The libertarians remind us of the accomplishments of the market mechanism and warn us of the penalties falling upon any society that ignores the market's guiding hand. In reading their works, we recall how governmental attempts to solve problems can create other difficulties. The libertarians point out that rent controls often lead to housing shortages; that labor unions raise wages and cause unemployment in unionized industries; and that putting price controls on gasoline leads to long lines at gasoline stations.

People of all political persuasions should study Friedman's *Capitalism and Freedom*.² It is a rigorous and persuasive elucidation of an important point of view which held sway among conservative thinkers in the 1980s. You might ask yourself whether you are for or against: Social security? Flood relief? Government inspection and regulation of food and drugs? Minimum wages? Mandatory installation of seat belts in cars? Compulsory and free public schooling? Prohibition of open sale of heroin? Compulsory licensing of doctors? Establishment of national parks like Yellowstone or Grand Canyon?

If you read Professor Friedman's work, or collections of his *Newsweek* columns, you will see that he argues cogently against each one of these programs. He opposes them both because he sees them as interferences with personal freedom and because he thinks they fail to achieve their goals. Although you may, on reflection, agree with few or many of the positions advocated, as a thoughtful citizen you must grapple with the issues that Friedman addresses.

Rational-Expectations Macroeconomics Related to the libertarians are a group of free-market macroeconomists, called the rational-expectations school, founded in the early 1970s by Robert Lucas at the University of Chicago and Stanford's Thomas Sargent. This school shares the libertarians' skepticism about government policies, arguing that systematic macroeconomic policies to combat unemployment will only end up causing inflation. Better a passive monetary and fiscal policy, they say, than one futilely trying to straighten out every twist and turning point of the business cycle.

The rational-expectations argument fell on deaf ears among older mainstream economists who fought to inject Keynesian thinking into national policymaking. But younger macroeconomists often take inspiration from the techniques of this new approach. And the Reagan administration flirted with both libertarian and rational-expectations views, arguing in the 1982 *Economic Report of the President* that limiting the role of both macroeconomic and microeconomic poli-

cies would in the end expand personal freedom and economic growth. Let us hear this viewpoint:

Political freedom and economic freedom are closely related. Any comparison among contemporary nations or examination of the historical record demonstrates two important relationships between the nature of the political system and the nature of the economic system: [1] All nations which have broad-based representative government and civil liberties have most of their economic activity organized by the market. [2] Economic conditions in market economies are generally superior to those in nations . . . in which the government has the dominant economic role. . . .

A major objective of this Administration’s economic program is to reduce the Federal Government’s role in economic decision making while strengthening the economic role of individuals, private organizations, and State and local governments.3

Dissenters from the Left

During most of the two centuries since the Industrial Revolution, the most vocal critics of capitalism have fired their salvos from the left. Socialists like Marx and Engels, communists like Lenin, anarchists like Proudhon, neo-Marxists of the 1950s like Baran and Sweezy—all these critics argued that capitalism is fatally flawed and must be replaced by a more efficient and equitable economic system. Who today takes up the revolutionary banner, calling for dismantlement of Western-style capitalism?

Indeed, the voices for radical restructuring today are few. One economist who has voiced his criticisms over the last three decades is Harvard’s John Kenneth Galbraith. Writing in American Capitalism, The Affluent Society, and The New Industrial State, Galbraith has challenged prevailing views about consumers and firms. Among his major points were:

- Today’s economy is directed by large bureaucracies, not by perfectly competitive markets. The technocracy (the educated elites who run firms, governments, and universities) ultimately makes the decisions that guide countries of both East and West.

The idea that small firms are responsible for much of production, or that small inventors bring forth the major inventions, is a convenient myth designed to perpetuate belief in the market system.

- Consumers are not masters of their own minds. Advertising shapes our preferences. The outcomes of markets are determined as much by Madison Avenue as by genuine needs.

- Ours is a society in which the public sector starves while the private sector lives high on the hog. Public goods like parks are neglected; roads crumble; bridges collapse.

Galbraith’s views about the paradoxes of an affluent society were heeded by political figures and economists alike during the 1950s and 1960s.

The Japanese Mystique America was the birthplace of the “factory system,” mass production, the assembly line, and giant factories stretching over acres of land. While Adam Smith expounded the theoretical virtues of division of labor, American entrepreneurs developed its practice to the nth degree in large automobile plants employing 15,000 workers. After Henry Ford introduced mass production of the Model T Ford, workers came to be viewed as little more than highly versatile, all-purpose machines.

As long as the United States remained king of the economic mountain, the defects of the factory system seemed a small price to pay for its marvelous contribution to productivity and living standards. Would we not rather work all day in a factory and be able to buy cars and radios and home appliances than stay on the farm and spend all day washing our clothes in a tub?

During the 1970s and 1980s, America began to fall behind Japan and other countries of the Pacific Rim in the economic race. One industry after another was conquered by Japan or Korea or Singapore. Steel, shipbuilding, radios, television, cameras, automobiles—all these industries fell under the domination of innovative firms from East Asian countries. While advanced industrial countries struggled with inflation or unemployment, while Latin American countries staggered under heavy debt burdens, while socialist countries of Eastern Europe attempted to modernize their obsolete manufacturing industries, the countries

of the Pacific Rim moved steadily and rapidly ahead. A striking example of success was the city-state of Singapore. So rapidly had this country of 3 million advanced that, by the end of the 1980s, it exported 20 percent more machinery to the West than did all the socialist countries of Eastern Europe.

As traditional capitalist countries began to falter, many economists asked whether the old factory system of giant bureaucratic corporations operating huge factories had outlived its usefulness. Taking inspiration from Japanese-style management, these economists argued that “Small is beautiful” and pointed to supposedly contented Japanese workers and to Japan’s astounding productivity growth since World War II. MIT’s Lester Thurow, Harvard’s Robert Reich, and others argued for redesigning the workplace on cooperative rather than competitive lines. These scholars argued in effect:

People work for satisfaction as well as for money; men and women prize jobs which allow them to express their creativity and need for community. Workers must feel themselves part of the management team—sharing information and ideas, designing their jobs, helping to improve the quality of work and of the final output.4

Although this group of economists has spawned numerous suggestions, one common theme has been to introduce profit sharing into compensation. MIT’s Martin Weitzman has analyzed a compensation system that shares revenues or profits with workers, a system modeled on the Japanese bonus system. He reasons that if workers are paid a share of profits or revenues rather than a straight hourly wage, the marginal cost of labor will decline relative to a straight wage system. Firms will choose to retain their workers during recessions, and the overall unemployment rate will decline.

Another strand running through this critique is that American management has lost touch with production. Trained in financial wizardry at the top business schools, today’s MBAs feel more at home reading a balance sheet than managing a production line. They pay more attention to this quarter’s bottom line than to the long-term viability of radical new products. They look to getting rich fast with takeovers or arbitrage rather than getting rich slowly through the tedi-ous process of constant innovation and better new products. Some say that the modern company is suffer-ing from “corporateocracy”—corporate bureaucracy which makes management sluggish, risk-averse, and poorly adapted to the dynamic world of international competition.

How do traditional economists respond to the analyses of these dissenters from the left? Some argue that the dissenters commit the post hoc fallacy, associating Japanese success with the bonus system or with a particular form of corporate organization without any proof that these elements are responsible for Japanese success.

Others charge that their writings lack originality. Those who criticize large corporations today echo the Galbraithian logic; much of Galbraith’s argument in The Affluent Society can be found in works of earlier writers and is derivative even in title from The Ac quisitive Society (1920) by the English economic historian R. H. Tawney (1880–1962). But criticisms of lack of originality miss the point. Great advances in technology often arise from the innovator rather than the inventor. And, in the history of ideas, the thinker who creates a new synthesis and speaks in a telling fashion to a new age is the one who plays the pivotal role in history.

Radical Economics

Finally, we move to the truly radical end of the spectrum, to thinkers who would entirely reshape today’s mixed capitalist regime.

The Rise of the New Left Two decades ago, in the swirl of civil rights activism and revulsion against the Vietnam war, a school called the new left and a group called the Union of Radical Political Economics began to organize their ideas.

To give the flavor of this critique, here are the words of one of its most prominent members, John G. Gurley of Stanford, a former mainstream monetary economist who became an eloquent advocate of radical economics:

The Winds of Change: Alternative Economic Systems

[This is a] time when the assumptions and methods of economics are being challenged... Some of the attacks have reflected dissatisfaction with the many trivial problems that economists seem to spend so much of their time on. Still others have questioned the economic goals so widely accepted by economists, especially that of ever-increasing GNP, and a few have examined this issue within the wider framework of ecological systems.

Many of the attacks on present-day economics have taken the form of radical analyses of U.S. imperialism— of how the United States profits from its leading role in the hierarchical structure of rich and poor countries that make up the international capitalist system. Other radical analyses have examined how certain groups in the United States itself profit from the maintenance of a hierarchical class structure which produces both wealth and poverty, both privilege and oppression. These analyses, which generally conclude that capitalism is largely responsible for such social and economic disparities, accordingly deny that capitalist society is able (i.e., willing) to solve these problems. 5

The Radical Critique Today After an early wave of enthusiasm, the new left went underground. It hibernated during the turbulent 1970s as market economics were beset with inflationary storms arising from supply shocks. As a conservative front spread over the Western democracies—the Reagan presidency in the United States, the Thatcher government in Britain, conservative movements in Western Europe—radical movements were quiescent. But a few scholars kept the faith, particularly a group at the University of Massachusetts in Amherst. What were the major themes in their criticisms? 6

* Rejection of modern macroeconomics. Modern mainstream macroeconomics says that there is a natural rate of unemployment—today around 6 percent—below which the economy cannot go without running the straits of inflation. Radicals reject the premise that prices and wages should be free to inflate freely. They would impose wage-and-price controls as a way of containing inflation, thereby allowing lower levels of unemployment.

With the resources freed up by wage-and-price controls, the new radicals would pour funds into public capital—railroads, pollution control, education, and training.

- Countering imperialism. One radical note heard in Gurley’s trumpet call quoted above has resonated on college campuses: the need to fight American imperialism in South Africa. Harking back to the doctrines of Hobson and Lenin, radicals denounce American companies and accuse them of profiting from the racist policies of apartheid in South Africa. A rising storm of marches, protests, sit-ins, and shanties built in protest has forced many colleges and universities to sell their shares of companies operating in South Africa. Radicals see this movement as the first step in cleansing capitalism of its imperialist stain.

- Greater equity. The new left shares with the old a revulsion against the great inequalities generated by markets. The radicals would counterattack the movement against progressive taxation, hoping to tax wealthy groups heavily and redistribute the funds to the poor. They recognize, however, that the most effective redistributional programs are provided by spending (on welfare, food stamps, or housing programs) rather than by redistributive taxation.

* Rejection of markets. Modern economics views markets as good judges of people’s tastes and of the social costs of provision. Today’s radical economists dissent. Like Galbraith, they feel that our tastes are manipulated by advertising to favor trivial consumption. How can a nation spend billions of dollars playing video games, buying lethal cigarettes, or purchasing brand-name drugs instead of identical but cheaper generic products—all at a time when millions go without food, shelter, and adequate medical care? How can the nation permit firms to continue to foul our environment with sulfurous fumes and toxic wastes? Radicals call for democratic planning to replace the distorted judgments of markets.

- Democratic planning. Many radicals call for deliberate policies to reverse the decline of our basic manufacturing industries. Some call for a planning mechanism to channel funds into growth industries
while easing declining industries into their graves. But while the radical economists are more sympathetic to democratic or participatory planning than libertarians, they are suspicious of government bureaucracy, and they definitely reject Soviet communism as repressive and destructive of individual liberty.

Appraisal What is the verdict on the theories of the new left? One of the most thoughtful surveys comes from a Swedish economist, Assar Lindbeck. This twentieth-century de Tocqueville studied radical economics while visiting the United States.

Lindbeck points out that the new left mistrusts both the market and state bureaucracy. But that is one dislike too many, for these two systems are the only mechanisms known to society by which a complex modern economy can allocate its resources. How can we plan without a government planning agency? How can we allow markets to distribute corn and labor without allowing corn prices and wages to reflect supply and demand? No answers to this fundamental challenge have come forth.

What has happened to the views expressed by the new left? While we cannot yet judge their ultimate contribution, they have up to now had little impact on mainstream economics. Whatever may be the merits of their arguments, the economists of the new left have been unable to convince their professional colleagues that radical approaches are fruitful ways of attacking today's unsolved economic problems.

B. MARXISM AND ALTERNATIVE ECONOMIC SYSTEMS

Crises of Capitalism

Since the Industrial Revolution, capitalism has been plagued by crises, inequality, and depressions. In the midst of each peril, prophets would pronounce capitalism as dying or worse. Others foretold a mechanical timetable of inevitable progression—savagery to feudalism, feudalism to capitalism, capitalism to socialism, socialism to communism—but these timetables generally proved wrong. After World War I, new democratic governments sprouted all over Europe, and an impartial observer in 1925 might have pronounced the future of capitalism secure. Yet, a decade later, country after country succumbed to dictatorship. Totalitarian fascism covered the map of Europe, displacing the market economies of an earlier era and raising questions about the future of capitalism and democracy.

After World War II, the critics of capitalism were once again confounded. The mixed economies of the West and Japan formed a common pattern of rapid growth and expanding international trade. The insights of the Keynesian revolution propelled market economies to the most rapid and sustained period of expansion ever seen.

Soon, however, Western capitalism fell victim to its own success. Rapid income growth allowed the welfare states in North America and Western Europe to raise income-support and social security programs to imagined levels. When the oil crisis of the 1970s hit the market economies, they had developed a brittleness. Inflation soared. Unemployment rose. Government deficits began to climb. The external debt burdens of many middle-income countries, especially in Latin America, dragged down their economic growth. The international financial system tottered on the edge of massive defaults in the early 1980s. Once again, critics from left and right set forth grand schemes to revive the sick economies of the West.

As economists and philosophers waged the age-old debate about market mechanism versus government direction, yet another unanticipated shift among nations emerged in the 1980s. While Europe stagnated and North America drowned in deficits, the insular and peninsular countries of the Pacific Rim showed remarkable agility and strength. Japan weathered oil shocks, world recession, and unprecedented turbulence in foreign markets. South Korea, Taiwan, Hong Kong, and Singapore also grew rapidly in the face of

a wide variety of economic vicissitudes. These countries were mixed economies par excellence, relying on markets to innovate, imitate, produce, and sell their products, while the government provided fiscal and monetary guidance and steered the economy in desired directions. In response to the success of the Pacific Rim countries, economists from both capitalist and socialist countries studied the Japanese model, hoping to find the magic formula for future economic success. (Recall the discussion of the ideas of Weitzman, Throow, and Reich earlier in this chapter.)

A Bouquet of Isms

Philosophers have always had visions of a more perfect society: Plato’s Republic, Sir Thomas More’s Utopia, and Marx’s dictatorship of the proletariat were among the most influential. Visionaries often start by decrying society’s concrete ills and then contrast them with the ideal features of a vaguely defined utopia. But beyond agreeing that the present order has faults, different schools of reform often have little in common.

At one extreme are anarchists, who believe in the elimination of all government. At the other extreme are advocates of absolute communism, with the government operating a totalitarian, collectivized economic order and with all decisions about production, consumption, and distribution made by the state.

In between the extremes of anarchism and communism lie the major categories of economic systems that we study in this book:

1. **The market economy.** In pure form, this system is found in laissez-faire capitalism. Although pure laissez-faire never existed, it was closely approached in nineteenth-century Britain. Because most of this book is devoted to describing the functioning of the market economy and the mixed economy that evolved from it, we need not dwell further on this economic system.

2. **Marxism.** Although Karl Marx was primarily a critic of capitalism, he believed that capitalism would be succeeded by socialism, which in turn would give way to communism. His powerful arguments have influenced economic planners in Europe, in the Soviet Union, in China, and in many developing countries.

3. **Socialism.** One offshoot from the Marxist tree was socialist thinking, which encompasses a wide variety of different approaches. In the nineteenth century, socialists were often revolutionaries who tried to topple governments through violent means; when they succeeded, they often substituted government ownership of factories and land for private ownership. Twentieth-century socialism is widespread, particularly in Western Europe, where democratic socialist governments expanded the welfare state, nationalized industries, and planned the economy.

4. **Soviet communism.** The most thoroughgoing practical alternative to the market economy has taken place in the Soviet Union since 1917, with some features of the Soviet system adopted by Eastern Europe and in China. Under Soviet communism, the state owns all the land and most of the capital, sets wages and most prices, and directs the microeconomic operation of the economy.

The rest of this chapter is devoted to explaining the economic ideas behind the last three of these economic systems.

The Central Dilemma: Market vs. Command

In surveying alternative economic systems, a student might become discouraged about the thousand and one different “isms” that dot the political landscape. And indeed, there is great variety in the way countries organize their economies. But one central theme dominates the entire discussion about different approaches to economic organization and economic reform movements: Should the economy rely primarily upon the private market or upon government commands to answer the questions of how, what, and for whom? Before we turn to a detailed discussion of the roles of market and command, we first pose this central question in a concise manner.

First, recall that we are discussing the organization of an economic system. What is an economic system? It consists of a network of relations and organizations that sets the laws and regulations that govern economic activity; determines the property rights and
ownership of factors of production; distributes the decision-making power over production and consumption; determines the incentives motivating the different decision makers; and in the end determines what gets produced, how it gets produced, and for whom the output is produced.

One important system for determining these questions is the market. Under the market system, people act voluntarily and primarily for financial gain or personal satisfaction. Firms buy factors and produce outputs, selecting inputs and outputs in order to maximize their profits. Consumers supply factors and buy consumer goods to maximize their satisfactions. Agreements on production and consumption are made voluntarily and with the use of money, at prices determined in free markets, and on the basis of arrangements between buyers and sellers. Although individuals differ greatly in terms of economic power, the relations between individuals and firms are horizontal in nature, essentially voluntary, and non-hierarchical.

The other major system of organization is a command economy, where direction is given by government bureaucracy. In this approach, people are linked by a vertical relationship, and control is exercised by a multilevel hierarchy. A plan for the economy is established at the top level of government, and this plan is subdivided and transmitted down the bureaucratic ladder, with the lower levels executing the plan with increasing attention to detail. Individuals are motivated by coercion and legal sanctions; organizations compel individuals to accept orders from above. Transactions and commands may or may not use money; trades may or may not take place at established prices. The planning bureaucracy determines what goods are produced, how they are produced, and who gets the fruits of productive activity.

The tension between markets and command runs through all discussions about comparative economic systems.

MARXISM

Biography of Karl Marx
Karl Marx (1818–1883) was educated at Bonn and Berlin—starting in law, until the charms of philosophy drew him away from a legal career. Along with many German intellectuals, Marx was mesmerized by the philosophical teachings of G. W. F. Hegel. But while Hegel emphasized the supremacy of spirit, Marx stressed the primacy of matter over mind. He identified technological breakthroughs and the accompanying changes in social and economic relations—particularly the accumulation of capital—as the motive forces of history. He thought that these forces, which he called economic determinism, would lead to the inevitable triumph of communism.

When a professional career was closed to Marx because of his truculent and quarrelsome personality and his radical ideas, he turned to journalism. Each radical paper he edited was plagued by financial troubles or the Prussian censor.

Exile followed, and Marx ultimately settled in London, where he led an uneventful life of study, much of it spent in the library of the British Museum. He pursued his vision of economic determinism through thick and thin. However, he would have experienced even more of the thin but for the friendship of Friedrich Engels, his lifelong collaborator and financial angel.

These biographical details can barely hint at the power of Marx’s ideas, of which the British intellectual historian Isaiah Berlin wrote, “No thinker in the nineteenth century has had so direct, deliberate, and powerful an influence on mankind as Karl Marx.”

Marx’s Theories Unlike most of the early theories we have reviewed, those of Marx are alive and vitally important today. One can hardly understand the developments in the Soviet Union and Eastern Europe today without an appreciation of Marx’s influence. What are the major features on the enormous canvas painted by this intellectual master? We will review here his labor theory of value, his theory of surplus value, and his vision of the laws of motion of a capitalist society.

Marx’s economics begins with the labor theory of value. Marx assumed that what gives value to a commodity is the total amount of labor power used to produce it—both the direct labor and the indirect labor embodied in buildings or machinery used up in the productive process. Marx realized that market prices under competitive capitalism would not neces-
sarily equal labor values. Why not? Because capitalists receive an excess in revenues over labor costs—a surplus value.

By surplus value Marx meant the difference between revenues and total labor costs (total labor costs include direct costs of hired labor and indirect costs of labor used to produce capital goods and therefore "embodied" in capital). How does the difference arise? It arises because workers are forced to sell their labor to capitalists, and because capitalists pay workers for only part of the value of their output. In the simple case where no machinery is used up, the rate of surplus value (or rate of exploitation) is simply the ratio of profits to wages.

Someone who had mastered the concepts of modern economics might ask, What is gained by viewing a capitalist economy through Marxist lenses? A careful study shows that Marx's theory of prices differed little from that of Ricardo a half-century earlier. Rather, the essence of Marx's vision was to attempt to expose the nature of profit. Marx hoped to show that profits—that part of output that is produced by workers but received by capitalists—amount to "unearned income."

Using his labor theory of value, Marx described the transition to a socialist society in which "the expropriators are expropriated"; that is, where workers wrench back the surplus value for themselves.

Prophecies If Marx's thinking had progressed no further than his labor theory of value and the concept of exploitation, he would have remained but a minor figure. But he pressed on. Drawing upon these concepts, he claimed to have deduced scientifically the inevitable transition from capitalism to socialism. What did he foresee?

In Marx's world, capitalists are driven to accumulate, for the pursuit of wealth becomes an end in itself and not a means for later consumption. As capital accumulates, the rate of profit falls. Under pressure to squeeze out ever more surplus value, the working class becomes increasingly "immiserized"—by which Marx meant that working conditions would deteriorate and workers would grow progressively alienated from their jobs. A growing "reserve army of the unemployed" would prevent wages from rising above the subsistence level.

As profits decline and investment opportunities at home become exhausted, the ruling capitalist classes resort to imperialism. Capital tends to seek higher rates of profit abroad. And, according to this theory (particularly as later expanded by Lenin), the flag follows trade; that is, the foreign policies of imperialist nations are directed toward securing colonies and then mercilessly milking surplus value from them.

But the capitalist system cannot continue this unbalanced growth forever. Marx foresaw ever-growing inequality under capitalism, along with a gradual emergence of class consciousness on the part of the downtrodden proletariat. The requirement for larger and larger firms would culminate in the demise of competition and the formation of monopoly capitalism. Business cycles would become ever more violent as the masses suffered from lack of purchasing power resulting in underconsumption.

Finally, a cataclysmic depression would sound the death knell of capitalism. Like an overripe fruit ready to fall off the tree, capitalism would have grown into a fat monopoly that could be plucked by the workers in a sudden and violent revolution.

These were the prophecies that inspired generations of radicals, of the old and new left. As these positions hardened, later-day Marxists would argue about whether immiseration of the workers referred to real wages or labor's share, about whether peaceful evolution could be a substitute for violent revolution, and about whether socialism was the first or the last stage on the road to communism.

As the decades passed, it became clear that Marx's drama was not being played according to his script. Workers were enjoying ever-growing real wages and shorter hours, and labor's share of national income was slowly growing. Workers were gaining political power through ballots not bullets. The rate of profit showed no tendency to decline for innovations constantly replenished the stock of domestic investment opportunities.

In the area of business cycles, Marx's predictions seemed to be validated by deep depressions in the 1890s and 1930s. But how could Marx foretell that Keynes' General Theory in 1936 would point the way to successful macroeconomic management, a shrinking reserve army of the unemployed, and a level of economic stability never seen before?
History has not been kind to the Marxist prophecies over the century since Capital. But, as we have repeatedly seen, history rarely follows any script written by mere mortals.

The economic interpretation of history is one of Marx’s lasting contributions to Western thought. Marx argued that economic interests lie behind and determine our values. Why do business executives vote in favor of conservative candidates, while labor leaders support candidates who advocate raising the minimum wage or increasing unemployment benefits? The reason, Marx holds, is not that people’s opinions are shaped by reasoned discourse and impartial analysis. Rather, people’s beliefs and ideologies reflect the material interests of their social and economic class.

Some reflection will suggest that this approach is hardly foreign to mainstream economics. In proposing his economic theory of history, Marx has generalized Adam Smith’s analysis of self-interest away from the dollar voting of the marketplace to the ballot voting of elections and the bullet voting of the barricades. When the economic theory of history is today formalized in terms of utility and voting decision rules, we recognize the embryo of modern public-choice theories.

Our brief review of Marxian economics can only touch upon the sweeping analysis of this great and controversial figure. In the end, Marx’s greatest contribution was to show how the economy is constantly undergoing technological change and social evolution. Each social system contains the elements of its own destruction. Hence, once we understand Marx’s approach to history, we can no longer believe, as did the complacent historians of nineteenth-century Britain, that laissez-faire British capitalism was the culmination of human civilization. Nor can we fall into the fallacy that the triumph of the proletariat will inevitably bring an end to the class struggle, or even that the pinnacle of economic achievement has been reached in the mixed economy of twentieth-century America.

“All these will pass away.” This is Karl Marx’s ultimate thesis.

SOCIALISM

As a doctrine, socialism developed from the ideas of Marx and other radical thinkers of the nineteenth century. Socialism is a middle ground between laissez-faire capitalism and the Soviet communism to which we next turn. A few common elements characterize most socialist philosophies:

- **Government ownership of productive resources.** Socialists believe that the role of private property should be reduced. Key industries such as railroads, coal, and steel should be nationalized (that is, owned and operated by the state).

Although government ownership of industry was the traditional goal and definition of socialism, enthusiasm for nationalization has ebbed in West Germany, the United Kingdom, and Sweden. The major exception to the disenchantment with government ownership was Mitterrand’s France, where dozens of firms and banks were nationalized in 1981.

- **Planning.** Socialists are suspicious of the free play of profit motives relied upon in a market economy. They insist that a planning mechanism be introduced to coordinate different sectors. In recent years, planners have emphasized subsidies to promote the rapid development of “high-technology” industries, such as computers and biotechnology; these plans are sometimes called “industrial policies.”

In many European countries, capitalist management is diluted by “codetermination”—a process wherein representatives of workers and the public sit as company directors.

- **Redistribution of income.** Inherited wealth and the highest incomes are to be reduced by the militant use of government taxing powers. (In some countries, marginal tax rates have reached 98 percent.) Social security benefits, free medical care, and cradle-to-grave welfare services collectively provided out of progressive-tax sources increase the well-being of the less privileged classes and guarantee minimum standards of living.
Peaceful and democratic evolution. Socialism, as distinct from communism, often advocates the peaceful and gradual extension of government ownership—evolution by ballot rather than revolution by bullet.

Convergence with Capitalism If many of the features of modern socialism sound familiar to Americans, that is no accident. The practices in socialist countries—in Scandinavia, France, and pre- Thatcher Britain—sound more and more like what the United States itself became in the five decades from F. D. Roosevelt to Carter. Even the attempts to shrink the federal role during the Reagan years have left most of the earlier welfare programs intact.

With pardonable exaggeration, John Kenneth Galbraith and the Dutch economist Jan Tinbergen point to a political convergence, all around the world, to a single approach to economic organization: the new world is neither capitalist nor socialist, but dominated by the mixed economies.

SOVIET COMMUNISM

Debate about economic philosophies generally takes place in learned journals and university lecture halls. With Marxism, however, arguments about economic systems spilled over onto the battlefields of Europe and Asia. Marx thought that capitalism would yield to socialism, and that, after a transitional phase, socialism would yield to communism. In reality, the great experiment came when the Bolsheviks seized power in economically backward Russia during a period that the American writer John Reed called "ten days that shook the world." Since the revolution in 1917, the Soviet Union has grown into a mighty military and economic power.

We turn now to a detailed study of the workings of the Soviet economy. This subject is of great importance not only because the Soviet Union is locked in a political struggle with the United States. In addition, the Soviet economy is proof that, contrary to what many skeptics had earlier believed, a socialist command economy can function and even thrive. That is, a society in which the major economic decisions are made administratively, without profits as a central motive force for production, can grow rapidly over long periods of time.

In this section we will review the major issues of the Soviet economy: What are the high points of Soviet economic history? How is the economy organized? Who makes decisions and what motivates managers? And how successful has the Soviet economy been in achieving its goals of rapid industrialization?

Soviet History

Czarist Russia grew rapidly from 1880 to 1914 but was considerably less developed than industrialized countries like the United States or Britain. World War I brought great hardship to Russia and allowed Lenin and Trotsky—promising power to the workers and land to the peasants—to seize power in a rapid coup. Immediately upon taking power, the Soviet leaders were in a quandary. They had no economic blueprint to guide them. Marx had written extensively about the faults of capitalism, but he had speculated little about the design of the promised land.

From 1917 to 1933, the U.S.S.R. experimented with different socialist models before settling on the centralized version that prevails today. It first tried "war communism," a thoroughly centralized command economy which even toyed with the abolition of money. When that failed, the Soviet leaders instituted the "New Economic Policy," which privatized small-scale trade and decentralized some industries. But dissatisfaction with the pace of industrialization led Stalin and his colleagues to undertake a radical new venture around 1928—collectivization of agriculture and forced-draft industrialization.

The collectivization of Soviet agriculture in 1929–1935 presented one of the great dramas of modern history. While the events are clouded by lack of objective records, it appears that the main reasons for the "great turn" were: first, that Stalin and others wanted to eliminate the more affluent peasants (the "kulaks"), who had formed a core of opposition to Soviet policy. Second, there was a sharp turning

against reliance on markets. Third, grain deliveries to the state—a kind of tax on the farmers—had dropped sharply. In the end, Stalin hoped that he could raise more resources—levy more grain—from the peasants if they were forced into collective farms than if they operated under free enterprise.

The result was that, from 1929 to 1935, 94 percent of Soviet peasants were forced to join collective farms. In the process, many wealthy peasants were deported, and conditions deteriorated so much that millions perished.

The other part of the Soviet "great leap forward" came through the introduction of economic planning for rapid industrialization. In the late 1920s, the communist party spoke of the need to surpass the capitalist countries through planning for rapid growth of heavy industry.

In response, the Soviets created the first 5-year plan, covering 1928–1933. It called for increasing investment by 150 percent over 5 years. Already the emphasis of Soviet planning was established: heavy industry was to be favored over light industry, and consumer goods were to be the residual sector after all the other priorities had been met. Another feature of the first plan was its emphasis on "giantism"—enormous long-term projects, such as the great Dnieper dam, absorbing massive amounts of capital.

Soviet economic history since the 1930s has been a continual drama: preparation for and ultimate victory over the German invaders in World War II; continued use of "high-pressure planning" accompanied by rapid growth of industry; heavy investment in defense, which today takes around 15 percent of GNP; increasingly stern pressures for intellectual conformity along with repression of deviant ideas in the Stalinist period; some relaxation during the Khrushchev and Brezhnev periods; and attempts to reinvigorate the Soviet economy under young new leadership during the Gorbachev era.

The Soviet Economy Today

Having seen how Marxian economics sprouted in the nineteenth century, developed into a full-grown ideology, and flourished in underdeveloped Russia—we now turn to examine the Soviet economy today. This study of how the world's largest command economy works in practice forms an invaluable supplement to our understanding of economic processes. 16

Here, as for a market economy, we want to understand how the three basic economic problems get decided: What shall be produced? How shall it be produced? And for whom shall the goods be made? In broad outline, the picture is this.

The state owns almost all means of production—factories, equipment, and land. The major decisions about production and inputs are made by command from above, in accordance with the plan or the planners' wishes. In areas where the economy interacts with households—for consumer goods and in labor markets—prices are set by planners so that consumer demand more or less clears the markets. But the key difference from a market economy is that the direction of economic activity is set by the state, not by consumers.

What In a command economy like the Soviet Union, the broad categories of output are determined by political decisions. Military spending has always been accorded a large fraction of output and scientific resources, while the other major priority has been investment, with a share of GNP ranging between 30 and 40 percent (as compared with 15 percent for the United States). Consumption claims the residual output after the quotas of higher-priority sectors have been filled.

By contrast with those of a mixed capitalist system, prices and incomes in the Soviet economy have little say in the allocation of GNP among the different sectors. Rather, planners start by deciding on the division of the pie between sectors; then they use incomes and prices to help attain their planning goals.

We can illustrate the operation of Soviet planning using consumer goods as an example. Consumers' incomes are determined by wages, which in turn are set at levels needed to persuade workers to move into the priority sectors; Soviet planners rejected the notion of equal wages for all as naïve "equality monger-

ing. But does this mean that consumption decisions are left to the marketplace? Not at all. Rather, planners first decide on the levels and distribution of consumer goods (so much total consumption, so many automobiles, so many radios, and so forth); then consumer prices are set so that demand and supply more or less balance.

More precisely, Soviet planners set turnover taxes in order to reduce the demand for consumer goods. This process is illustrated in Figure 22-1, where the different components of the retail price are shown. The key point to see is that the excess demand for goods can be reduced by levying a steep tax on retail purchases. For many commodities, however, prices are set incorrectly. When prices are set too low (as is the case in Figure 22-1), there is excess demand and consumers are forced to wait in long lines; in effect, lines rather than prices are rationing out goods. In other cases, prices are set too high and goods languish on the shelves of department stores.

The role of prices in the Soviet economy clearly differs greatly from that in a market economy. What are the principles of price determination? With few exceptions, prices are determined by planners, not by enterprises. We have already seen that retail prices (including taxes) are set to clear markets. Wholesale prices—those used by firms—by contrast serve as accounting prices. They are set on the basis of average costs of production (including a small markup) for the industry as a whole. Western observers stress that industrial prices (such as those on goods like steel) serve virtually no allocational role.

One other feature of Soviet pricing should be noted: Prices are virtually unchanged for long periods of time, being "reformed" only once or twice a decade. The stickiness of Soviet prices, together with their basis in average costs rather than in marginal costs, makes them often very unreliable indicators of true economic costs.

A Western economist might ask, "How can you run an economy where you don’t know what goods are really worth?" To this an orthodox Soviet economist might reply, "The whole purpose of planning is to avoid the mistakes of the market. We prefer to have goods that society really needs (as determined by the communist party), rather than to devote our economy to the follies of the market, producing endless quantities of polluting automobiles, computer games, and designer jeans. If we wanted consumers to be sovereign, we could use the market. But we don’t."

One of the major complaints about the Soviet economy has been the shoddy quality of the goods it produces. The nuclear disaster at Chernobyl demonstrated to the world problems of Soviet quality control. Less publicized examples are that 70 percent of the television sets made by one association were rejected each year for poor quality and that 20 percent of the Soviet food harvest rots because of poor handling. In recent years, Soviet leaders have launched campaigns to improve worker morale and to raise the sense of pride in the quality of goods.

How does the Soviet economy decide upon the techniques of production? On what basis does this
command economy decide whether to use steel or aluminum, nuclear power or coal, labor or machinery? These questions can be subdivided into the question of who makes the decisions and what criteria are used.

In large part, the decisions about how goods are to be produced are made by the planning authorities. Planners first decide on the quantities of final outputs (the what). They then use a technique called material balances to work backward from outputs to the required inputs and the flows among different firms. Investment decisions are specified in great detail by the planners, while firms have considerable flexibility in deciding upon their mix of labor inputs.

What motivates managers to fulfill the plans? Clearly no planning system could specify all the activities of all the firms—this would require billions and billions of commands every year. Many details must be left to the managers of individual factories. The key problem then devolves to inadequate managerial incentives, which have been a recurrent problem of the Soviet economy.

In contrast to a market economy, the primary goal of Soviet firms is to fulfill the plan rather than to earn profits. Soviet managers face a number of targets by which they are judged. The major target is output (or more precisely, “realized output” or sales); subsidiary targets include labor productivity, the product mix, and, in recent years, profits.

Soviet managers are then judged on how well their enterprise fulfills the plan: they get large bonuses if they meet the plan, while they may be dismissed if they fall short of the plan.

While much of the Soviet system may sound unfamiliar, some aspects resemble features of the American economy. Successful bureaucrats in the U.S.S.R. are “organization people”—they are obedient but resourceful, obsequious to those above and arrogant to those below. Ability counts, ability not only to master a technical engineering problem, but also to get along with people. Some complain here of the businessman’s three-martini lunch; similarly, the Soviet press often contains reports of pudding of expense accounts or business junkets to a Black Sea resort.

The managerial incentive system has given rise to significant distortions in the Soviet economy. Because such high priority is given to meeting the output or sales target, managers often hoard inputs like steel that might cause bottlenecks if they became scarce because of shortages or transport delays. Moreover, because output targets do not contain quality dimensions, there is an incentive to produce low-quality goods. Thus, if the target is 10,000 shirts, the firm might use rough cloth and sew a crooked seam. Stories are told of transportation enterprises that move carloads of water back and forth in order to fulfill their output target of logging so many physical ton-miles.

But it would be misleading to dwell on the shortcomings. Every economy has its contradictions and difficulties with incentives—witness the paradoxes raised by the separation of ownership from control in America, discussed in Chapters 7 and 12.

What counts is results, and there can be no doubt that the Soviet planning system has been a powerful engine for economic growth.

For Whom We have already discussed the question of who is served by the Soviet economy. The entire system is designed to attain the goals of the planners and the ultimate political leaders of the communist party. The priority has, since 1930, been national security and rapid economic growth. In recent years, however, the consumer has been given greater priority. A much larger share of investment now goes to agriculture and light industry than in the time of Stalin. But the system is still very far from being driven by consumer preferences.

Because of the high priority of investment and defense, consumption’s share of GNP is only 53 percent (as opposed to 66 percent in the United States). Consumption is not equally distributed, however. Wage rates are determined centrally to clear labor markets. In the early stages of industrialization, Soviet planners set large differentials between skilled and unskilled workers to reflect the scarcity of skilled labor. In the 1930s, the differential was as high as 8 to 1, whereas today, because of the increased number of educated workers, wage differentials have declined to 2 to 1.

In the Communist Manifesto, Marx wrote, “To each according to his needs.” Soviet leaders have decided that such a utopian society is many years
away, and that material incentives for workers must continue to play a key role in deciding the distribution of consumer goods.

Comparative Economic Performance

Since 1945 the United States and the Soviet Union have engaged in a superpower competition for public opinion, for military superiority, and for economic dominance. Premier Nikita Khrushchev boastfully predicted that the U.S.S.R. would bury the United States economically. Moreover, in that era—when the American economy stagnated while Soviets thrust the first missile into space—many objective analysts believed that the Soviets might well outstrip their capitalist rivals.

How does the economic performance of the world’s largest command economy compare with that of the mixed economies? In answering this question, we examine the key indicators of economic growth, equality of income, and absence of inflation and unemployment.

Economic Growth

The central objective of Soviet leaders since the late 1920s has been rapid industrialization. It is hence appropriate to compare growth in GNP of the U.S.S.R with that of other countries. As Table 22-1 shows, Soviet economic growth since the 1920s has indeed been impressive. Measured Soviet real GNP has grown more rapidly over the long run than have most of the major market economies. While the growth experience has been impressive, some historians note that the growth has been achieved by brute force, by emphasizing rapid growth of many commodities that have not necessarily been highly valued by consumers. Quantity, not quality, has been the goal.

What have been the sources of economic growth? Studies indicate that the pace of growth in the Soviet Union has been rapid because of extensive growth—very large increases in inputs of capital and labor. The rate of productivity growth (that is, the rate of growth of output per unit of input) has in recent years been markedly lower than that of major market economies.

But recent years have not seen a continuation of the earlier trend of more rapid growth under communism than in market economies. By some analysts’ reckon-

<table>
<thead>
<tr>
<th>COUNTRY AND PERIOD</th>
<th>AVERAGE GROWTH RATE OF GNP (percent per year)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soviet Union</td>
<td></td>
</tr>
<tr>
<td>1885–1913</td>
<td>3.3</td>
</tr>
<tr>
<td>1928–1987</td>
<td>4.2</td>
</tr>
<tr>
<td>United States</td>
<td></td>
</tr>
<tr>
<td>1834–1929</td>
<td>4.0</td>
</tr>
<tr>
<td>1929–1987</td>
<td>3.0</td>
</tr>
<tr>
<td>United Kingdom</td>
<td></td>
</tr>
<tr>
<td>1855–1987</td>
<td>2.1</td>
</tr>
<tr>
<td>Germany</td>
<td></td>
</tr>
<tr>
<td>1850–1987</td>
<td>2.8</td>
</tr>
<tr>
<td>Japan</td>
<td></td>
</tr>
<tr>
<td>1874–1987</td>
<td>4.5</td>
</tr>
</tbody>
</table>

Table 22-1 Long-term growth of GNP in the Soviet Union and other major countries

...ing, indeed, the U.S. growth has outstripped Soviet growth in the last decade; in the last 5-year period, Soviet GNP has grown at only 2.1 percent per year. What caused the slowdown? Factors include: a lack of major innovations, a string of disastrous harvests, increasing burdens of military spending, escalating costs of producing energy in the far east and north of the U.S.S.R., and the strain of using a cumbersome planning apparatus to deal with the demands of an economy with a growing need for technological sophistication.

Where does the Soviet economy stand today? Overall, Soviet GNP was about 57 percent of American GNP in 1987. On a per capita basis, however, Soviet output was only 49 percent of that of the United States. There remains a large gap between the most advanced capitalist countries and the Soviet Union, and that gap is not closing.
Income Distribution One of the major complaints levied by Marx and many socialists and radicals has been that capitalism permits surplus value or unearned profits to flow to capitalists, making capitalism a very unequal, class-ridden society. By contrast, a socialist society would share the return to capital among the workers, thereby allowing much greater equality than a market economy.

In practice, communist planners have allowed sizable but declining wage differentials. And the privileges of the capitalist class have been replaced by generous benefits for the ruling party elites. Recent estimates of income distribution indicate that, except for the absence of a super-rich class, the income distribution in the Soviet Union and Eastern Europe shows a striking similarity to that in Western countries.

Inflation and Unemployment Finally, what of the scourges of capitalism, unemployment and inflation? The answer appears to be that there is effectively none of either in the U.S.S.R. Labor is generally in short supply, because of the ambitious economic plans. Further, controlled prices tend to be quite stable, so measured inflation is absent. Whatever the flaws of Soviet communism, the problems of open inflation and unemployment are not among them.

How do these diverse elements of performance add up? Such an evaluation is beyond mere economic science. The Soviet model has surely demonstrated that a command economy is capable of mobilizing resources for rapid growth and awesome military power. But it has done so in an atmosphere of great human sacrifice—even loss of life—and political repression. Is such a frightful human toll worth the economic gains? This is one of the most profound dilemmas of human society.

Economic Reforms

Although the socialist economies of the Soviet Union and Eastern Europe grew rapidly for many years, they began to stagnate in the 1970s and 1980s. The promise of the Soviet model lost its allure for other countries as growth slowed and as high-technology industries of the United States, Western Europe, and the Pacific Rim left the Soviet-style economies far behind. The technological backwardness of Soviet planning is symbolized by the fact that the planning apparatus, which compiles thousands of material balances and sets most prices, performs most calculations manually, sometimes even on abacuses!

On many occasions in Soviet history, leaders have attempted to reform Soviet communism. Some of the most thorough reforms have taken place in China and Hungary, but the most visible set of reforms were the reforms launched under Soviet General Secretary Mikhail Gorbachev. We first sketch the nature and content of the reforms and then comment on the outlook for their success.

More or Less Centralization? The key debate has been between those who want better centralized planning and those who want to decentralize decisions and give leading roles to prices and profits.

The proponents of better centralization stress that planning directives can be improved by use of the new tools of mathematical economics. They would introduce input-output techniques (such as those developed by Russian-born former Harvard economist Wassily Leontief, described in Chapter 23's appendix). Some (Nobel-laureate Kantorovich and academician Novozhilov) would apply linear programming techniques to estimate the appropriate scarcity prices to use in plans. Thus proponents of centralization would retain the key elements of the command economy, but improve the precision of its commands.

At the other pole are those who press for greater decentralization of decision making. This group stresses that a modern economy is too complex to be operated with as high a degree of centralization as prevails in the Soviet Union. They note that use of highly aggregated output quotas leads to distortions; distortions are exacerbated by use of prices that are poor indicators of true economic scarcity.

In recent years, the decentralizers have become dominant. The key insight, first put forth by Soviet economist Evsei Liberman in 1956, was that production must be subordinated to profit as an incentive for managers. By targeting profits, Soviet managers would be forced to pay greater attention to costs.
quality, and innovation, as must a manager in a market economy. Managers would no longer be rewarded for producing large quantities of unsold and defective goods.

The Gorbachev Reforms

General Secretary Gorbachev faced a crisis in the Soviet economy upon assuming leadership in 1985. Growth in the Soviet economy had slowed sharply, defense continued to drain a substantial fraction of the output and technological capability, and leadership and worker morale seemed at a low ebb. Gorbachev argued that the traditional Soviet system was too centralized and clumsy for effective management of an increasingly sophisticated economy. The economy, in the view of many Soviet economists, needed fundamental reform.*

Gorbachev's first efforts were aimed at improving morale and renewing the leadership of his country. He instituted a policy of glasnost (openness) to promote candor and reduce ideological rigidity, increased tolerance toward minorities, and replaced many of the aged "revolutionaries" with younger comrades.

"In 1987, an obscure Soviet economist, N. P. Shmelev, was catapulted into prominence with a trenchant critique of Soviet planning in a Soviet periodical, Novi Mir. Excerpts from this eloquent tract illustrate some of the themes of the reform economists and demonstrate the extent to which open criticism was tolerated during the early Gorbachev years. Shmelev wrote, "Our economy has been ruled for too long by decree instead of by the rule. Today's administrative system of management is unable to concern itself with improving output quality or increasing production efficiency." He complains that planners spend their time "watching with the utmost vigilance to ensure that shoemakers stitch shoes and pastry-cooks bake pies. . . . Everything is swamped in a foul bureaucratic morass of departments. Great authority, intelligence, and strength are needed for the day-to-day struggle against the bureaucracy."

Critics of the Soviet economy have pointed out that state enterprises act as monopolists and therefore have an iron grip on markets. Shmelev castigates the monopolistic tendencies in a manner reminiscent of critics of American big business, arguing for greater competition and for breaking the dominance of the producer over the consumer: "Choice, competition—that is an objective condition without which no economic system can be viable or at least sufficiently efficient. Any monopoly inevitably leads to stagnation, and absolute monopoly to absolute stagnation."

Soviet communism has proclaimed the right of every worker to a job and contrasts the absence of unemployment in the Soviet Union with the high unemployment prevalent in many capitalist countries.

Shmelev says the unspeakable by suggesting that the threat of unemployment will be necessary to discipline workers: "Let us not close our eyes to the economic harm done by our parasitical confidence in guaranteed work. Today it is, I believe, clear to everyone that we owe disorderliness, drunkenness, and shoddy work largely to excessively full employment. A real danger of losing your job and going onto a temporary allowance or being obliged to work wherever you are sent is a very good cure for laziness, drunkenness, and irresponsibility."

Western economists wait eagerly to see whether such open critiques have an impact on the course of Soviet reform.
earnings of foreign currencies. In addition, the reformers have suggested that they may make the rouble convertible into foreign currencies and that the Soviet Union may join major international economic institutions like the International Monetary Fund (IMF) and the General Agreement on Tariffs and Trade (GATT).

- The stated purpose of the reforms is to make the Soviet economy more productive and to increase the volume and quality of consumer goods. The objective was stated by Secretary Gorbachev in 1986:

We would welcome any opportunity to switch resources and forces from defense into civilian sectors, into increasing people’s prosperity.

Outlook for Reform The Gorbachev reforms are in their infancy, and no assessment will be possible for many years. A sober assessment of the chances for success finds many pitfalls along the road to achieving the goals. First, things may get worse before they get better. The Soviet economy is a delicately balanced web of interests and classes. A thoroughgoing reform may disrupt the normal channels of commerce and actually slow economic growth for a time. In addition, there will be strong resistance from the entrenched bureaucracy that wishes to maintain its economic power. Past reform efforts have always been laid low by central planners.

Second, the Soviet leaders are moving into uncharted waters. There are no clear precedents for a mixed socialist economy. Many questions arise for the future performance of a system with elements of both plan and market: Will profit incentives steer the economy in the wrong direction? Will enterprises fire workers and jack up prices, producing the scourges of inflation and unemployment in a socialist economy? Will decentralization of foreign trade to enterprises lead to a wave of imports? Will workers revolt against the new material incentives?

Or, most likely of all, will the reform movement simply be strangled by the opposition of those who currently enjoy privilege and high status under the old regime of centralized planning?

A recent study of the Gorbachev reforms concludes with the following words:

All this is not to argue that there will be no reform. Some improvements will occur, probably in foreign trade, joint ventures, agriculture, and the service sector. . . . It is also likely that enterprise managers will end up with more power and more financial autonomy, but not as much as they need to free themselves from the petty tutelage of central officials. In other words, there will be improvements and improved productivity, but not the breakthroughs Gorbachev seems eager to achieve.

Gorbachev confronts an unpleasant dilemma. Without a radical economic and political upheaval, the Soviet Union will probably be unable to sustain its economic power. . . . Essential to such an upheaval, however, is a decision to slash Soviet military expenditures and divert more resources to decentralized consumption and innovation, but this in turn will force, at the very least, a temporary reduction of military might and prestige. . . . Moreover, there is always the chance that, in the process of doing all this, Gorbachev will fail in bringing about economic reform but succeed in relegating the Soviet Union to a lesser military and political position.

With this overview of the Soviet economic reform movement, we conclude our analysis of alternative economic systems. And, indeed, the circle is closed, for we see that the underlying motive for reform stems from the need to confront economic scarcity and to face the age-old dilemma of guns versus butter. No lesson could better illustrate the central tenet of economics—that scarcity and the limitation of economic goods is pervasive no matter what the form of economic organization.

11The mission and function of these international organizations are discussed in Chapter 27.

SUMMARY

A. Evolution of Economic Thought

1. Growing from roots in nationalist and protectionist mercantilism, political economy as a discipline began with the classical economists: Adam Smith, whose invisible-hand doctrine proclaimed a beneficial natural order in the price system and who severely criticized government interference in the marketplace, and Malthus and Ricardo, the gloomy prophets of diminishing returns and of the struggle over distribution of limited social income among the wage workers, landowners, and profit-seeking capitalists.

2. Flagging classicism gave way a century ago to neoclassical economics, which provided a synthesis of utility and costs, marginalism extended beyond Ricardian rent analysis to all factors of production, and modern welfare economics studying government policies for changing the income distribution or for correcting microeconomic inefficiencies.

3. The Keynesian revolution added to the microeconomics of neoclassical economics an overdue macroeconomics that eventually synthesized fiscal and monetary analysis.

4. Important counterweights to modern mainstream economics have come from both left and right. Conservative libertarian critics stress that planning and government intervention imperil personal freedoms along with economic efficiency, while rational-expectations macroeconomists argue that systematic policies cannot cure business cycles. Galbraithian iconoclasm questions whether consumer tastes are shaped by advertising, while other economists fret over corporacry that weakens innovativeness in large businesses. Radical economists denounce inequality, pollution, and penalism.

B. Marxism and Alternative Economic Systems

5. In reaction to the periodic crises and depressions of capitalism, critics have spawned "isms" of the Marxist, socialist, and communist varieties.

6. The Marxian offshoot from Ricardian classicism has played a pivotal role in intellectual and political history. Scientific socialism purports to predict the laws of motion of capitalism: exploitation and pauperization, class struggle and class-conditioned ideology, imperialism, cyclical crises, and ultimate proletarian victory.

7. Socialism is a middle ground between capitalism and communism, stressing government ownership of the means of production, planning by the state, income redistribution, and peaceful transition to a new world.

8. Historically, Marxism took its firmest roots in semifeudal Russia. A study of the what, how, and for whom of the command economy in the Soviet system shows a much greater central planning of broad elements of resource allocation (particularly the emphasis on defense, a high rate of investment, and rapid industrialization). The Soviet economy has grown very rapidly since the 1920s. But recent stagnation leaves a large gap between the standards of living of the U.S.S.R. and advanced capitalist countries, and the slow growth has provoked significant reform proposals during the Gorbachev years.
CONCEPTS FOR REVIEW

mercantilism
Adam Smith's attack on government, espousal of the invisible hand
Ricardian diminishing returns, class conflicts
neoclassical economics
Chicago School libertarianism
Japanese mystique
new left and radical economics
Marxist laws of economic evolution
socialism, communism, Marxism
centralized planning, Soviet style
what, how, for whom in the Soviet Union
two poles of communist reform
Gorbachev reforms

QUESTIONS FOR DISCUSSION

1. Make a list of the key alternative economic systems, describing each and its history.
2. Analyze the way that what, how, and for whom are solved in the Soviet command economy, and compare your analysis with the solution of the three central questions in a market economy.
3. Which parts of a modern American economics textbook would be well—or badly—received by socialist or Soviet thinkers?
4. Libertarian economists argue that the government should not regulate the quality of drugs, require seat belts, or have speed limits on highways. Devise the kind of argument a libertarian might use to support such views. Construct some opposing arguments.
5. Review the list of reservations that libertarians lodge against government interferences in the modern mixed economy (page 482). In your view, which of these interferences expand and which reduce economic freedoms? On which would you agree with Friedman's opposition?
6. Consider the Soviet and American economic models. What are the strong or weak points of each in the following tasks:
 (a) Setting a high ratio of investment to GNP
 (b) Matching shoe sizes or colors with consumer tastes
 (c) Controlling inflation and unemployment
 (d) Inventing new products or processes
7. Prices and profits play a central role in the allocation of resources in a market economy; explain briefly. Then contrast their role in a Soviet-style command economy.
8. Advanced problem: The basic technique of Soviet planning is material balances. Under this technique, the total demand of each commodity is (in principle) adjusted to equal the total supply. More precisely, demands are set so that the sum of all demands for intermediate goods (e.g., corn for seed) plus final demands (e.g., corn for muffins) is equal to the supplies (e.g., production, imports, and decline in inventories of corn).

Recalling the principles of an efficient allocation of resources (particularly that in Chapters 10 and 18), evaluate whether a material balance plan is assured to achieve
allocative efficiency. [HINTS: Draw a marginal-cost-based supply curve and a marginal-utility-based demand diagram. Choose an arbitrary level of output, and assume this is sold at the price where output is equal to quantity demanded (i.e., the price is determined by the intersection of the planner’s quantity with the demand curve). Does $MC = MU$? Can you see anything in the material-balancing technique that satisfies the fundamental conditions for allocative efficiency?] Does your analysis suggest why Soviet economists are critical of the current system and propose introducing reforms such as decentralization or better planning techniques?
PART FIVE
ECONOMIC GROWTH AND INTERNATIONAL TRADE
The Industrial Revolution was not an episode with a beginning and an end... It is still going on.

E. J. Hobsbawm,
The Age of Revolution (1962)

Most analyses and popular discussions of economic issues focus upon short-run concerns like the latest data on inflation or unemployment, the latest twist or turn in Federal Reserve policy, and the travails of the computer or auto industry.

But such concerns are only ripples in the longer wave of economic growth. Year in and year out, advanced economies like the United States accumulate larger quantities of sophisticated capital equipment, push out the frontiers of technological knowledge with new process and product innovations, and increase their potential per capita GNP. If we look at individual industries, we see an incessant change and evolution: industries producing horseshoes or steam engines decline and disappear; steel and textiles fight for their livelihood against lower-cost foreign producers; aircraft and microcomputers become the new buttress of America’s industrial system—for a while.

Here in Part Five, we turn to these long-run questions of economic growth and international trade. We begin in this chapter by examining the history and quantitative record of American economic growth, along with the economic theories that explain this trend.

Chapter 24 also looks at growth and trade, focusing
primarily on problems of economic development of poorer countries. We see what barriers keep poor nations poor and what steps they can take to improve their economic fortunes.

The last three chapters then examine issues of international trade and finance. Chapter 25 begins with the theory of comparative advantage, which offers some of the most profound insights in all of economic analysis. This theory shows why it pays for a country to trade even though foreigners are more efficient (or inefficient) in the production of every commodity.

Chapter 26 then applies comparative advantage to analyze the question of protectionism: Should a nation protect its industries from imports of more efficient foreign nations? What are the dubious and what the valid reasons for imposing barriers to international trade?

In the final chapter, we address issues of international finance. We shall see how the gold and dollar standards collapsed, to be replaced by today’s system of market-determined exchange rates. We shall also see how the U.S. trade deficit of the late 1980s threatens today’s trade and payments systems.

With these final topics, we will have completed our survey of modern economics.

A. THE THEORY OF ECONOMIC GROWTH

Nations have long regarded their economic growth as a central economic and political objective. In the United States, presidents have campaigned on platforms proclaiming the need to “get the country moving again.” Other countries, like the Soviet Union, have made untold sacrifices to speed their industrialization. But what exactly is economic growth?

Formally, economic growth represents the expansion of a country’s potential GNP. In terms of Chapter 2’s production-possibility frontier (PPF), we can visualize economic growth as the outward shift of the PPF.

In studying the process of economic growth, however, we should also understand what growth means for ordinary people. To see what economic growth has brought to America, let’s go back a century to 1888 and look at a family’s daily existence. Most people worked on farms, and a day’s work lasted for 10 to 12 hours for 6 or 7 days a week. The average worker would earn about $1 per hour in terms of today’s prices. But what goods and services could be bought with such meager earnings? The average home had no electricity, no telephone, no radio or television or stereo, no running water, no toilets, and no central heating. Local transportation was by foot or by horse on unpaved pathways, and the lucky few who could travel to neighboring cities went by rail. Public health was rudimentary, and few safe and effective drugs were available to combat the many dreaded illnesses of the time.

To understand economic growth, compare the everyday life of the present-day American with the last paragraph. The enormous difference in the standards of private consumption and public services is a dramatic illustration of the effect of economic growth.

In the first part of this chapter, we inquire into the economic processes that lead to growth. Theories of economic growth study the factors that lead to economic growth over time and analyze the forces that allow some nations to grow rapidly, some slowly, and others not at all.

We also inquire into the causes of the economic growth of nations. Are there stages of history? What is the economic process by which living standards rise and capital is accumulated? Can we discern patterns of economic growth in industrial countries? And has the period since the early 1970s witnessed a change in the patterns of economic growth?

We want to know, as well, the sources of economic growth. Did our living standards rise because of more capital or because of technological progress? And what can a nation do to improve its economic performance? All these questions are central issues addressed by growth theory and policy in this chapter.

STAGES OF HISTORY

Voltaire wrote that history is but a fable agreed upon. Until recently, many writers regarded economic his-
tory as a series of stages, one unfolding predictably after another. One catalog of the possible stages was described more than a century ago by Friedrich List, in his 1841 *National System of Political Economy*. According to List, Karl Marx, and others, European society has evolved toward higher forms of economic organization. First came primitive cultures, with marauding hunters and self-sufficient tribal families cultivating crops. Gradually, as elbow room became scarce, the primitive economy evolved into feudalism. In the Middle Ages, a settled chain of command and exploitation—based largely on ownership of land—governed all economic and social life from king down to serf.

When the Renaissance and Reformation led to the Industrial Revolution, the curtain came down on feudalism, and civilization was ushered onto the stage of bourgeois, middle-class capitalism. Peasants were driven from the countryside and forced into the cities as a working class (or "proletariat"). Rivers were dammed to harness water power, and the invention of the steam engine enabled the energy of wood and coal to replace the energy of beast and man.

Some, such as British historians of the Victorian age, believed that an almost-perfect economic state had been reached under laissez-faire capitalism. The only remaining step toward perfection would be to dismantle tariffs and the few other government interferences in the marketplace. The state would wither away.

Others, particularly socialist writers like Marx, believed that one more act was to follow in the drama of economic development. Capitalism was to be but a passing phase, succeeded in its turn by socialism or communism, just as capitalism had succeeded dying feudalism. In 1849, Marx and Engels wrote in *The Communist Manifesto*:

> The modern bourgeois society has sprouted from the ruins of feudal society... The modern laborer... becomes a pauper... What the bourgeoisie therefore produces... are its own grave diggers. Its fall and the victory of the proletariat are equally inevitable.

Fact and Fiction

Events rarely agree with the fables written by historians or economists. Victorian capitalism yielded to the welfare state. Moreover, the revolutions that Marx and Engels predicted for France and Germany failed to materialize. And real wages, instead of falling or remaining constant in the century since Marx’s 1867 *Capital*, have instead risen dramatically under industrial capitalism.

Another frequent prophesy was that capitalism would be racked by ever-deepening depressions. And indeed, the Great Depression of the 1930s was one of the worst the capitalist system has ever known. But who could foresee that Keynes would develop the macroeconomic theories that allow today’s market economies to use fiscal and monetary policies to moderate business cycles and combat chronic slumps? Few economists today predict that capitalism will collapse under the weight of one final great depression.

What has been the major surprise in economic development of the last half of the twentieth century? The single most surprising development of our age has been the unpredicted vigor of market economies. Miracles of sustained growth in production and living standards have taken place in Japan, Germany, Italy, France, Scandinavia, and North America.

Social prophets of the 1940s and 1950s, such as Schumpeter and Toynbee, thought of the mixed economy as "capitalism in an oxygen tent." But the growth experience of the third quarter of the twentieth century revealed that a market economy could perform favorably in comparison with past epochs of capitalism or present developments under communism. Sages of an earlier age would be astounded to find that virtually all the major economies have rediscovered the central role of market forces as a way of guiding resource allocation.

Then the 1970s ushered in the “age of stagnation,” in which rising inflation and unemployment were to appear simultaneously as the growth in living standards slowed sharply. This development was on no scholar’s timetable—not seen in the crystal ball of Spengler, Toynbee, Marx, Schumpeter, or Galbraith. We live in a world no prophet ever predicted!

The twists and turns of economic history serve as fair warning: Not even the most brilliant social scientist can predict the future outcome of complex economic, social, and political factors.
ECONOMIC THEORIES

Let us turn now to various economic theories that can help us to understand history. From the earliest days of political economy, economists have applied their tools to help explain the evolution of output and wages, and the process of long-term economic growth generally.

The "Magnificent Dynamics" of Smith and Malthus

In *The Wealth of Nations* (1776), Adam Smith wrote a handbook of economic development. He began with a hypothetical golden age—"that original state of things, which preceded both the appropriation of land and the accumulation of [capital] stock"—when labor alone counted, when land was freely available to all, and before there was any capital to speak of.

What determines pricing and distribution in this simple and timeless dawn? Prices and outputs depend here on labor alone. Every commodity trades at prices proportional to the amount of work required to produce it. If beavers take twice the time to find and trap as deer, then beavers will cost twice as much as deer. An economy in which prices are determined by the amount of labor that goes into the production of each commodity is governed by the labor theory of value.

The determination of price by average labor cost alone would apply no matter how many goods there were. Supply and demand are operating in this golden age, but the situation is so simple that we do not need elaborate DD and SS curves. The long-run SS curves for the different goods are simple horizontal lines at the stated labor costs; average labor costs therefore determine prices.

Now consider the dynamics of such an economy. Life is pleasant in the golden age. Babies are born, and the population doubles every 25 years. Since land is plentiful, people spill over onto more acres. National output exactly doubles as population doubles. Price ratios of deer and beaver remain exactly as before.

What about real wages? Wages still get all the national income, there being as yet no subtractions for land rent or interest on capital. Because output expands in step with population and land is not a drag on output, diminishing returns do not set in. The real wage per worker is therefore constant over time.

That would be the end of the story until, say, some clever inventor found a new way of doing in 1 hour what used to take 2 hours. This would raise the national product per capita. A balanced improvement in the productivity of labor would leave the price ratio of beaver to deer unchanged, but it would double the real wage rate. In this world of the labor theory of value, inventions can only raise wages and speed the pace of balanced economic growth.¹

Scarcity Land and Diminishing Returns Once all land becomes fully populated, the golden age in which only labor counts would come to an end. As we saw in Chapter 2, once the frontier of virgin land disappears, balanced growth of land and labor inputs along with their outputs is no longer possible. New laborers begin to crowd onto existing arable soils. For the first time, private property in land springs up. Now land is scarce, and a rent is charged to ration it.

Growth does take place in this classical world of Adam Smith and Thomas Malthus. Population still grows, and so does national product. But output now must grow more slowly than does population. Why? Because, with new laborers added to fixed land, each worker now has less land to work with. Naturally, therefore, the law of diminishing returns comes into operation. The increasing labor-land ratio leads to a declining marginal product of labor and hence to declining real wage rates. The classical economists believed that a conflict of interests arises between classes. More babies mean lower per capita incomes and wage rates; lower wage rates mean higher rent rates per acre of land. Landlords gain at the expense of labor. This gloomy picture led Thomas Carlyle to criticize economics as "the dismal science."

Paradise Lost and Regained How bad can things get? The dour Reverend T. R. Malthus thought that population pressures would drive the economy to a point where workers were at the minimum level of subsistence. We will return to Malthus in the next

¹Question 6 at the end of this chapter will apply the production-possibility frontier to Smith's beaver-deer economy.
chapter's analysis of population trends, but we can outline his theory briefly here.

Malthus reasoned that whenever wages were above the subsistence level, population would expand, while below-subistence wages would lead to high mortality and population decline. Only at subsistence wages could there be lasting equilibrium. Humans are destined to a life that is brutish, nasty, and short.

What did Malthus forget, or at least underestimate? He overlooked the future contribution of invention and technology. He failed to realize how technological innovation could intervene—not to repeal the law of diminishing returns but to more than offset it. He stood at the brink of a new era and failed to anticipate that the succeeding two centuries would show the greatest scientific and economic gains in history—a chastening fact, and one to keep in mind while listening to modern Malthusians sing out their baleful dirge.

Economic Growth with Capital Accumulation

We have seen how the classical economists stressed the role of scarce land in economic growth. But history records how entrepreneurs and capital—not landowners and land—have called the tune since the early nineteenth century. Land did not become increasingly scarce. Instead, inventions and new machines led to the introduction of power-driven machinery, factories that gathered teams of workers into giant firms, railroads and steamships that joined to-

country has used a Solow-type analysis.

Solow is known for his enthusiasm for economics as well as for his humor. He worries that many economists' penchant for publicity leads them to overestimate their knowledge. He criticized economists for "an apparently irresistible urge to push their science further than it will go, to answer questions more delicate than our limited understanding of a complicated question will allow. Nobody likes to say 'I don't know.'"

Many believe that Solow is one of the few living economists who can write well. At the same time, Solow worries that economics is terrifically difficult to explain to the public. At his news conference after winning the Nobel Prize, Solow quipped, "The attention span of the people you write for is shorter than the length of one true sentence." Nonetheless, Solow continues to labor for his brand of economics, and the world increasingly listens to the apostle of economic growth at MIT.
tures like factories and houses, equipment like computers and machine tools, and inventories of finished goods and goods-in-process.

It is convenient for our purposes to simplify by assuming that there is a single versatile kind of capital good (call it K). We then measure the aggregate stock of capital as the total number of capital goods. In our real-world calculations, we approximate the universal capital good as the total dollar value of capital goods (i.e., the constant-dollar value of equipment, structures, and inventories). Under perfect competition and without risk or inflation, the rate of return on capital is also equal to the real interest rate on bonds and other financial assets.

Turning now to the economic-growth process, economists stress the importance of capital deepening, which occurs when the quantity of capital per worker increases over time. Important examples of capital deepening include the increase in farm machinery and irrigation systems on the farm, of railroads and highways in transportation, and of computers and communications systems in banking. In each of these industries, societies have invested heavily in capital goods, increasing the amount of capital per worker. As a result, the output per worker has increased enormously in farming, transportation, and banking.

What happens to the return on capital in the process of capital deepening? For a given state of technology, a rapid rate of investment in plant and equipment tends to depress the return on capital (the real interest rate). This occurs because the most worthwhile investment projects get constructed first, after which the investments become less and less valuable. Once a full railroad network or telephone system was constructed, new investments would branch into more sparsely populated regions or duplicate existing lines. The rates of return on these late investments would tend to be depressed relative to high returns on the first lines between densely populated regions.

In addition, the wage rate paid to workers will tend to rise as capital deepening takes place. Why so? Each worker has more capital to work with and his or her marginal product therefore rises. As a result, the competitive wage rate rises along with the marginal product of labor. We will see the wage rate rise for farm labor, transport workers, or bank tellers as increases in capital per worker raise marginal products in those sectors.

We can summarize the impact of capital deepening in the neoclassical growth model as follows:

Capital deepening occurs when the supply of capital grows more rapidly than the labor force. In the absence of technological change, capital deepening will produce a growth of output per worker, of the marginal product of labor, and of wages; it also will lead to diminishing returns on capital and a consequent decline in the real interest rate.

Geometrical Analysis of the Neoclassical Model

We can analyze the effects of capital accumulation using Figure 23-1. The left-hand panel shows the relationship between the capital-per-worker ratio on the horizontal axis and the rate of return on capital, or the real interest rate, on the vertical axis. This DD curve is downward-sloping to reflect the fact that, for a given amount of labor, capital accumulation forces its marginal product to decline. This diminishing marginal productivity of capital is just the principle of diminishing returns applied to capital rather than to labor.

Figure 23-1(b) displays a new graph, called the factor-price frontier. This frontier shows the relationship between the competitively determined wage rate and the competitive real interest rate. As capital deepens, the economy moves down and to the right on the factor-price frontier; that is, the real interest rate falls and the wage rate must simultaneously rise. Conversely, if a great war were to destroy much of a nation’s capital, the capital-labor ratio would fall, the real interest rate would rise, and the wage rate would fall—this would represent a movement up and to the left along the factor-price frontier.

Let’s use Figure 23-1 to analyze the course of the economy when capital accumulation takes place. Say the economy is initially at point A with relatively little capital per worker.

In the absence of technological change, capital accumulation takes us down the red DD curve from A to B. Indeed, at some point the real interest rate might decline so far that people feel that it no longer pays them to save anything for enhanced future consump-
tion. The SS line in Figure 23-1 shows the level of interest rates at which the economy's net saving is zero. At point E, the diminished desire for saving snuffs out further capital accumulation.

The same process is also shown by the factor-price frontier ff in Figure 23-1(b). In that graph, economic growth begins at an initial low-wage, high-interest equilibrium at point a. Then capital deepening moves the economy to point b with a higher wage rate and a lower real interest rate. Finally, as capital deepening ceases, the economy comes into equilibrium at point e with a still higher capital-output and capital-labor ratio.

Note that our earlier summary of the impact of capital deepening is verified by the analysis in Figure 23-1.

Long-Run Steady State What is the long-run equilibrium in the neoclassical growth model without technological change? It is one in which capital deepening ceases, real wages begin to stagnate, and real interest rates stop falling. The stagnation may come at a high level of income and output if a great deal of capital has been accumulated. This vision of a "steady state," while not one of constant improvement in incomes and output, is nevertheless more optimistic than the dismal view of Malthus and Ricardo.

Technological Change and Continued Growth

A glance at economic history will reveal that the stagnationist's view of constant wages and profits was
Figure 23-2 Technological advance shifts out curves, raising output and wages

Inventions and technological advance increase capital's productivity and the output that can be paid to factors of production. Hence, the productivity of capital marches out from \(DD \) to \(D'D' \) to \(D''D'' \), and the factor-price frontier moves from \(ff \) to \(f'f' \) to \(f''f'' \). These rightward shifts allow higher wages and productivity over time (as seen by shifts from \(B \) to \(B' \) to \(B'' \) and from \(b \) to \(b' \) to \(b'' \)).

Historically, the pace of technological change has been just fast enough to offset diminishing returns on capital—keeping interest and profit rates almost unchanged, while real wages grew steadily.

also not in history's script. Rather, a never-ending stream of inventions and technological change led to a vast improvement in the production possibilities of Europe, North America, and Japan. What is meant by technological change? This denotes changes in the processes of production or introduction of new products such that more or improved output can be obtained from the same bundle of inputs. Among process inventions that have greatly increased productivity were the Hall process for producing aluminum, the Bessemer process for producing steel, and automatic looms that replaced earlier handlooms. The most dramatic technological changes include product inventions such as the telephone, the airplane, and the computer.

How can we represent technological change in our neoclassical growth model? Technological change means that more output can be produced with the same inputs of capital and labor. Technological change shifts out the PPF. In terms of our growth diagram, technological change shifts outward and upward the marginal product curve on the left of Figure 23-1, and it shifts out the factor-price frontier on the right side of Figure 23-1.

Figure 23-2 presents an important interpretation of economic growth. These graphs show that—instead of moving to a steady state with constant output, wage rates, and interest rates— inventions increased the amount of output that each unit of input could produce. As a result of technological progress, capital per worker, output per worker, and wages per worker grow over time, yet the real interest rate does not
B. THE TRENDS AND SOURCES OF ECONOMIC GROWTH

Theories can take us only so far. It is time to examine the underlying trends of economic growth—of output, productivity, wages, and other important magnitudes. In addition, we will examine the forces lying behind these trends.

THE STYLISTED FACTS OF ECONOMIC GROWTH

Thanks to the painstaking gathering of data and construction and analysis of national accounts by Simon Kuznets, John Kendrick, Edward Denison, and many others, we can discern several patterns of economic development in the United States and other advanced nations.

The graphs of Figure 23-3 depict the key trends of economic development for the United States in this century. Similar findings apply abroad.

Figure 23-3(a) shows the trends in real GNP, the capital stock, and population. Population and employment have more than tripled since 1900. At the same time, the stock of physical capital has risen more than eightfold. Thus the amount of capital per worker (the K/L ratio) has increased by a factor of...
almost three. Clearly, a great deal of capital deepening has occurred.

What about the growth in output? Has output grown less than in proportion to capital, as would occur in a model that ignored technological change? No. The fact that the output curve in Figure 23-3(a) is not in between the two factor curves, but actually lies above the capital curve, shows that technological progress must have increased the productivity of capital and labor.

Indeed, the capital-output ratio—shown in Figure 23-3(b)—has fallen over time, rather than rising as would be expected in the capital-accumulation model without technological progress.

Rising Wages and Trendless Profit Most people judge capitalism by the movements in real wages (i.e., money wages corrected for movements in the price level). Real wages have indeed risen steadily, as seen in Figure 23-3(c). This is in accordance with what one would expect from the growth in the capital-labor ratio and from favorable technological trends.

The real interest rate (i.e., the money interest rate minus the rate of inflation) is shown in Figure 23-3(d). These data—or data on the rate of return or profits earned by corporations—do not show the decline that would be predicted from simple deepening of capital and diminishing returns. Interest rates and profit rates fluctuate greatly in business cycles and wars but display no strong trend upward or downward for the whole period. Either by coincidence, or because of an economic mechanism inducing this pattern, technological change has just about offset diminishing returns.

Output per worker-hour is the solid black curve in Figure 23-3(c). As could be expected from the deepening of capital and from technological advance, Q/L has risen steadily.

When wages rise at the same rate as output per worker, this does not mean that labor has captured all the fruits of productivity advance. It means, rather, that labor has kept about the same share of total product, with capital also earning about the same relative share throughout the period. Actually, a close look at Figure 23-3(c) shows that real wages have grown slightly faster than has output per worker-hour over the last nine decades. This trend implies a slow upward creep in the share of labor in GNP, with capital's share declining gently.

Seven Basic Trends of Economic Development

These basic facts of economic history in the advanced nations can be summarized approximately by the following trends:

Trend 1. Population and the labor force have grown, but at a much more modest rate than the capital stock, resulting in capital deepening.

Trend 2. There has been a strong upward trend in real wage rates.

Trend 3. The share of wages and salaries relative to the total return on property has edged up very slightly over the long run.

Trend 4. Instead of observing a fall in the rate of return on capital or the real rate of interest, we observe major oscillations of profits during business cycles with no strong upward or downward trend in this century.

Trend 5. Instead of observing a steady rise in the capital-output ratio as the deepening of capital in-
vokes the law of diminishing returns, the capital-output ratio has actually declined since 1900, although little change has occurred since 1950.

Trend 6. For most of the twentieth century, the national savings rate in the United States (equal to private national saving divided by GNP) has been stable. The ratio of gross investment to GNP has also been nearly constant over this period. Since 1980, however, the large federal government deficit has led to a sharp decline of the national savings rate.

Trend 7. After removing effects of the business cycle, national product has grown at a stable rate of 3 to 4 percent per year. Moreover, this growth rate has been so much higher than a weighted average of capital, labor, and resource inputs that technological innovation must have played a key role in economic growth.

One further point about the curves of Figure 23-3 and our seven trends should be recognized. The persistence of the trends might suggest that they have taken on a certain invulnerability or inevitability—that we can forever expect our economy to generate rapid growth in output per worker, real wages, and real output.

That view should be resisted, for it misreads the lessons of history and economic theory. While trends have been persistent, a closer examination shows major waves or deviations during periods of a decade or more. Moreover, there is no theoretical reason why technological innovation should remain high, forever raising living standards and offsetting diminishing returns. The most recent deviant period, since 1973, has witnessed a marked slowdown in growth of output, real wages, and output per worker. While it is impossible to say how long this period of diminished macroeconomic performance will persist, we must emphasize that there is no logical reason why the future cannot be sharply divergent from the first three-quarters of the twentieth century.

Analyzing the Economic Growth of the Mixed Economy

While these seven trends are not like the unrepealable laws of chemistry, they do portray fundamental historical facts about economic growth. How do they fit into our economic theories?

Trends 2 and 1—higher wage rates when capital deepens—fit nicely together with classical and neoclassical theories of production and distribution. Trend 3—that the wage share has grown only very slowly—is an interesting coincidence that is consistent with a wide variety of production functions relating Q to L and K.

Trends 4 and 5, however, warn us that neoclassical theory cannot hold in static form. A steady profit rate and a declining, or steady, capital-output ratio cannot hold when the K/L ratio is rising in a world with unchanging technology; taken together, they contradict the basic law of diminishing returns under deepening of capital.

We must therefore recognize the key role of technological progress in explaining the seven trends of modern economic growth. Indeed, given the ample evidence of the contribution of science, technology, and engineering to the economy, it would be difficult to ignore advancing technology.

The trends confirm, then, the hypothesis of technological progress shown in Figure 23-2. In those diagrams, technological change is shown by a rightward shift in the marginal-product-of-capital curve [DD in Figure 23-2(a)] and in the factor-price frontier [ff in Figure 23-2(b)]. Advancing technology might then lead to the rightward move in Figure 23-2(a) from B on DD to B' on D'D' to B'' on D''D'', with a similar rightward movement in the right-hand panel.

Note that this movement will be consistent with trends 1 to 7. The tendency toward diminishing returns has just been offset by technological change, with the real interest rate changing little and the wage rate rising somewhat more rapidly than output per head.

THE SOURCES OF ECONOMIC GROWTH

Economists have not rested contentedly with trends and theories. Under the leadership of Robert Solow, John Kendrick, and Edward Denison, economic archaeologists have begun to ferret out the sources of economic growth. By combining the theories such as
those in Figure 23-2 with the seven trends, we now have a much better understanding of why nations grow.

The Growth-Accounting Approach

Detailed studies of economic growth rely on what is called growth accounting. This technique is not a balance sheet or national product account of the kind we met in Chapter 7. Rather, it is a way of exhaustively accounting for the ingredients that lead to the observed growth trends.

In our simple model shown in Figure 23-2, growth in output or Q can be decomposed into three separate sources: growth in labor or L, growth in capital or K, and technological innovation itself. Momentarily ignoring technological change, an assumption of constant returns to scale means that a 1 percent growth in L together with a 1 percent growth in K will lead to a 1 percent growth in output.

Suppose L grows at 1 percent and K at 5 percent. It is tempting, but wrong, to guess that Q will then grow at 3 percent, the simple average of 1 and 5. Why wrong? Because the two factors do not necessarily contribute equally to output. Rather, the fact that in recent years three-fourths of GNP goes to labor while only one-fourth goes to capital suggests that labor growth will contribute more to output than will capital growth.

If labor’s growth rate gets 3 times the weight of K’s, then we can calculate the answer as follows: Q will grow at 2 percent per year ($= \frac{3}{4}$ of $1\% + \frac{1}{4}$ of 5%). To growth of inputs, we also add technological change and thereby obtain all the sources of growth.

Hence, output growth per year follows the fundamental equation of growth accounting:

$$\% \text{ } Q \text{ } \text{growth} = \frac{3}{4}(\% \text{ } L \text{ } \text{growth}) + \frac{1}{4}(\% \text{ } K \text{ } \text{growth}) + \text{ T. C.}$$

where T. C. represents technological change (or total factor productivity) that raises productivity, and where $\frac{3}{4}$ and $\frac{1}{4}$ are the relative contributions of each input to economic growth, given by their relative shares of national income (of course, these fractions would be replaced by new fractions if the relative shares of the factors were to change).

If we seek to explain per capita growth, matters are simpler, since this enables us to get rid of L as a separate growth source. Now, using the fact that capital gets one-fourth share of output, we have

$$\frac{\% Q}{L} \text{ growth} = \frac{1}{4}(\% \frac{K}{L} \text{ growth}) + \text{ T. C.}.$$

This relation shows clearly how capital deepening would affect per capita output if technological advance were zero. Output per capita would grow only one-fourth as fast as capital per capita, reflecting diminishing returns.

One final point remains: We can measure Q growth, K growth, L growth, as well as the shares of K and L. But how can we measure T. C. (technological change)? We cannot. Rather, we must infer T. C. as the residual or leftover after the other components of output and inputs are calculated. Thus if we examine the equation above, T. C. is calculated by subtraction as

$$\text{ T. C. } = \% Q \text{ growth } - \frac{3}{4}(\% L \text{ growth}) - \frac{1}{4}(\% K \text{ growth}).$$

We can now ask critically important questions about economic growth: What part of per capita output growth is due to capital deepening and what part is due to technological advance? Does society progress chiefly by dint of thrift and the forgoing of current consumption? Or is our rising living standard the reward for the ingenuity of inventors and the daring of innovator-entrepreneurs?

Numerical Example For a first answer, substitute representative numbers for the period 1900–1986 into our equation above for the growth of Q/L, or per capita output. Since 1900, L has grown 1.5 percent per year, K has grown 2.5 percent per year, while Q has grown 3.1 percent per year. Thus, by arithmetic, we find that

$$\frac{\% Q}{L} \text{ growth} = \frac{1}{4}(\% \frac{K}{L} \text{ growth}) + \text{ T. C.}.$$

becomes

$$2.1 = \frac{1}{4}(1) + \text{ T. C.} = 0.25 + 1.85.$$

This section contains advanced materials, so short courses may skip right to "Detailed Studies" in the next section.

A MENU FOR GROWTH

<table>
<thead>
<tr>
<th>GROWTH-ENCOURAGING STEPS</th>
<th>ESTIMATED POTENTIAL FOR INCREASING REAL ECONOMIC GROWTH, 1990–2000</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. Increase net national investment and savings rate by one-third (i.e., from 6 to 8% of GNP)</td>
<td>0.16% per year</td>
</tr>
<tr>
<td>2. Increase civilian research and development by one-fifth (i.e., from 2 to 2.4% of GNP)</td>
<td>0.18</td>
</tr>
<tr>
<td>3. Lower the natural rate of unemployment by 1% of the labor force</td>
<td>0.20</td>
</tr>
<tr>
<td>4. Eliminate all strikes</td>
<td>0.01</td>
</tr>
<tr>
<td>5. Reach an arms-control agreement that allows government to reduce strategic programs and increase government investment</td>
<td>0.10</td>
</tr>
<tr>
<td>Total</td>
<td>0.65% per year</td>
</tr>
</tbody>
</table>

Table 23-3 How can the United States grow faster?

This menu of growth shows the kinds of steps that might be taken to speed the growth of potential output and labor productivity. It should be emphasized that each of these steps would be extremely difficult to accomplish, but they are on the whole within the realm of the feasible. [Source: Edward Denison, Sources of Growth in the United States (Committee for Economic Development, New York, 1961); calculations by authors.]

Inflation. However, when all the careful studies have been completed, all these factors can explain only a fraction of the slowdown. The productivity slowdown of the 1970s and 1980s continues to be an unsolved economic mystery.

Speeding Economic Growth

In response to the lagging productivity growth, many have called for policies to restore the earlier rapid productivity improvement. What kinds of steps are possible to speed growth? A study by Edward Denison investigated this subject in detail, and the results appear in Table 23-3.

These figures show that raising the growth rate of potential output or of productivity per worker is possible but difficult. The most obvious way to grow more rapidly is to increase the national savings and investment rate; this could be accomplished by changing the mix of fiscal and monetary policy toward one more favorable to capital accumulation (say, by lowering real interest rates and incurring a smaller budget deficit). A very ambitious program might succeed in raising national net investment by 2 percent of GNP. This would lead to an increase of slightly less than two-tenths of a percentage point in the annual growth rate of potential GNP and of labor productivity over the following decade.

One cannot help but be impressed by the smallness of the numbers shown in Table 23-3. Increasing productivity growth is not impossible, but no easy paths have yet been found.

Epilogue

This review of growth accounting and the way that
the United States might revitalize its economic growth brings us to the end of our discussion of economic growth in advanced countries. We have seen how technological progress has allowed the advanced industrial economies to escape from snares foreseen by Malthus and Marx. History—while full of twists and turns—shows a remarkable pattern of growth in wages and living standards in capitalist countries.

But the laws of motion for the advanced countries have not held true for all countries of the developing world. These poorer countries find themselves trapped in a cycle of poverty. The next chapter shows that Malthus has been a prophet outside his own land.

SUMMARY

A. The Theory of Economic Growth

1. Many writers have tried to read into economic history a linear progression through inevitable stages, such as primitive economy, feudalism, capitalism, and some form of communism. History has not agreeably stuck to such timetables. In particular, the advanced market economies have grown more rapidly over the last four decades than social prophets foresaw.

2. The classical models of Smith and Malthus describe economic development in terms of fixed land and growing population.

In the absence of technological change, increasing population ultimately exhausts the supply of free land. The resulting increase in population density triggers the law of diminishing returns: fixity of land keeps output from growing proportionally to increased labor. With less and less land to work, each new worker adds less and less extra product; the decline in labor's marginal product means a decline in the competitively earned real wage. As each acre of land gets more and more labor to work with, its marginal product and competitively earned rent go up. The Malthusian equilibrium comes when the wage has fallen to the subsistence level, below which the supply of labor will not reproduce itself. However, in reality, technological change has kept economic development progressing in industrial countries by continually shifting the productivity curve of labor upward.

3. Growth theories incorporating capital accumulation form the core of modern analysis. This approach examines a world where labor grows for non-economic reasons while capital is accumulated in response to profit rates. In the beginning, there is a gradual increase of the amount of capital per worker, or "capital deepening." In the absence of technological change and innovation, an increase in capital per worker would not be matched by a proportional increase in output per worker because of diminishing returns. Hence, capital deepening would lower the rate of return on capital (equal to the real interest rate under risk-free competition).

4. The fundamental factor-price frontier depicts how wages must rise when the return on capital or real interest rate falls. In a world with capital deepening, the downward trend in the real interest rate leads to a rise in real wages along the factor-price frontier.

5. Technological change, increasing the output produced for a given bundle of inputs, pushes outward and rightward both the capital-productivity curve and the factor-price frontier, allowing output to rise even more rapidly than capital and labor inputs.
B. The Trends and Sources of Economic Growth

6. Numerous trends of economic growth are seen in data for this century. Among the most important are that real wages and output per hour have risen steadily (at least until the early 1970s); that the real interest rate has moved trendlessly; and that the capital-output ratio has declined.

7. Some of the major trends are consistent with the simple model of capital accumulation. In general, however, we must augment the simple model by introducing technological advance if all trends are to be explained. Thus, a trendless interest and profit rate cannot be consistent with capital deepening unless there is technological advance shifting out production functions; nor can the capital-output ratio fall in the simple model without this advance. We thus recognize what common sense tells us—that technological advance increases the productivity of inputs and shifts out both the productivity-of-capital curve and factor-price frontiers.

8. The last trend—relatively stable growth in potential output over the last nine decades—raises the important question of the sources of economic growth. Using quantitative techniques, growth accountants have determined that “residual” sources—such as innovation and education—outweigh capital deepening in their impact on GNP growth or labor productivity. This technique also shows the great difficulty a country has in attempting to add even a few tenths of a percentage point to its underlying potential GNP growth rate.

CONCEPTS FOR REVIEW

Smith’s golden age marginal product
Malthus’ limited land seven trends of economic growth
neoclassical growth model growth accounting
real interest rate and rate of return on capital
K/L rise as capital deepens
capital-output ratio, K/Q
factor-price frontier

QUESTIONS FOR DISCUSSION

1. Describe some of the major prophesies about economic growth. Why did each prove wrong? From Business Week, Fortune, or the Economist, collect some predictions about the future of the American economy. List some of the ways they might be inaccurate.

2. “If the government subsidizes science and invention and controls stagflation and cycles, we can expect growth that would astound the classical economists.” Evaluate critically.

3. “Without population growth or technological change, persistent capital accumula-
tion would ultimately destroy the capitalist class." Explain why such a scenario might lead to a zero interest rate and to a disappearance of profits.

4. Since labor’s share shows a slight uptrend and the capital-output ratio a slight downtrend, since the interest rate fluctuates considerably, since the ratio of private net investment to private GNP is volatile—in view of these facts, would you be much surprised if the basic trends on pp. 515–516 were to fluctuate sharply in the future?

5. Recall the growth-accounting formula on page 517. Calculate the rate of growth of output if labor grows at 1 percent per year, capital grows at 4 percent per year, and technological change is $1\frac{1}{2}$ percent per year.

How would your answer change if:
(a) Labor growth slowed to 0 percent per year?
(b) Capital growth increased to 5 percent per year?
(c) Labor and capital had equal shares in GNP?
Also, calculate for each of these questions the rate of growth of output per worker.

6. Using the graphical PPF of Chapter 2, analyze Adam Smith’s beaver-deer economy as follows.

Assume that catching a deer takes 2 hours, while trapping a beaver requires 4 hours. For a society with 100 hours of labor, first draw the PPF as a straight line—going from the intercept on the vertical axis of the 50 deer producible with that much labor, to the intercept on the horizontal axis of 25 beavers. The absolute slope of this PPF gives the 2-to-1 price ratio prevailing at any point where both goods were being produced and consumed. (The marginal-utility and indifference-curve analysis of Chapter 6 is still needed to tell where society ends up on the PPF.)

What would happen to the PPF if the amount of labor doubled with exactly the same technology? Also, show the effect of a doubling of labor productivity in both industries.

7. Political candidates have proposed the following policies to speed economic growth for the 1990s. For each, explain qualitatively the impact upon the growth of potential output and of per capita potential output. If possible, give a quantitative estimate of the increase in the growth of potential output and per capita potential output over the next decade:

(a) Cut the federal budget deficit by 2 percent of GNP, increasing the ratio of investment to GNP by the same amount.
(b) Increase the federal subsidy to research and development (R&D) by 1% of GNP, assuming that this subsidy will increase private R&D by the same amount and that R&D has a social rate of return that is 3 times that of private investment.
(c) Increase defense spending by 1 percent of GNP, with multiplier effects leading to at least twice as large an impact upon aggregate demand.
(d) Increase the labor-force participation rate of females so that total labor inputs increase by 1 percent.
(e) Increase investments in "human capital" (or education and on-the-job training) by 1 percent of GNP.

8. A brooding pessimist might argue that 1973 marked a watershed—the end of the great expansion that began with the Industrial Revolution. Assume that all the features of the earlier era were still present today except that technological change and innovation were to cease. What would the new seven trends look like for coming decades?
What would happen to the important real wage? What steps could be taken to counteract the new trends and to put the economy back on the earlier path?

9. Advanced problem: Many fear that robots will do to humans what tractors and cars did to horses—the horse population declined precipitously early in this century after technological change made horses obsolete.

If we treated robots as a particularly productive kind of K, what would their introduction do to the DD and ff curves in Figure 23-1? Can total output go down with a fixed labor force? Under what conditions would the real wage decline? Can you see why the horse analogy might not apply?
APPENDIX: 23
Modern Economic-Growth Theories

Economics, not being a settled subject, is itself still undergoing development. While the broad facts of historical development discussed in the chapter are not in dispute, different interpretations of them are given by different authors. Some further ideas associated with the names of Joseph A. Schumpeter, W. W. Leontief, and other economists are sketched briefly in this appendix.

SCHUMPETERIAN INNOVATION

Schumpeter emphasized the role of the innovator—i.e., the inventor, the developer, the promoter, the person who initiates and recognizes technological improvements and who succeeds in getting them introduced. Schumpeter regarded the innovators as the dynamic actors of capitalism, who rule profitably for a day, only to have their profits nibbled away by imitating competitors.

Figure 23-1(a) represents well Schumpeter’s notion of what would happen if all innovations ceased. Competition and capital accumulation would quite quickly push society down the curve of diminishing returns DD. Indeed, Schumpeter thought that the long-run SS horizontal line at which the supply of new saving will disappear would be at a zero rate of interest and profit, being properly drawn in Figure 23-1(a) on the horizontal axis itself.

But now Schumpeter plays his trump card. Innovation is periodically shifting the DD curve upward and outward. Profits and interest are like a violin string plucked by innovation; without innovation profits die down to nothing, but then along comes a new innovation to pluck them back into dynamic motion again. Thus profits arise because of constant birth of new products and new markets.

The profits due to innovation, we have seen, will be competed away by imitators with labor and consumers soon benefiting from price reductions. The innovation-induced rise in interest rates will soon coax out saving and capital formation until the accumulation of the augmented capital stock leads to diminishing returns, a “profit squeeze,” and minimal interest. But then along comes a new burst of innovations—e.g., railroads, electricity, computers, superconductors—to pluck the system back into dynamic motion, and we are off on a new repetition of the process.¹

¹As can be seen by readers of his stimulating Capitalism, Socialism and Democracy (Harper & Row, New York, 1942), Schumpeter was more than an economist. Believing the economic system to be itself essentially stable, Schumpeter advanced sociological and political reasons for his predicted decay of capitalism. He held that the very efficiency of capitalism will be its ruin, as intellectuals and the masses come to despise the market ideology and contrive to introduce hampering government interferences in the name of welfare. Unlike Marx, who thought capitalism would die of its own cancers, Schumpeter thought it would eventually commit suicide as children of the capitalist class became disaffected and introduced socialism. His forecast had an eerie ring of truth as radical students invaded their colleges and burned their parents’ bank buildings in the 1960s and 1970s.
NEOCCLASSICAL GROWTH MODEL

The birth of modern growth theory can be traced to an important contribution to the concept of balanced (or "exponential") growth developed by Sir Roy Harrod in England and Professor E. Domar in the United States. This theory attempts to use a rigorous economic approach, known as neoclassical growth theory, to explain the major trends of modern economic history sketched in the main body of this chapter.

Suppose hours of labor L grow steadily at about 1 percent per year. And for extreme simplicity, assume that technological change is "labor-augmenting"—in effect making each person’s efficiency as a worker grow at another 2 percent per year. Either because of more scientific methods of production or better education, it is as if 100 workers can this year do what it took 102 to do last year. This process of improved efficiency is repeated indefinitely. While actual L in its human-hour units is growing at but 1 percent per year, the number of efficiency units of labor L^* is growing at 3 percent per year because of the annual 2 percent efficiency improvement. This leads to the concept of the natural rate of growth.

The natural rate of growth in a neoclassical model is the percentage growth per year of its labor supply expressed in "efficiency units" (which means natural labor units as augmented by the increase in technological efficiency of each person-hour); as a condition of balanced growth, output and capital must also be growing at this same natural rate.

With GNP (or Q) and with L^* growing steadily at this natural rate of 3 percent per year, the stock of capital K must also grow at the same natural rate of 3 percent per year if it is to keep in balance. How much net investment is required each year to keep K growing at this natural rate of 3 percent? In other words, how much must people be steadily saving and investing out of their annual potential output to keep growth of output and capital just balanced?

The needed saving-income, or saving-GNP, ratio depends on the numerical value of the capital-output ratio K/Q times the natural growth rate.

We are now in a position to write down the arithmetic formula relating three historical things: the natural rate of growth of 0.03 per year, or in the general case g per year; the historical capital-output ratio of, say, 3\%, or in the general case K/Q; the required saving-GNP ratio of 0.10, or in the general case s. We get the balanced-growth equation:\nd

$$0.10 = 0.03 \times 3\% \quad \text{or more generally} \quad s = g \times \frac{K}{Q}$$

\[2\] R. F. Harrod, Towards a Dynamic Economics (Macmillian, London, 1948); E. D. Domar, Essays in the Theory of Economic Growth (Oxford University Press, New York, 1957). The same discussion of interacting accelerator-multiplier models in Chapter 10 is here applied to the trend of economic development rather than to the business-cycle deviations from that trend.

\[3\] Thus, suppose Q is 3000 billion per year and that the capital stock is about 3\% times as great, being $10,000$ billion. Then, to add 3 percent to K this year we must have net investment of 300 billion (equals $0.03 \times 10,000$ billion), which means that people must be saving and investing exactly 10 percent (equals 3\% \times 3\%) of their incomes. Check your understanding by showing that a 4 percent natural growth rate would in this case require a 13\% percent (equals 4\% \times 3\%) saving ratio out of income, and that a 3 percent natural growth rate with a K/Q ratio of only 2 would require only a 6 percent saving-income ratio.
This relationship determines the amount of voluntary saving and investment that is needed in the long-run equilibrium of the neoclassical growth model.\(^4\)

Explaining the Trends

Can this simplified neoclassical growth model account for all seven of the basic trends listed earlier? Let us check off the trends.

The model certainly gives a deepening of capital relative to hours of actual \(L\), since \(K\) grows at 3 percent and \(L\) only at 1 percent. [However, in this simplified model, an observer who concentrates only on \(L^*\), labor in efficiency units, will see a constant \((K/L^*)\).]

Trend 2 is verified also. The wage rate rises at 2 percent per year. Why? Because actual persons \((L, \text{ not } L^*)\) collect the marginal product of their increased efficiency.

A slightly modified version of trend 3 is verified and is no longer a coincidence. Because technological change is labor-augmenting, making each person take on "the strength of ten," the balanced growth in \(K\) and \(L^*\) means we are dividing shares between the factors in precisely the same way as before. We thus have constant shares of labor and capital, not an upward creep of labor's share.

Trend 4's constancy of the real interest rate is now precisely verified, being neither an approximation nor a coincidence. Each unit of \(K\), being matched exactly by the same amount of \(L^*\) as before, experiences no diminishing returns and has imputed to it the same competitive real interest rate.

Trend 5 is also verified in slightly modified form, since the natural rate of balanced growth assumes from the beginning an unchanged \(K/Q\) ratio.

Trend 6's constancy of the saving-income ratio is verified from the balanced-growth equation for the case of the natural rate of balanced growth at the same compound interest rate per year: \(s = \text{constant } g \times \text{constant } K/Q\).

And the centrally important trend 7 is also verified, for output is growing steadily and rapidly at 3 percent each year.

INPUT-OUTPUT TABLES

Often, the analysis of economic growth must go beyond the highly simplified, aggregate analysis of the neoclassical model. Countries on the road to economic development need to plan the output growth of individual sectors; advanced countries may want to trace the implications of changes in defense spending upon the steel, oil, and electronics industries. An important tool for those addressing these issues is **input-output analysis**, which shows the flow of products among the many industries of an economy.

Input-output analysis was developed by the Russian-born Harvard economist, Wassily Leontief, and is a modern-day realization of the eighteenth-century dream of the physiocratic economist, François Quesnay, who first envisaged the *Tableau*

\(^4\)This is really the \(l = s\) schedule equality of national income accounting, which is studied in macroeconomics. In the case of the natural growth rate, \(g = l/K\) or \(l = gK\); hence, \(l/Q = s = g(K/Q)\), which gives the balanced-growth equation.
WARTIME INTERINDUSTRY FLOWS (billions of dollars)

<table>
<thead>
<tr>
<th></th>
<th>AGRICULTURE</th>
<th>MANUFACTURING</th>
<th>HOUSEHOLD FINAL CONSUMPTIONS</th>
<th>GROSS OUTPUT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agriculture</td>
<td></td>
<td>1,000</td>
<td>500</td>
<td>1,500</td>
</tr>
<tr>
<td>Manufacturing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Household labor and</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>other factors</td>
<td>1,000</td>
<td>1,000</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gross inputs</td>
<td>1,500</td>
<td>2,000</td>
<td></td>
<td>3,500</td>
</tr>
</tbody>
</table>

Table 23A-1

The input-output table dissects the economy's structure. Each industry appears twice, in a row and column; its row lists the allocation of its total gross output as inputs for other industries and for final consumption; also, its column shows inputs needed to produce it.

The black totals show gross outputs, inclusive of amounts needed as intermediate inputs. To compute GNP without double counting, we add only the factor payments (or the "value added") of the red-shaded row, or alternatively, only the final-consumption flows of the red-shaded column. (Fill in the proper GNP in the indicated blank, and check it two ways.)

Économique, or circular flow of economic life. Dozens of nations—such as France, Norway, Egypt, the United States, the United Kingdom, the Soviet Union, and India—have computed input-output tables as an amplification of their national income data and as a possible aid in development planning.³

We can illustrate input-output analysis showing first a wartime situation and then the transformation into a peacetime economy. This example indicates in a highly simplified way the kind of calculations that a centrally planned economy might make as it estimated the changes required for a massive shift in resource allocation.

For this example, Table 23A-1 shows a wartime flow of product with only manufacturing (e.g., guns) and agriculture (e.g., butter) as sample industries. A realistic input-output table would have hundreds of industries. Here is its general idea. Each industry is listed twice, in a row as an output, and in a column as a needed input. In addition, the final consumption of households is treated as an extra column and their labor (or other primary factors of production) as an extra row. These household figures are the numbers that enter into national income or net national product and are in the colored parts.

³ For additional discussion of theory and applications see Wassily Leontief, *The Structure of the American Economy, 1919–1929* (Harvard University Press, Cambridge, Mass., 1941; 2d ed.: 1919–1939, Oxford University Press, New York, 1951); or Wassily Leontief, *Input-Output Economics* (Oxford University Press, New York, 1966). As part of the price that Leontief has to pay to make Walras’ general equilibrium empirically measurable, he is forced to make the technical assumption that all factor proportions—to each other and to total output—are technologically fixed or constant.

Modern techniques, such as those of Harvard’s Dale Jorgenson, allow flexible input-output coefficients in a more complex "trans-logarithmic" production function.
of the table. Actual input-output tables also include government, foreign trade, investment, and other sectors.

The gross value of agricultural output is shown by the black $1500 (billion) twice: at its row's right as the sum of all the places where farm output went—$1000 as input to manufacturing plus $500 directly consumed by households as food—and at its column's bottom as the sum of the $500 cost it paid for manufacturing inputs (chemical fertilizers, etc.) and the $1000 cost it paid for labor inputs.

Give a similar interpretation of the $2000 gross total for manufacturing.

The table also shows our old friend GNP (which will also be NNP if our example is simple enough to ignore depreciation). With no government or investment in the picture, GNP equals the sum of the third column's red final products, or alternatively GNP equals the sum of all factor costs or values added shown in the third row's red wages.

GNP definitely does not include the intermediate purchases of one sector from another; the gross black total of $3500 definitely involves double counting. Verify that GNP = $2000.

This input-output table is more than a record of past history. How do planners hope to use it? They employ it to forecast the effects of changing consumption requirements.

Thus suppose Table 23A-1 refers to a wartime situation where manufacturing employment and output have been swollen by military needs. Now suppose "peace breaks out." What will have to be planned for the new deployment of labor and other inputs if full employment is still to be maintained? Suppose we now want to double agriculture's final consumption, from the old red $500 to new $1000, exactly compensating by cutting the military manufacturing sector back from $1500 to $1000. Assuming fixed input-output coefficients, the analyst can solve linear equations for the new peacetime state and show that it must then be in the configuration given in Table 23A-2. Ten percent of the workers, calculation shows, must be shifted from war work

<table>
<thead>
<tr>
<th>PEACETIME INPUT-OUTPUT FLOWS (all numbers in billions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>AGRICULTURE</td>
</tr>
<tr>
<td>Agriculture</td>
</tr>
<tr>
<td>Manufacturing</td>
</tr>
<tr>
<td>Household labor</td>
</tr>
<tr>
<td>and other factors</td>
</tr>
<tr>
<td>Gross totals</td>
</tr>
</tbody>
</table>

Table 23A-2 Input-output table helps nations plan

End of war causes a shift from guns to butter: agricultural final consumption goes up by $500 billion; manufacturing final consumption goes down by the same amount. Using fixed input-output coefficients from Table 23A-1, we can calculate the needed changes in gross outputs, labor, and intermediate inputs. The same table helps in development planning.
to peace work. Similarly, the input-output table can help developing economies plan for major shifts in the structure of their economies.

SUMMARY TO APPENDIX

1. Schumpeter's stress on innovation, followed by competitive erosion of profit, highlights an important part of the growth process.
2. The neoclassical growth model uses the concept of the "natural rate of growth" \(g \), which is determined by population growth and technological change. If \(K \) and \(Q \) are to grow at this balanced rate, the required fraction of income that has to be voluntarily saved is given by the balanced-growth equation, \(s = g(K/Q) \).
3. By working carefully through the neoclassical growth model, we see how it can be made consistent with the seven major trends of growth in a modern economy. The major insight is to allow for continual improvement in the "quality" of labor; that is, one person a decade ago becomes 10 or 20 percent more efficient today. By incorporating this assumption of labor-augmenting technological change, we see that many of the trends of growth are produced over the long run.
4. Input-output tables give a useful picture of the relationships lying behind aggregate GNP data. By positing fixed input-output coefficients, a planner can use this technique to program a shift from a war pattern of consumption to a peace pattern or to achieve any other developmental target goal.

CONCEPTS FOR REVIEW

- innovation and competition
- capital deepening, varying \(K/Q \)
- natural growth rate
- \(s = g(K/Q) \)
- labor-augmenting technological change
- seven trends explained
- input-output table

QUESTIONS FOR DISCUSSION

1. Explain the basic idea of the two-way input-output table.
2. Return to the input-output system given in Table 23A-1. Instead of peace breaking out, assume that the war becomes even hotter. Manufacturing guns must rise to 1750 while only 250 can be spared for agricultural butter. Work out the full input-output tableau for this new situation. (The key assumption you need is that for every $3 of agriculture you need a fixed $2 of labor and $1 of manufacturing, while for every $2 of manufacturing, equal $1 inputs of labor and agriculture are needed.)
3. Assume that the capital-output ratio is 3 and the savings rate is 9 percent of GNP. What is the natural growth rate of the economy in the neoclassical growth model?
4. What might Schumpeter have meant by the following statement: "Capitalism creates a critical frame of mind which, after having destroyed the moral authority of so many other institutions, in the end turns against its own" (Capitalism, Socialism and Democracy, p. 143)?
I believe in materialism. I believe in all the proceeds of a healthy materialism—good cooking, dry houses, dry feet, sewers, drain pipes, hot water, baths, electric lights, automobiles, good roads, bright streets, long vacations away from the village pump, new ideas, fast houses, swift conversation theatres, operas, orchestras, bands—I believe in them all for everybody. The man who dies without knowing these things may be as exquisite as a saint, and as rich as a poet; but it is in spite of, not because of, his deprivation.

Francis Hackett

All the economic principles we have learned can now be brought to bear on one of today's most challenging issues—the problem of poor societies striving for economic development. Of the 5 billion people on the globe, perhaps 1 billion live in a state of absolute poverty—barely able to eke out enough food to survive from day to day. At the same time that poor countries are struggling to rise out of abject poverty, the rapid growth of population has reduced the benefits of improved agricultural technologies and of increased food production.

This great disparity in incomes leads people to ask: What causes the great difference in the wealth of nations? Can the world peacefully survive with poverty in the midst of plenty, with agricultural surpluses in America alongside starvation in Africa? What steps can poorer nations take to improve their living standards?

This chapter explores some of the obstinate problems facing less developed countries. After section A describes what we mean by a developing country, section B explores the causes and consequences of population growth. Section C then examines the nature of, sources of, and solutions to global poverty.
A. DEVELOPING COUNTRIES

Before turning to an analysis of population and development theory, let's ask what is meant by a developing country, or a less developed country (LDC).

Definitions

A developing country is one with real per capita income that is low relative to that in advanced countries like the United States, Japan, and those in Western Europe.

This standard definition conceals much of the human side of development. Developing countries have populations with poor health, low levels of literacy, inadequate dwellings, and meager diets.

Table 24-1 is a key source of data for understanding the major players in the world economy, as well as indicators of underdevelopment. Countries are grouped into the categories of low-income, middle-income, and high-income market economies. In addition, there are two nonconforming groups—the high-

<table>
<thead>
<tr>
<th>COUNTRY GROUP</th>
<th>POPULATION</th>
<th>AGRICULTURAL EMPLOYMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>LEVEL 1985 (millions)</td>
<td>GROWTH 1965–1985 (% per year)</td>
</tr>
<tr>
<td>Low-income economies (e.g., China, India)</td>
<td>2,439</td>
<td>2.2</td>
</tr>
<tr>
<td>Middle-income economies (e.g., Brazil, Philippines, South Korea)</td>
<td>1,242</td>
<td>2.4</td>
</tr>
<tr>
<td>High-income oil exporters (e.g., Saudi Arabia, Libya)</td>
<td>18</td>
<td>5.0</td>
</tr>
<tr>
<td>European centrally planned economies (e.g., U.S.S.R., East Germany)</td>
<td>363</td>
<td>1.0</td>
</tr>
<tr>
<td>High-income market economies (e.g., U.S.A., West Germany, Japan)</td>
<td>737</td>
<td>0.8</td>
</tr>
</tbody>
</table>

Table 24-1 Important indicators for different groups of countries

Countries are grouped by the World Bank into five major categories. In each, two or three important countries are listed. Note how well the indicators are correlated across most of the groups, with low-income economies having low per capita incomes, low literacy and life expectancy, and a very large fraction of the labor force in agriculture. (Source: World Bank, World Development Report, 1987.)
income oil exporters (like Saudi Arabia) and the communist countries of Eastern Europe.

A number of interesting features emerge from the table. Clearly, low-income countries are much poorer than advanced countries like the United States. Their calculated per capita incomes are about one-fourtieth of those in high-income countries. (This comparison is distorted by use of official exchange rates to compare living standards. A newer technique, looking at "purchasing-power parity," or what incomes will buy, suggests that incomes in poorer countries are probably understated by a factor of 3—but a large gap still remains.)

In addition, many of the social and health indicators show the effects of poverty in low-income nations. Life expectancy is low, and educational attainment and literacy are modest, reflecting low levels of investment in human capital. And most people live and work on farms, whereas few do in wealthier countries.

Table 24-1 also shows that there is a great diversity among developing countries. Some remain at the ragged edge of starvation—these are the very poorest countries like Chad, Bangladesh, or Ethiopia. Others have found that combination of ingredients that can propel them into the category of middle-income countries. The more successful—countries like South Korea, Taiwan, and Singapore—are called the "newly industrializing countries," or "NICs." The NICs have been enormously successful in raising their living standards and in penetrating the traditional markets of advanced industrial countries. Yesterday's successful developing countries, which are today's NICs, will probably be tomorrow's advanced countries.

Life in Low-Income Countries

To bring out the contrasts between advanced and developing economies, imagine that you are a typical 21-year-old in one of the low-income countries, such as Haiti, India, or Bangladesh.

You are poor: even after making generous allowance for the goods that you produce and consume, your annual income averages barely $270 as compared to $14,000 for your counterpart in North America; perhaps you can find cold comfort in the thought that only 1 person in 4 in the world averages more than $3000 in annual income.

For each of you who can read, there is one like you who is illiterate. Your life expectancy is four-fifths that of the average person in an advanced country; already one or two of your brothers or sisters have died before reaching adulthood.

Most people in your country work on farms. Few can be spared from food production to work in factories. You work with but one-sixtieth the horsepower of a prosperous North American worker. You know little about science, but much about your village traditions.

As a citizen in one of the 37 countries in the poorest parts of Africa and Asia, you and your fellows together constitute 50 percent of the world population. But you must divide among you only 5 percent of world income. You are often hungry, and the food you eat is mainly roughage or rice. While you may get some primary schooling, you are unlikely to go on to high school, and only the wealthiest go to a university. You work long hours in the fields without the benefit of machinery. At night you sleep on a mat. You have little household furniture, perhaps a table and a radio. Your only mode of transportation is an old pair of boots.

Such is the way of life in the poorest countries. But we must be careful not to think that all developing countries fit into the same mold. There is enormous diversity among countries. While the description given above may apply to peasants in Bangladesh or Ethiopia, it would be increasingly outdated for citizens of many newly industrializing countries like South Korea or Taiwan.

B. POPULATION AND ECONOMIC CONDITIONS

Some nations are endowed with few people, enjoying a vast continent teeming with minerals and fertile land; others see their people crowded into small plots, leaving no tillable corner untouched. The theory of population can help to explain such disparities among countries.
THE LEGACY OF MALTHUS

One of the earliest writers to analyze the relation between population and the economy was Thomas Malthus. He first developed his views while arguing at breakfast against his father’s perfectionist view that the human race was getting ever better. Finally the son became so agitated that he wrote a book. Malthus’ *Essay on the Principle of Population* (1798) was an instantaneous best-seller and since then has influenced the thinking of people all over the world about population and economic growth.

Malthus first took the observation of Benjamin Franklin that, in the American colonies where resources were abundant, population tended to double every 25 years or so. Malthus postulated a universal tendency for population—unless checked by limited food supply—to grow exponentially, or by a geometric progression. Eventually, a population which doubles every generation—1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, . . .—becomes so large that there is not enough space in the world for all the people to stand.

All this left members of the “perfectionist school” unimpressed. So at this point Malthus unleashed the devil of diminishing returns. He argued that because land is fixed while labor inputs keep growing, food could grow only by an arithmetic progression and not by a geometric progression. (Compare 1, 2, 3, 4, . . ., with 1, 2, 4, 8,) Malthus concluded:

> As population doubles and redoubles, it is exactly as if the globe were halving and halving again in size—until finally it has shrunk so much that the supply of food falls below the level necessary for life.

When the law of diminishing returns is applied to a fixed supply of land, food production tends not to keep up with a population’s geometric-progression rate of growth.

Now, Malthus did not say that population would increase at these rates. This was only its tendency if unchecked. He wrote at length to show that, in all places and at all times, checks do operate to hold population down. And in his later, little-read editions, Malthus retreated from his gloomy doctrine, holding out hope that population growth could be slowed by birth prevention, rather than by pestilence, famine, and war.

This important application of diminishing returns illustrates the profound effects a simple theory can have. Malthus’ ideas had wide repercussions. His book was used to support a stern revision of the English poor laws. Under the influence of Malthus’ writings, poverty was considered a result of laziness, to be made as uncomfortable as possible. His opinions also bolstered the argument that trade unions could not improve the welfare of workers—since any increase in their wages would allegedly only cause workers to reproduce until all were reduced to a bare subsistence.

Flawed Prophecies of Malthus Despite his careful statistical studies, it is thought today that Malthus’ views were oversimplified. In his discussion of diminishing returns, Malthus never fully anticipated the technological miracles of the Industrial Revolution.

In the century following Malthus, technological advance shifted out the production-possibility frontiers of countries in Europe and North America, as we saw in Chapter 23. This rapid technological change allowed output to far outstrip population, resulting in a rapid rise in real wages.

Nor did Malthus anticipate that after 1870 population growth in most Western nations would begin to decline just as living standards and real wages grew most rapidly.

Nevertheless, the germs of truth in his doctrines are still important for understanding the population behavior of India, Ethiopia, China, and other parts of the globe where the balance of numbers and food supply is a vital consideration.

The New Malthusians

Economics often sees older ideas reappearing in new garb, transformed by recent events or scientific devel-
opments. In recent decades, many observers of the global environment have become alarmed by potential resource depletion and environmental degradation. The prices of many natural resources soared in the 1970s and 1980s. In addition, scientists pointed to rising levels of carbon dioxide and other atmospheric trace gases, to depletion of stratospheric ozone, to acid rain, and to dying forests. Are these the early-warning signs of the end of the industrial era and the beginning of an inevitable economic decline?

One of the most dramatic and controversial attempts to answer these concerns was made by a group of European intellectuals known as the Club of Rome. In Jay Forrester’s *World Dynamics* (1971) and the best-seller by Dennis Meadows and co-authors, *The Limits to Growth* (1972), a computerized model of the world economy was constructed. The model assumed that population behaved in a Malthusian manner, that natural resources were essential but limited, and that technological advance was absent. Based on these assumptions, the Club of Rome models made a series of predictions about the global future. Two of their simulations are shown in Figure 24-1.

Steady-State Economics Figure 24-1(a) shows the group’s forecast of rising pollution, exhaustion of natural resources, and inevitable fall in future per capita real incomes. This forecast exactly parallels Malthus’
early view that a decline toward subsistence could not be avoided.

Then, in Figure 24-1(b), we see, as in later editions of Malthus, how humanity can forestall its fate if it undertakes drastic measures: abolishing all population growth immediately, reducing output, and concentrating on food, services, and recycling resources.

Here we have warmed-over Malthus. But now the simple geometric and arithmetic progressions have been dressed up in computer models in which biological exponential growth collides with limited resources and stagnant technology.

Appraisal The neo-Malthusians posed a dilemma that distressed many readers. Most economists, in contrast, remembered the analysis and prophesies of Malthus and were skeptical. After a careful analysis of their structure, the models were sometimes labelled "PIPO"—or "pessimism in, pessimism out." This phrase conveys the idea that the doomsday nature of the conclusions arises from the pessimistic nature of the assumptions. Critics argued that these models ignored the role of prices as signals of scarcity, rejected the possibility of technological change outpacing resource scarcity, and assumed that population would grow rapidly if affluence were to prevail. It was, in one economist's words, "the computer that cried wolf."

But perhaps, for some countries, the wolf is there. In some areas, population is outrunning food supplies. While the doomsday models may be largely irrelevant for advanced countries, some enduring truth remains for poor regions. Let's examine what modern population theory says concerning the relationship between population and economic growth.

MODERN VIEWS ON POPULATION

Malthus and others thought that if the negative checks of pestilence, war, and famine subsided, population would shoot up. The history of developed countries followed a different route. Populations have stabilized in most advanced countries. These countries have made the transition from high birth and death rates in preindustrial times to low birth and death rates today. Before we can fully understand this important shift, we must master some of the concepts of modern demography, the study of the behavior of population.²

Birth and Death Rates

Basic to understanding population are the concepts of crude birth and death rates. These are simply the number of births or deaths per year per 1000 people. If we subtract the death rate from the birth rate, we get the rate of population growth.³ Birth, death, and population growth rates for representative countries are shown in Table 24-2.

The Demographic Transition

We are now in a position to understand the demographic transition that occurs during the course of economic development. An idealized picture of the stages is shown in Figure 24-2. Here, population growth proceeds through four stages:

1. Preindustrial society, in which high birth and death rates lead to low population growth.
2. Early development, in which advances in medical technology lead to a decline in death rates with little effect on the birth rate. Thus population spurs upward.
3. Later development, in which lower infant mortality, urbanization, and education lead many couples to desire smaller families, cutting back the birth rate. Population growth may be rapid, but it is slowing.
4. Maturity, in which couples practice birth control successfully and both spouses tend to work outside the home. The desired (and actual) number of children per family drops to around 2, so net population growth is close to zero.

³When applied to a specific country, this calculation assumes no migration. If there is net immigration (or emigration), then this figure would have to be added to (or subtracted from) births minus deaths to get net increase in population.
We see, then, that the pessimistic population forecasts of Malthus and the neo-Malthusians appear correct in stages 1 and 2. But affluence in stages 3 and 4 leads to declining population growth. It is just this transition to low population growth that is the greatest hope for the economic development of many poor countries.

Population Explosion

The demographic transition to low population growth holds out hope that many poor countries will not get forever caught in a Malthusian trap. But the transition evidently has not been completed yet, as is shown by Table 24-2. Historical trends and projections for the future are shown in Table 24-3. Faced with the prospect of continued rapid population growth, many observers fear the globe will have to display signs saying, "Standing Room Only."

Controlling Population Growth In the face of the Malthusian specter, countries have begun to take an active role in curbing growth of population, even when such actions run against prevailing religious norms. Many countries have introduced educational campaigns, subsidized birth control, or, in extreme cases, mandatory sterilization. China has been particularly vigorous in curbing population growth among its more than 1 billion inhabitants.

Slowly, we begin to see the results of economic development and birth control. The birth rate in poor countries has declined from 43 per 1000 in 1965 to 29
SOURCES OF POPULATION GROWTH, 1985 (rates per 1,000 of population per year)

<table>
<thead>
<tr>
<th>Country</th>
<th>Birth Rate</th>
<th>Death Rate</th>
<th>Natural Growth Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Low-income countries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zambia</td>
<td>49</td>
<td>15</td>
<td>34</td>
</tr>
<tr>
<td>Malawi</td>
<td>54</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>India</td>
<td>33</td>
<td>12</td>
<td>21</td>
</tr>
<tr>
<td>Middle-income countries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Venezuela</td>
<td>31</td>
<td>5</td>
<td>26</td>
</tr>
<tr>
<td>Brazil</td>
<td>29</td>
<td>8</td>
<td>21</td>
</tr>
<tr>
<td>Thailand</td>
<td>26</td>
<td>8</td>
<td>18</td>
</tr>
<tr>
<td>High-income countries</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>United States</td>
<td>16</td>
<td>9</td>
<td>7</td>
</tr>
<tr>
<td>France</td>
<td>14</td>
<td>10</td>
<td>4</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>13</td>
<td>12</td>
<td>1</td>
</tr>
<tr>
<td>West Germany</td>
<td>10</td>
<td>11</td>
<td>-1</td>
</tr>
</tbody>
</table>

Table 24-2 Birth, death, and population growth rates, 1985

Data for three groups of countries illustrate how patterns of population growth change with levels of development. Poor countries have high birth and death rates. When health conditions improve in the course of economic growth, countries experience a fall in death rates with little change in birth rates. Consequently their population growth sometimes exceeds that of poorer countries. In the richest countries, birth rates fall as well, and population stabilizes. (Source: World Bank, *World Development Report, 1987.*)

per 1000 in 1985. Although these countries are probably still in stage 2 of the demographic transition (see Figure 24-2), their population growth rates have stabilized over the last two decades. The struggle against poverty induced by excessive population growth is still underway on two-thirds of the globe.

POPULATION OF THE WORLD (in millions)

<table>
<thead>
<tr>
<th>Country</th>
<th>1800</th>
<th>1940</th>
<th>1986</th>
<th>2000 (PROJECTED)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Europe (including all of U.S.S.R.)</td>
<td>188</td>
<td>575</td>
<td>773</td>
<td>827</td>
</tr>
<tr>
<td>North, South, and Central America</td>
<td>29</td>
<td>274</td>
<td>686</td>
<td>844</td>
</tr>
<tr>
<td>Asia, Africa, and Oceania</td>
<td>702</td>
<td>1,446</td>
<td>3,485</td>
<td>4,451</td>
</tr>
<tr>
<td>World</td>
<td>919</td>
<td>2,295</td>
<td>4,944</td>
<td>6,122</td>
</tr>
</tbody>
</table>

Table 24-3 World population has more than quintupled since 1800

Even with birth rates falling generally, the population of the less developed world will grow relative to the developed world. [Source: *Statistical Abstract, 1987* (U.N.).]
C. THE PROCESS OF ECONOMIC DEVELOPMENT

Having seen what it means to be a developing country, we now turn to an analysis of the nature of the development process.

THE FOUR ELEMENTS IN DEVELOPMENT

In the last chapter, which examined economic growth, we explored how a nation expands its productive potential over time. The ingredients for growth in less developed countries are no different; the engine of economic progress must ride on the same four wheels, no matter how rich or poor the country. The four central factors are:

- Human resources (labor supply, education, discipline, motivation)
- Natural resources (land, minerals, fuels, climate)
- Capital formation (machines, factories, roads)
- Technology (science, engineering, management, entrepreneurship)

Let’s see how each of the four wheels contributes to growth, as well as how public policy can steer the growth process in desirable directions.

Human Resources

We have already dealt at length with the problems of population growth in developing countries. Countries must also be concerned with the quality of their human resources. When planners draw up blueprints for hastening economic development, they emphasize the following specific programs:

- Control disease and improve health and nutrition—both to make people happier and to make them more productive workers. Accordingly, do not look on health-care clinics and sewerage projects as luxuries but rather as vitally useful social capital.
- Improve education, reduce illiteracy, and train workers. Educated people become more productive workers when they can use capital more effectively, adopt new technologies, and learn from their mistakes. For advanced learning in science, engineering, medicine, and management, countries will benefit by sending their best minds abroad to bring back the newest advances. But beware of the brain drain, in which the most able people get drawn off to high-wage countries in Europe and North America.

Many economists believe that the quality of labor inputs is the single most important barrier to economic development. Virtually every other ingredient in production—capital goods, raw materials, and technology—can be bought or borrowed from advanced countries. But the application of high-productivity techniques of production to local conditions almost always requires management, production workers, and engineering know-how found only in a literate and highly skilled work force. Modern technologies are often embodied in capital goods, as can be seen in telecommunications devices, computers, nuclear power stations, and fighter aircraft; but these capital goods require complementary trained labor for effective use and maintenance. The crucial role of skilled labor has been shown again and again when sophisticated mining, defense, or manufacturing machinery fell into disrepair and disuse because the labor force of developing countries had not acquired the necessary maintenance skills.

Natural Resources

Some poor countries of Africa and Asia have been poorly endowed by nature, and such land and minerals as they do possess must be divided among dense populations. The romantic notion that there remain in these countries areas of overlooked valuable resources has largely been exploded by geographers.

Perhaps the most important natural resource of developing countries is arable land. As Table 24-1 shows, much of the labor force is employed in farming. Hence the productive use of land—with appropriate conservation, fertilizers, and tillage—will go far in increasing a poor nation’s output. Moreover, landownership patterns are a key to providing farmers
strong incentives to invest in capital and technologies that will increase their land's yield. If farmers own the land, they will be willing to make improvements, invest in irrigation systems, and undertake appropriate conservation practices.

Capital Formation

While the hands of people are much the same the world around, workers in advanced countries have their hands on a great deal more capital—and are therefore much more productive.

Accumulating capital, as we have seen, requires a sacrifice of current consumption over many decades. But there's the rub: the poorest countries are already near a subsistence standard of living. At such income levels, reducing current consumption imposes great economic hardship.

In advanced economies, 10 to 20 percent of income may go into capital formation. By contrast, the poorest agrarian countries are often able to save only 5 percent of national income. Moreover, much of the low level of saving goes to provide the growing population with housing and simple tools. Little is left over for development.

But let's say a country has succeeded in hiking up its rate of saving. Even so, it takes many decades to accumulate the railroads, electricity-generating plants, equipment, factories, and other capital goods that underpin a productive economic structure.

In many developing countries, the single most pressing problem is too little saving. Particularly in the poorest regions, urgent current consumption competes with investment for scarce resources. The result is often too little investment in the productive capital necessary for rapid economic progress.

It must be emphasized that undersaving is not a universal syndrome. Many of the more successful middle-income countries—South Korea, Taiwan, Hong Kong, and Singapore—have succeeded in raising the share of their output devoted to investment to 20 or 30 percent. These are the countries that provide models to emulate.

Social Overhead Capital and Externalities When we think of capital, we must not concentrate only on trucks and steel mills. Many large social investments must precede industrialization, or even efficient marketing of farm products.

To develop, a private economy must have social overhead capital. These are the large-scale projects that precede trade and commerce—roads, railroads, irrigation projects and dams, public-health spraying against malarial mosquitoes, etc. All these involve large investments that tend to be indivisible with increasing returns to scale. No small farm or family can profitably undertake to build a railroad system; no pioneering private enterprise can hope to make a profit from a telephone or irrigation system before the markets have been developed. These large-scale investment projects spread their benefits widely across the economy.

Often these projects involve external economies, or spillovers that private firms cannot capture. For example, a regional agricultural adviser can help all farmers in an area; a public-health program inoculating people against typhoid or diphtheria protects the population beyond those inoculated; a dam produces widespread benefits. In each of these cases it would be impossible for an enterprising firm to capture the social benefits because the firm cannot collect fees from the thousands or even millions of beneficiaries. Because of the large indivisibilities and external effects, the government must step in, provide the necessary funds and initiative, and ensure that these social overhead investments are undertaken.

Foreign Borrowing and the Debt Crisis

If there are so many obstacles to finding domestic saving for capital formation, why not rely more heavily on foreign sources? Does not economic theory tell us that a rich country, which has depleted its own high-yield investment projects, can benefit both itself and the recipient by investing in high-yield projects abroad?

Actually, prior to 1914, economic development did proceed in this fashion. Britain in its heyday saved about 15 percent of its GNP and invested fully half this amount abroad. And during most of the period after World War II, the United States and other advanced countries lent large sums to developing countries. The figures on foreign investment in low- and
middle-income countries show an impressive record of capital transfer: foreign loans averaged $112 billion annually in the period 1980–1982. Investors in wealthy countries sent their funds abroad in search of higher returns than were available at home; poor countries, hungry for funds to finance investment projects or even consumption, welcomed this flow of foreign capital. These loans were particularly useful during the 1970s, when rapidly rising oil prices imposed severe hardships on many oil-importing, developing countries.

By the end of the 1970s, however, the extent of foreign borrowing by developing countries had become unsustainably large. Total outstanding debt grew almost 20 percent per year and increased by almost $500 billion from 1973 to 1982. By 1982, 63 percent of the debt of major developing countries was owed to banks, and this debt was generally of very short maturity. Some of these loans were put to good use in investments in oil drilling, textile factories, and coal-mining equipment, but part simply raised consumption levels.

As long as the exports of these countries grew at the same rate, all was well. But with the rise in international interest rates and the slowdown in the world economy after 1980, many countries found that their borrow-and-invest strategy had led them to the brink of financial crisis. Some countries (such as Bolivia and Peru) needed all their export earnings simply to pay the interest on their foreign debt. Others found themselves unable to meet debt-repayment schedules; almost all indebted developing countries were staggering under heavy debt-service burdens (i.e., the need to repay the interest and principal on their loans). As a result, country after country, particularly the large Latin American ones, failed to make interest payments and had their debts “rescheduled” (i.e., the repayment was postponed). In 1987, some countries unilaterally suspended payments of interest and principal while continuing to promise future payments.

By the late 1980s, the debt crisis simmered quietly on the back burner, neither solved nor causing immediate turmoil on the world’s financial markets. What does economic history suggest will be the future course of events in the area of foreign debt? If no severe shocks hit the world economy, indebted countries can probably move back toward lower levels of foreign debt. If, however, a severe shock to output, interest rates, or confidence occurs, then the international financial system may find itself unable to continue financing trade and growth in both advanced and poorer countries. The exact shape and course of such a crisis in the international financial system cannot be foreseen.

Technological Change and Innovations

In addition to the fundamental factors of population, natural resources, and capital formation, there is the vitally important fourth factor of technology. Here developing countries have one potential advantage; they can hope to benefit by relying on the technological skills of more advanced nations.

Imitating Technology Poor countries do not need to find modern Newtons to discover the law of gravity; they can read about it in any physics book. They don’t have to go through the slow, meandering climb of the Industrial Revolution; in a machinery catalogue they can find tractors, computers, and power looms undreamed of by the great inventors of the past.

Japan and the United States clearly illustrate this in their historical developments. Japan joined the industrial race late and only at the end of the nineteenth century sent students abroad to learn Western technology. The Japanese government took an active role in stimulating the pace of development and in building railroads and utilities. Relying on the adaptation of foreign technologies, Japan moved into its position today as the world’s second-largest industrial economy.

The case of the United States itself provides a hopeful example to the rest of the world. Until the 1930s, America did not reach the front rank in the field of pure science. Yet for a century its applied technology was outstanding. Examine one by one the key inventions involved in the automobile. Where did they originate? Mostly abroad. Nevertheless, Henry Ford and General Motors applied foreign inventions and outproduced the rest of the world. The examples of the United States and Japan show how countries can thrive by adapting foreign science and technology to local market conditions.
Entrepreneurship and Innovation

From the histories of Japan and the United States, it might appear that adaptation of foreign technology is an easy recipe for development. You might say: "Just go abroad; copy more efficient methods; put them into effect at home; then sit back and wait for the extra output to roll in."

Of course, it does not work quite this way. A few technical experts armed with a roll of blueprints cannot solve all a poor country’s problems. There are thousands of cultural and economic barriers to progress.

Experience shows that to make advanced technologies work requires entrepreneurs to take those ideas and employ them. It is no cut-and-dried task to adapt advanced foreign technology to an underdeveloped country’s own use. Remember, the advanced technology was itself developed to meet the special conditions of the advanced countries—conditions like high wages, plentiful capital relative to labor, and ample skilled engineers. These conditions do not prevail in poorer countries.

One of the key tasks of economic development is the fostering of an entrepreneurial spirit. A country cannot thrive without a group of owners or managers willing to undertake risks, open new plants, adopt new technologies, confront labor strife, and import new ways of doing business. Government can help entrepreneurship by setting up extension services for farmers, educating and training the work force, establishing management schools, and making sure that government itself maintains a healthy respect for the role of private initiative.

Vicious Cycle

We have emphasized that poor countries face great obstacles in combining the four elements of progress—labor, capital, resources, and entrepreneurship. In addition, countries find that the difficulties reinforce each other in a vicious cycle of poverty.

"A recent example illustrates how custom can frustrate a nation’s attempt to adopt modern technology. A country attempting to introduce personal computers started to teach managers to use them in their day-to-day operations. Many of the men refused to use the new technology, which required typing at a keyboard, saying that "typing is women’s work and is demeaning to men."

Figure 24-3 illustrates how one hurdle raises yet other hurdles. Low incomes lead to low saving; low saving retards the growth of capital; inadequate capital prevents introduction of machinery and rapid growth in productivity; low productivity leads to low incomes. Other elements in poverty are self-reinforcing. Poverty is accompanied by low levels of skill and literacy; these in turn prevent the adaptation of new and improved technologies.

Because overcoming the barriers of poverty often requires a concerted effort on many fronts, some development economists recommend a "big push" forward to break the vicious cycle. If a country is fortunate, simultaneous steps to invest more, develop skills, and curb population growth can break the vicious cycle of poverty and create a virtuous cycle of rapid economic development.

STRATEGIES OF ECONOMIC DEVELOPMENT

We see how countries must combine labor, resources, capital, and technology in order to grow rapidly. But to say this provides no answers—saying that successful countries must grow is like saying that an Olympic sprinter must run like the wind. The deeper questions are: Why do some countries succeed in running faster than others? How do poor countries ever get started down the road of economic development?

Comprehensive Theories

Historians and social scientists have long been fascinated by the differences in the pace of economic growth among nations. Some early theories stressed climate, noting that all advanced countries lie in the earth's temperate zone. Others have pointed to the importance of custom, culture, or religion as key factors. Max Weber emphasized the "Protestant ethic" as a driving force behind capitalism, motivating many to seek personal gain and call it "God's gold." More recently, Mancur Olson has argued that nations begin to decline when their decision structure becomes brittle and when interest groups or oligarchies prevent social and economic change.

No doubt each of these theories has some validity.
for a particular time and place. But they do not hold up as universal explanations of economic development. Weber's theory leaves unexplained why the cradle of civilization appeared in the Near East and Greece while European tribes who were later to dominate the world lived in caves, worshipped trolls, and wore bear skins. Where is the Protestant ethic in a sleek Japanese factory in which workers gather to pay homage to Buddha? How can we explain that a country like Japan, with a rigid social structure and powerful lobbies in many sectors, has become the world's most productive economy?

To understand the diversity of economic experience, we must turn to broader explanations.

Recent Approaches to Development

For decades economists have been intensely interested in economic development. The following account represents a montage of important ideas developed in recent years. Each theory attempts to describe how countries break out of the vicious cycle of poverty and begin to mobilize the four forces behind growth—the labor, resources, capital, and technology just discussed.

The Takeoff Human history is long, and the era of economic development has been both recent and brief. During most of history, life was nasty, brutish, and short. But, in a few places over a brief period, superior production techniques were introduced. Great inequality of income allowed a few to funnel saving into capital formation. Economic development could take place.

So dramatic was the discontinuity between earlier periods and the Industrial Revolution that scholars like W. W. Rostow developed a theory stressing stages of economic growth. One of Rostow's stages is called the takeoff, the analogy being with an airplane, which can fly only after attaining a critical speed.

Different countries had their takeoffs in different periods: England at the beginning of the eighteenth century, the United States around 1850, Japan in 1910, and Mexico after 1940.

The takeoff is impelled by "leading sectors," such as a rapidly growing export market or an industry displaying large economies of scale. Once these leading sectors begin to grow rapidly, a process of self-sustaining growth (the takeoff) occurs. Growth leads to profits; profits are reinvested; capital and productivity and per capita incomes spurt ahead. The virtuous cycle of economic development is under way.

The Backwardness Hypothesis A second view emphasizes the international context of development. Above all, that poorer countries have important
advantages that the first pioneers along the path of industrialization did not. Today’s developing nations can draw upon the capital, skills, and technology of more advanced countries. This hypothesis, advanced by Alexander Gerschenkron of Harvard, suggests that relative backwardness itself may aid development. Countries can buy modern textile machinery, efficient pumps, miracle seeds, chemical fertilizers, and medical supplies. Because they can lean on the technologies of advanced countries, today’s developing countries can grow more rapidly than did Britain or Western Europe in the period 1780–1850.

Balanced Growth Theories like the takeoff or backwardness hypotheses have been successful at catching the attention of scholars and experts. But we must step back and assess history to see whether they fit the facts. Along with the earlier two theories, some writers suggest that growth is a balanced process with countries progressing steadily ahead. Economic development might more resemble the tortoise, making continual progress, than the hare, who runs in spurts and then rests when exhausted.

The three alternatives can be seen graphically in Figure 24-4. Here we see how the takeoff, the backwardness hypothesis, and the balanced-growth views would appear over time for three countries—advanced A, middle-income B, and low-income C.

Which of these three views appears most closely to explain history? One of the most careful studies is that of Nobel laureate Simon Kuznets. He examined the history of 13 advanced countries over long time periods going back as far as 1800. His conclusion was that the balanced-growth model is most consistent with these countries’ histories—with no significant rise or fall in economic growth as development progressed.

Note one further important difference between the

three theories. The takeoff theory suggests that there will be increasing divergence among countries (some flying rapidly, while others are unable to leave the ground). The backwash hypothesis suggests convergence, while the Kuznets view suggests roughly constant differentials. Empirical evidence shown in Table 24-4 indicates that there has been little change in the relative gap between advanced and developing countries in the last quarter-century (although the performance of individual countries has varied greatly from the average)—a pattern of growth rates most consistent with the balanced-growth view.

A Rich Mosaic The three views just sketched can do no more than begin to describe the ideas put forth in recent years to analyze the process of economic development. Nor are some theories right while others are wrong. Rather, the developing world is a highly diverse group of nations, with different backgrounds, cultures, economic resources, and political systems. Development economists are today shying away from comprehensive theories that purport to be universal explanations of human history. Rather, each country tends to be viewed as an individual with special resources and needs, requiring prescriptions that fit the particular case.

Issues in Economic Development

To say that countries must encourage rapid growth in capital and technology does not answer how these key ingredients are to be deployed. Among the vast array of issues that arise in development planning, we focus here on three recurrent themes: the balance between industry and agriculture, the role of outward orientation, and the risks of overspecialization.

Industrialization vs. Agriculture In most countries, incomes in urban areas are almost double those in rural agriculture. And in affluent nations, large parts of total resources are devoted to manufacture. Hence, many nations jump to the conclusion that industrialization is the cause rather than the effect of affluence.

We must be wary of such inferences, which often fall into the post hoc fallacy. You sometimes hear, "Rich people drive expensive cars, but driving an expensive car will not make you rich." Similarly, there is no economic justification for every poor country to insist upon having its own national airline and large steel mill. These are often ornamental luxuries rather than the necessities of economic growth.

The lesson of decades of attempts to accelerate industrialization at the expense of agriculture has led many analysts to rethink the role of farming. Industrialization tends to be capital-intensive, pulls workers into crowded cities, and often produces high levels of unemployment. Raising productivity on farms may require less capital, while providing productive employment for surplus labor.

Indeed, if Bangladesh could increase the productivity of its farming by 20 percent, that would do more to release resources for the production of comforts than would primary reliance on promoting industry.
Inward vs. Outward Orientation Since all countries engage in international trade, a key question soon emerges in a development strategy: Should countries attempt to be self-sufficient, replacing most imports with domestic production (sometimes called a strategy of import substitution)? Or should a country strive to pay for its needed imports by improving efficiency and competitiveness, developing foreign markets, and giving incentives for exports (a strategy of outward orientation)?

Policies of import substitution have often been popular in Latin America. The policy most frequently used toward this end—has been to build high tariff walls around manufacturing industries so that local firms can produce and sell goods that would otherwise be imported. For example, Brazil and Mexico have placed high tariffs on automobiles so that firms in those countries would assemble autos at home rather than importing much less expensive cars from North America or Japan.

Critics observe that such subsidized import substitution generally limits competition, dampens innovation and productivity growth, and keeps the country’s real income low. The consumers and the entire economy might be better off if the emphasis on import substitution were replaced by the quite different emphasis on outward orientation. Outward expansion sets up a system of incentives that stimulates exports rather than restricting imports. Important features of this approach are maintaining a competitive foreign exchange rate, choosing foreign-trade policies that encourage firms to produce for export, and minimizing unnecessary government regulation of businesses, especially of small firms.

The success of outward-expansion policies is best illustrated by the East Asian NICs. A generation ago, countries like Taiwan, South Korea, and Singapore had per capita incomes one-quarter to one-third of those in the wealthiest Latin American countries. Yet, by saving large fractions of their national incomes and channeling these to high-return export industries, the East Asian NICs overtook every Latin American country by the late 1980s. The secret to success was not a complete laissez-faire policy, for the governments in fact engaged in some planning and interventions. Rather, the outward orientation allowed the countries to reap economies of scale and the benefits of international specialization to increase employment, effectively use domestic resources, enjoy rapid productivity growth, and provide enormous gains in their citizens’ living standards.

A recent study of the economic prospects of Latin America concludes with the following assessment of the effects of outward expansion:

Outward orientation is the keystone of the strategies of virtually all the “success stories” [of economic development]—in East and southeast Asia, in Latin America in certain periods, in Turkey, and elsewhere. Even where success has been limited, as in Africa, relatively outward-oriented countries have done much better than inward-oriented.6

But will the advanced countries allow their own declining manufacturing industries to be outcompeted by exports from countries pursuing outward expansion? Or will they succumb to the temptation to shut out such imports by their own protective tariffs and quotas? These are real issues debated in the name of “protection” and “industrial policies” during the 1980s—policies that we will discuss in the next two chapters.

The Dangers of Overspecialization We have repeatedly emphasized the economic gains from specialization, whether within a nation or among nations, because division of labor allows a vast increase in the quantity and variety of producible goods and services. But cannot a nation become dangerously overspecialized? Imagine the fate of a nation with big cost advantages that specialized completely in horseshoe manufacture in 1900, in production of vacuum tubes in 1945, or in nuclear reactor sales in 1975?

Countries should be concerned about their degree

6 Bela Balassa et al., Toward Renewed Economic Growth in Latin America (Institute for International Economics, Washington, D.C., 1986), p. 24. This study points out that microeconomic government regulations may be as important as macroeconomic policies, with the following example: “The state as regulator has stifled much entrepreneurial initiative throughout [Latin America]. In several countries, numerous licenses are needed even to begin exporting—hardly an auspicious framework within which to promote outward expansion. In Peru, it recently took 289 days to register a new corporation—compared with four hours in Miami” (p. 30).
of diversification. If Venezuela exports mainly oil, or Colombia mainly coffee, then price fluctuations in these markets will have large impacts on their foreign-trade balances and real incomes. Table 24-5 shows the degree to which some economies engage in "monoculture"—that is, have most of their exports concentrated in a single product. The oil-exporting countries are the most vulnerable to the dangers of overspecialization, followed by producers of other primary commodities.

When a country is overspecialized, prudent planning suggests that special efforts should be taken to diversify into different areas (particularly areas where the price swings are independent of, or even inverse to, those in their current area of specialization). If coffee demand and supply are volatile, and if sound investment opportunities can be found in coal mining or cut flowers, a country like Colombia may be well advised to discourage the market’s tendency to specialize in coffee production.

Don’t put all your beans in one bag is a good rule for countries as well as people.

SUMMARY

A. Developing Countries

1. Most of the world consists of developing countries: countries with low per capita incomes relative to the most advanced economies. Such countries often exhibit rapid population growth, low literacy, and a high proportion of their populations living and working on farms. Within the group of developing countries, some are middle-income newly industrializing countries, or NICs. This group has been successful in breaking the vicious cycle of underdevelopment.

B. Population and Economic Conditions

2. Malthus’ theory of population rests on the law of diminishing returns. He thought that population, if unchecked, would tend to grow at a geometric (or exponential) rate, doubling every generation or so. But each member of the growing population would
have less land and natural resources to work with. Therefore, because of diminishing returns, income could at best grow at an arithmetic rate; output per person would tend to fall so low as to lead to a stable population at a subsistence level of near-starvation.
3. In the 1970s, the Club of Rome school presented computer models of the global economy. This neo-Malthusian view foresaw the likelihood of impending collapse in living standards as population and production pushed against limited land and environmental capacity.
4. Malthus and his followers over the last century and a half have been criticized on several grounds: for ignoring the possibility of technological advance and for overlooking the significance of birth control as a force in lowering population growth.
5. The most important development in population theory has been to understand the demographic transition. This is the four-stage process by which a traditional society moves from stable population with high birth and death rates to stable population with low birth and death rates. In the interval, countries generally find that their death rates fall before their birth rates, so that a population explosion may occur. Many poorer and middle-income countries are still in the middle of their demographic transition.

C. The Process of Economic Development

6. The key to development lies in four fundamental factors: human resources, natural resources, capital formation (domestic or imported), and technology. Population causes problems of explosive growth as death rates fall before birth rates fall; the Malthusian prediction of diminishing returns stalks less developed countries. On the constructive agenda, improving the population’s health, education, and technical training has high priority.
7. Rates of productive capital formation in poor countries are low because incomes are so low that little can be saved for the future. The financing of growth in poorer countries has always been an unstable link in the productive mechanism. The most recent crisis arose when many middle-income countries borrowed heavily in the 1970s to finance ambitious development programs. The economic slowdown of the early 1980s left them with swollen debts, unable to export enough to cover their expenses. The continuing problem of high debt burdens looms over financial markets, threatening to disrupt trade and finance in the 1990s.
8. Technological change is often associated with investment and new machinery. It offers much hope to the developing nations inasmuch as they can adapt the more productive technologies of advanced nations. This requires entrepreneurship. One task of development is to spur internal growth of the scarce entrepreneurial spirit.
9. Numerous theories of economic development help explain why the four fundamental factors are present or absent at a particular time. Geography and climate, custom, religion and business attitudes, class conflicts and colonialism—each affects economic development. But none does so in a simple and invariable way.

More impressive are the takeoff hypothesis (whereby increasing returns and social overhead capital combine to allow a rapid growth in a short period); the backwardness view (in which less advanced countries can converge quickly toward the more ad-
vanced by borrowing their technology and technologists); and the balanced-growth thesis (in which countries tend to grow at pretty much the same rate whether advanced or backward).

CONCEPTS FOR REVIEW

developing country, LDC
indicators of development
four elements in development:
 human resources
 natural resources
 capital
 technology and innovation
Malthusian population theory

neo-Malthusians
demographic transition (stages 1, 2, 3, 4)
social overhead capital, externalities
takeoff, backwardness, balanced-growth hypotheses
overspecialization in exports

QUESTIONS FOR DISCUSSION

1. Examine each of the countries in Table 24-2. Can you say where each is in its demographic transition?
2. Generally, many economists believe that the state should not interfere in a market where there are no important externalities—this being the "liberal" or laissez-faire tradition. Are there externalities in population growth that would lead to positive or negative spillovers? Consider such items as education, national defense, roads, beaches, and the distribution of geniuses like Mozart or Einstein.
3. How many children were there in your great-grandparents' family? In your parents' family? How many do you expect to be in your own family? What factors led to these decisions?
4. A geometric progression is a sequence of terms \(g_1, g_2, \ldots, g_i, g_{i+1}, \ldots \) in which each term is the same multiple of its predecessor, \(g_2/g_1 = g_3/g_2 = \cdots = g_{i+1}/g_i = \beta \). If \(\beta = 1 + i > 1 \), the terms grow exponentially like compound interest. An arithmetic progression is a sequence \((a_1, a_2, a_3, \ldots, a_i, a_{i+1}, \ldots) \) in which the difference between each term and its predecessor is the same constant: \(a_2 - a_1 = a_3 - a_2 = \cdots = a_{i+1} - a_i = \alpha \). Give examples of each. Satisfy yourself that any geometric progression with \(\beta > 1 \) must eventually surpass any arithmetic progression.
5. Recall that Malthus asserted that unchecked population would grow geometrically, while food supply—constrained by diminishing returns—would grow only arithmetically. Use a numerical example to show why per capita food production must decline if population is unchecked while diminishing returns lead food production to grow more slowly than labor inputs.
6. Would you expect everyone to agree with the praise of material well-being expressed in the chapter's opening quotation?
7. Delineate each of the four important factors driving economic development. With respect to these, how was it that the high-income oil-exporting countries became rich? What hope is there for a country like Bangladesh that has very low per capita resources of capital, land, and technology?
8. Some fear the "vicious cycle of underdevelopment." Rapid population growth eats into whatever improvements in technology occur. With a low per capita income, the country cannot save and invest but must engage in subsistence farming. With most of the population on the farm, there is little hope for education, decline in fertility, or industrialization. If you were to advise such a country, how would you break through the vicious cycle?
9. Compare the situations faced by a developing country today and by a country at an equivalent level of per capita income 200 years ago. Considering each of the four wheels of economic development, explain the advantages and disadvantages that today's developing country might experience.
10. Advanced problem for those who have also studied Chapter 23: We can extend our growth-accounting equation to include three factors and write the following equation:

\[g_O = s_L g_L + s_K g_K + s_R g_R + T. C. \]

where \(g_O \) = the growth rate of output, \(g_i \) = the growth rate of inputs (\(i = \) inputs to production = \(L \) for labor, \(K \) for capital, and \(R \) for land and other natural resources), and \(s_i \) = the contribution of each input to output growth as measured by its share of national income (\(0 \leq s_i \leq 1 \) and \(s_L + s_K + s_R = 1 \)). \(T. C. \) measures technological change.

(a) In the poorest developing countries, the share of capital is close to zero, most resources are agricultural land (which is constant), and there is little technological change. Can you see why per capita output is likely to be stagnant or even to decline (i.e., \(g_O < g_L \))? Explain the Malthusian hypothesis in terms of this model.
(b) In advanced industrial economies, the share of land and resources drops to virtually zero. Why does the generalized growth-accounting equation then become identical to that given in Chapter 23? Can you explain why the Malthusian hypothesis would fail in terms of this equation?
(c) According to the neo-Malthusians, \(T. C. \) is close to zero, the available supply of natural resources is declining, and the share of resources is large and rising. Does this explain why the future of industrial societies might be bleak? What assumptions of the neo-Malthusians might you question?
CHAPTER 25
INTERNATIONAL TRADE AND THE THEORY OF COMPARATIVE ADVANTAGE

We have seen again and again how specialization increases productivity and living standards. We will now apply this principle to the field of international trade and finance, the process by which nations export and import goods, services, and financial capital. International trade and finance is related to some of the most controversial questions of today: Why does the United States import shoes and textiles and export food and computers? Why is American agriculture so different from Dutch farming? Why do Japan and Germany generally have large trade surpluses while Mexico and the Philippines usually run trade deficits? And how did it come to pass that the United States, which a few years ago was the world's largest creditor nation, has now become the largest debtor nation of all?

The answers to these questions are provided by a careful study of international trade and finance.

International vs. Domestic Trade

International trade is vital for one basic reason: it expands a nation's consumption possibilities. Trade allows a nation to consume more of all goods than
would be possible if its borders were closed to the products of other countries.

For example, Japan sells us cameras; we sell Australians computers; Australians complete the circle by selling the Japanese coal. By specializing in its areas of greatest relative productivity, each nation ends up consuming more than it could produce alone. As a result of nations being increasingly open to trade, the world economy can move toward its production-possibility curve; trade restrictions force the world to be inside its PPF. This point is the simple yet elusive essence of foreign trade.

Our task in the remaining chapters centers on this essential point about trade. We start by examining the mechanics of trade, the central principle of comparative advantage, and the pros and cons of tariffs and quotas. We then see how different kinds of money (or foreign exchange) get traded to determine foreign exchange rates. And finally, we observe how the international financial system weathered a severe crisis in the 1970s, which led to a new floating exchange-rate system, only to find that severe trade imbalances emerged as a result of exchange-rate misalignments in the 1980s.

The analysis of international trade differs from the analysis of self-sufficient economies in two respects. First, it involves trade among different nations: formidable political problems sometimes arise concerning whether foreigners will be discriminated against or treated equally—this is the problem of protectionism, which will occupy us in Chapter 26.

The other new feature introduced by international trade is that different nations use different currencies. I want to pay for a Japanese car in dollars, while Toyota wants to be paid in Japanese yen. As we will see in Chapter 27, the international financial system must provide for a smooth flow of dollars, yen, and other currencies—or else risk a breakdown in trade such as was experienced in the 1930s.

Economic protectionism and a diversity of national currencies are at the heart of international economic issues today.

A. Economic Basis for International Trade

Trends in Foreign Trade

We begin by examining the patterns of international trade for the United States and for the entire trading system. Figure 25-1 is a "trade map," showing how the world would look if each country’s geographical size were proportional to its share of world trade. Notice how large the United States, Western Europe, and Japan loom, while the U.S.S.R. and China appear as but tiny principalities.

An important factor is the degree of openness of an economy. An economy is open to the extent that it exchanges goods, services, or factors of production with the rest of the world. A useful way to measure openness is the ratio of a country’s exports or imports to its GNP. What are the dimensions of trade for the United States? Figure 25-2, showing the degree of openness of the U.S. economy from 1929 to 1988, reveals that the United States has been one of the least open (or most self-sufficient) economies in the world. Many nations, particularly in Western Europe and East Asia, export and import up to 50 percent of their GNP.

The degree of openness is much higher in many U.S. industries—such as steel, textiles, and shoes—than it is for the U.S. economy as a whole. Table 25-1 shows the commodity composition of U.S. foreign trade for 1986. Two important features stand out from these data. First, we see that the United States exports surprisingly large amounts of primary commodities (such as food) and imports large quantities of sophisticated, capital-intensive manufactured goods (like automobiles or telecommunications equipment). Second, we find a great deal of two-way, or intra-industry, trade. That is, even within a particular industry (like textiles or steel), the United States both exports and imports at the same time.

What economic principles lie behind the patterns of international trade? Let us review the major reasons why nations trade with other countries rather than produce all their own goods and services.
THE SOURCES OF INTERNATIONAL TRADE

Nations find it beneficial to participate in international trade for many reasons: because of diversity in the conditions of production among regions, because of decreasing costs of production, and because of differences in tastes. Let us review each of these briefly before analyzing the ultimate reason for trade—comparative advantage.

Diversity in Conditions of Production

In many cases, two countries or regions will have extremely diverse conditions of production. We might consider the economies of North and South America, or of the tropics and the temperate zone. Each region has certain endowments of natural resources, land, labor, capital, and technology, and as a result the producible goods and services may differ greatly among regions.

Trade may therefore take place because of the diversity in productive possibilities among countries. As examples, look at foods and recreational activities. Countries with tropical climates will naturally specialize in sunbathing, surfing, snorkeling, coffee, and citrus fruits; these goods and services will be traded for other commodities. Countries with frostier climates are advantageous for producing goods and services like maple syrup, salmon, skiing, and reindeer meat.

Decreasing Costs

A second reason for trade arises when there are increasing returns to scale, or decreasing costs of large-
Figure 25-2 The United States has become more exposed to the winds of international competition

Like all major industrial countries, the United States has opened its borders to greater amounts of foreign trade over the last half-century. The greatest growth of the dollar value of imports came with higher oil prices and with the rise in the dollar's foreign exchange rate. In the late 1980s, imports far outdistanced exports, causing the United States to become the world's largest debtor nation. (Source: U.S. Department of Commerce.)

<table>
<thead>
<tr>
<th>SHARE OF EACH COMMODITY AS % OF TOTAL</th>
<th>EXPORTS</th>
<th>IMPORTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>COMMODITY CLASSIFICATION</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Primary commodities:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oil, coal, and other fuels</td>
<td>4</td>
<td>10</td>
</tr>
<tr>
<td>Food</td>
<td>10</td>
<td>7</td>
</tr>
<tr>
<td>Other</td>
<td>9</td>
<td>3</td>
</tr>
<tr>
<td>Manufactures:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor vehicles</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>Computers and machinery</td>
<td>37</td>
<td>26</td>
</tr>
<tr>
<td>Other</td>
<td>26</td>
<td>32</td>
</tr>
<tr>
<td>Other</td>
<td>5</td>
<td>4</td>
</tr>
<tr>
<td>Total</td>
<td>100</td>
<td>100</td>
</tr>
</tbody>
</table>

Table 25-1 The United States exports surprising amounts of primary goods, imports much manufactures

The composition of United States total merchandise exports and imports for recent years shows a number of surprises. The United States exports a large volume of primary commodities, especially food and coal, largely because of its ample resource base. At the same time, the United States imports many manufactures, like cars and cameras, even though manufacturing is highly capital-intensive. (Source: U.S. Bureau of the Census.)
scale production. Recall from earlier chapters that many manufacturing processes enjoy economies of scale; that is, they tend to have lower average costs of production as the volume of output expands. And what better way to expand production than to sell output in the vast global marketplace?

How might the scenario run? Suppose that a particular country gets a head start in a given sector. It might be Britain in textiles in the early 1800s, the United States in telecommunications in the late 1800s, or Japan in consumer electronics in the 1980s. Once the country begins to produce and export the product, the economies of scale give it a significant cost and technological advantage over other countries, so it can outcompete its foreign rivals. In the extreme, countries would all specialize in different products: all the economies of mass production would be realized as each country produced and exported the goods in which it had a head start and imported those goods for which foreigners were further down the cost curves.

The example of decreasing cost helps explain the important phenomenon of extensive intra-industry trade shown in Table 25-1 above. Why is it that the United States both imports and exports automobiles? The reason is that the United States has exploited the economies of scale in large-car production and is specialized there, while Japan enjoys a cost advantage in small cars and tends to specialize and export in that part of the market. Similar patterns of specialization are seen in computers, steelmaking, textiles, and many other manufactured products.

Differences in Tastes

Yet a third cause of trade lies in preferences. Even if the conditions of production were identical in all regions, countries might engage in trade if their tastes for goods were different.

For example, suppose that Norway and Sweden produce fish from the sea and meat from the land in about the same amounts, but the Swedes have a great fondness for meat while the Norwegians are partial to fish. In this case, a mutually beneficial export of meat from Norway and fish from Sweden would take place. Both countries would gain from this trade; the sum of human happiness is increased, just as when Jack Sprat trades fat meat for his wife’s lean.

THE PRINCIPLE OF COMPARATIVE ADVANTAGE

Uncommon Sense

The three reasons for trade listed above provide the common-sense reasons for international trade. But there is a deeper principle underlying all trade—in a family, within a nation, and among nations—that goes beyond common sense. The theory, called the principle of **comparative advantage**, holds that a country will trade with other regions even if it is absolutely more efficient or more inefficient in the production of every good.

Say that the United States has higher output per worker (or per unit of input) than the rest of the world in computers and steel. But suppose the United States is relatively more efficient in computers than it is in steel—for example, U.S. productivity might be 50 percent higher than other countries in computers and 10 percent higher in steel. In this case, it would benefit the United States to export that good in which it is relatively more efficient (computers) and import that good in which it is relatively less efficient (steel).

Or consider a poor country like India. How could impoverished India, whose productivity per worker is but a fraction of that of advanced countries, hope to export any of its textiles or wheat? Surprisingly, according to the doctrine of comparative advantage, India can and will trade with countries that are absolutely more efficient. How so? By exporting the goods in which it is relatively more efficient (like wheat and textiles) and importing the goods in which it is relatively less efficient (like turbines and supercomputers).

The principle of comparative advantage holds that each country will specialize in the production and export of those goods that it can produce at relatively low cost (in which it is relatively more efficient than other countries); conversely, each country will import those goods which it produces at relatively high cost (in which it is relatively less efficient than other countries).
This simple principle provides the unshakable basis for international trade. It is the task of the balance of this section to explain the logic of the principle of comparative advantage.

The Logic of Comparative Advantage

The rapid growth in the volume of international trade leads us to ask why countries specialize in the particular commodities that they do. All countries can produce wheat, textiles, steel, and aircraft, yet the United States tends to specialize in the production and export of wheat and aircraft while importing a substantial fraction of its textiles and steel. What economic forces lie behind this international division of labor? Moreover, what are the economic gains and losses that flow from opening a nation's borders to international trade? Would countries be better off if they put tariffs and quotas on their imports, or even if they completely closed their borders to all trade?

The key to answering these questions lies in the principle of comparative advantage. We begin with a simple example of specialization among people and then move to the more general case of specialization and comparative advantage among nations.

Lawyers and Secretaries A traditional way to explain comparative advantage is the case of the best lawyer in town who is also the best typist in town. How should the lawyer spend her time? Should she write and type her own legal briefs? Or should she specialize in law and leave the typing to her secretary? Clearly, the lawyer should concentrate on legal activities, where her relative or comparative skills are most effectively used, even though she has absolutely greater skills in both typing and legal work.

Or look at it from the secretary's point of view. He is a fine typist, but to undertake legal research and write a brief would be laborious at best and impossible at worst. He is absolutely less efficient than the lawyer in both legal research and in typing, but he is relatively or comparatively more efficient in typing.

The upshot of this analysis is that the most efficient outcome is for the lawyer to specialize in legal work and the secretary to concentrate on typing. The keys to this conclusion are the terms "absolute" and "relative." The most efficient and productive pattern of specialization is that people or nations should concentrate on activities in which they are relatively or comparatively more efficient than others; this efficient pattern of specialization may imply that people or nations specialize in areas in which they are absolutely less efficient than others. And even though individual people or countries may be absolutely less or more efficient than all other people and countries, each and every person or country will have a definite comparative advantage in some goods and a definite comparative disadvantage in other goods.

Ricardo's Analysis of Comparative Advantage

Let us illustrate the fundamental principles of international trade by considering America and Europe of a century ago. In America, land and natural resources were then very plentiful relative to labor and capital. But in Europe, people and capital were plentiful relative to land.

What will be the patterns of trade in this case? If labor (or resources more generally) is absolutely more productive in America than in Europe, does this mean that America will import nothing? And is it economically wise for Europe to impose a protective tariff to prevent imports from entering its markets?

These questions were first answered by the English economist David Ricardo in 1817. Ricardo supplied a beautiful proof that international specialization benefits a nation, calling the result the law of comparative advantage.

For simplicity, Ricardo worked with only two countries and only two goods, and he chose to measure all costs in terms of labor-hours. We shall follow his lead here, analyzing food and clothing for Europe and America.

Table 25-2 portrays the principle of comparative advantage. In America a unit of food costs 1 hour of labor and a unit of clothing costs 2 hours of labor. In Europe the cost is 3 hours of labor for food and 4 hours of labor for clothing. We see that America has absolute advantage in both goods, for it can produce them with greater absolute efficiency than can Eu-

The analysis of comparative advantage with many countries and many commodities is presented later in this chapter.
Table 25-2 Comparative advantage depends only on relative costs

In a hypothetical example, America has lower labor costs in both food and clothing. American labor productivity is between 2 and 3 times Europe's (twice in clothing, thrice in food). Yet it benefits both regions to trade with each other.

American and European Labor Requirements for Production

<table>
<thead>
<tr>
<th>Product</th>
<th>Necessary Labor</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>In America</td>
</tr>
<tr>
<td>1 unit of food</td>
<td>1 labor-hr.</td>
</tr>
<tr>
<td>1 unit of clothing</td>
<td>2 labor-hr.</td>
</tr>
</tbody>
</table>

Europe. However, America has *comparative advantage* in food, while Europe has comparative advantage in clothing, because food is relatively inexpensive in America while clothing is relatively less expensive in Europe.

From these facts, Ricardo proved that both countries will benefit if they specialize in their areas of comparative advantage—that is, if America specializes in the production of food while Europe specializes in the production of clothing. In this situation, America will export food to pay for European clothing while Europe exports clothing to pay for American food.

To analyze the effects of trade and the benefits of specializing in areas of comparative advantage, we must measure carefully the amounts of food and clothing that will be produced and consumed in each country. (a) If there is no international trade and (b) if there is free trade with each country specializing in its area of comparative advantage.

Before Trade

Start by examining what occurs in the absence of any international trade, say because all trade is illegal or because of a prohibitive tariff. Table 25-2 shows the real wage of the American worker for an hour's work as 1 unit of food or ½ unit of clothing. The European worker is less well off in a no-trade position, getting only ⅓ unit of food or ⅓ unit of clothing per hour of work.

Clearly, if competition prevails in each isolated region, the prices of food and clothing will be different in the two places because of the difference in production costs. In America, clothing will be 2 times as expensive as food because it takes twice as much labor to produce a unit of clothing as a unit of food. In Europe, clothing will be only ⅔ as expensive as food.

After Trade

Now allow free trade and repeal all tariffs, and, for simplicity, assume that there are no transportation costs. In this case, goods will flow from low-price regions to high-price regions. Indeed, with no transportation costs, the prices of clothing and food in the two regions must be equalized, just as the water in two connecting pipes must come to a common level once you remove the barrier between them.

What is the flow of goods when trade is opened up? When people inspect the prices of goods in different regions, they will find that clothing is relatively more expensive in America and food is relatively more expensive in Europe. Firms will then buy where goods are cheap and sell where they are expensive. Given these relative prices, this means that food will soon be shipped from America to Europe and clothing from Europe to America.

As European clothing penetrates the American market, American clothiers will find prices falling and profits shrinking, and they will begin to shut down their factories. The opposite will occur in Europe. European farmers will find that the prices of foodstuffs begin to fall when American products hit the European markets; they will suffer losses, some will go bankrupt, and resources will be withdrawn from farming.

After all the adjustments to international trade have taken place, what will we find? We will see that the prices of clothing and food are equalized in Europe and America. At what level will prices equalize? We cannot know the exact level of prices without further information, but we do know that the relative prices of food and clothing must lie somewhere in between the European price ratio (which is ⅔ for the ratio of food to clothing prices) and the American price ratio (which is ⅔). Let us say that the final price ratio is ⅔ (the exact reasoning will be explained in the next section), so that 2 units of clothing trade for 3 units of food. For simplicity, say we measure prices in Ameri-
can dollars; we have then found that under free trade the price of food is $2 per unit while the price of clothing is $3 per unit.

Moreover, the regions have shifted their productive activities: America has withdrawn resources from clothing and invested in food while Europe has contracted its farm sector and expanded its clothing manufacture. In short, under free trade, countries shift their production toward their areas of comparative advantage.

The Economic Gains from Trade

What are the economic effects of opening up the two regions to international trade? America as a whole benefits from the fact that imported clothing costs less than clothing produced at home. Likewise, Europe benefits from specializing in clothing and getting food more cheaply by importing than it can by domestic production.

We can most easily reckon the gains from trade by calculating the effect of trade upon the real wages of workers. Real wages are measured by the amount of goods and services that a worker can buy with an hour’s pay. By examining Table 25-2, we can see that the real wages after trade will be greater than the real wages before trade for workers in both Europe and America. For simplicity, assume that each worker buys 1 unit of clothing and 1 unit of food. Before trade, this bundle of consumer goods costs an American worker 3 hours of work and a European worker 7 hours of work.

After trade has opened up, recall that the price of clothing is $3 per unit while the price of food is $2 per unit. An American worker must still work 1 hour to buy a unit of food; but at the price ratio of 2 to 3, the American worker need work only 1\(\frac{1}{2}\) hours to produce enough to buy 1 unit of European clothing. Therefore the bundle of goods costs the American worker 2\(\frac{1}{2}\) hours of work when trade is allowed—this represents an increase of 16\%\(\frac{1}{2}\) percent in the real wage of the American worker.

For European workers, a unit of clothing will still cost 4 hours of labor in a free-trade situation, for clothing is domestically produced. To obtain a unit of food, however, the European worker need only produce \(\frac{5}{2}\) of a unit of clothing (which requires \(\frac{5}{2}\times 4\) hours of labor) and then trade that \(\frac{5}{2}\) unit for 1 unit of American food. The total European labor needed to obtain the bundle of consumption is then \(4 + 2\frac{1}{2} = 6\frac{1}{2}\), which represents an increase in real wages of about 5 percent over the no-trade situation.

In summary, when trade has opened up, and when each country concentrates on its area of comparative advantage, everyone is better off. Workers in each region can obtain a larger quantity of consumer goods for the same amount of work when people specialize in the areas of comparative advantage and trade their own production for goods in which they have a relative disadvantage. When borders are opened to international trade, the national income of each and every trading country rises.

Effects of Tariffs and Quotas

We have analyzed the cases of free trade and no trade. What are the impacts of tariffs (which are taxes levied on imports) and quotas (which are quantitative restrictions on imports)?

One effect of restrictions on foreign trade is easily seen from our discussion up to this point. We know that foreign trade benefits a nation relative to a no-trade situation. It follows therefore that a prohibitive tariff or quota (that is, one that is stringent enough to shut off all foreign trade) will unambiguously hurt a country.

More generally, we will see below that economic protectionism (meaning that a country restricts imports to "protect" domestic industries) will lower incomes. This, then, is the second major finding of the economics of international trade:

An ill-designed tariff or quota, far from helping consumers in a country, will instead reduce their real incomes by making imports expensive and by making the whole world less productive. Countries lose from protectionism because reduced international trade eliminates the efficiency inherent in specialization and division of labor.

These two color-highlighted principles are the foundation of the economic analysis of international trade.
EXTENSIONS TO MANY COMMODITIES AND COUNTRIES

The world of international trade consists of more than two countries and two commodities. What happens when more realistic situations are involved? As we will see, the conclusions are essentially unchanged.

Many Commodities

First note that up to now we’ve simplified the analysis by considering only two commodities, food and clothing. In reality, exchange involves thousands of goods, but the advantages of trade are not diluted when the number of goods is multiplied.

When two countries produce many commodities at constant costs, they can be arranged in order according to their comparative advantage or cost. For example, the commodities might be wheat, aircraft, computers, automobiles, wine, and shoes—all arranged in the comparative-advantage sequence shown in Figure 25-3. This means that of all commodities, wheat costs are lowest in America relative to Europe. Europe has its greatest comparative advantage in shoes, while its advantage in wine is not quite so great. And so forth.

From the beginning we can be virtually sure of one thing. The introduction of trade will cause America to produce and export wheat, and assuredly Europe will produce and export shoes. But where will the dividing line fall? Between automobiles and computers? Or will America produce automobiles and Europe confine itself to wine and shoes? Or will the dividing line fall on one of the commodities rather than between them—so that, say, automobiles might be produced in both places?

You will not be surprised to find that the answer depends upon the comparative strength of international demands for the different goods. We can think of the commodities as beads arranged on a string according to their comparative advantage; the strength of supply and demand will determine where the dividing line between American and European production will fall. An increased demand for aircraft and wheat, for example, would tend to turn the prices in the direction of America and make us so prosperous that it no longer benefits us to continue to produce our own wine.

Many Countries

So much for the complications introduced by many commodities. What about the case of many countries? Introducing many countries need not change our analysis. As far as a single country is concerned, all the other nations with whom it trades can be lumped together into one group as “the rest of the world.” The advantages of trade have no special relationship to national boundaries. The principles already developed apply between groups of countries and, indeed, between regions within the same country. In fact, they are just as applicable to trade between our northern and southern states as to trade between the United States and Canada.

Triangular and Multilateral Trade

With many countries brought into the picture; America will find it beneficial to engage in triangular or multilateral trade. Each country trades with a multitude of other countries, and generally bilateral (or two-country) trade is unbalanced.

A simple example of this comes in the triangular trade flows illustrated in Figure 25-4, in which the

<table>
<thead>
<tr>
<th>AMERICA'S COMPARATIVE ADVANTAGE</th>
<th>EUROPE'S COMPARATIVE ADVANTAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wheat</td>
<td>Wine</td>
</tr>
<tr>
<td>Aircraft</td>
<td>Shoes</td>
</tr>
<tr>
<td>Computers</td>
<td></td>
</tr>
<tr>
<td>Automobiles</td>
<td></td>
</tr>
</tbody>
</table>

Figure 25-3 With many commodities, there is a spectrum of comparative advantages
costs, but the theory is equally valid in a competitive world with many different inputs. With the help of this analysis, we can see vividly how trade increases a nation’s consumption possibilities.

America without Trade

Chapter 2 introduced the PPF, which indicates the combinations of commodities that can be produced with a society’s given resources and technology. Using the simple production data shown in Table 25-2, and assuming that both Europe and America have 600 units of labor, we can easily derive each region’s PPF. The table attached to Figure 25-5 shows the possible levels of food and clothing that America can produce with its inputs and technology. Figure 25-5 plots the production possibilities; the red line DA shows America’s PPF. The PPF has a slope of \(-\frac{1}{3}\), for this represents the terms on which food and clothing can be substituted in production; in competitive markets, the price ratio of food to clothing will also be one-half.

So far we have only been discussing production. However, if America is isolated from all international trade, then what it can produce is also what it can consume. Given the incomes and demands in the marketplace, point B in Figure 25-5 marks America’s production and consumption in the absence of trade. Without trade, America produces and consumes 400 units of food and 100 units of clothing.

We can do exactly the same thing for Europe as we did for America. The only difference is that Europe’s PPF will look different from America’s because Europe’s efficiencies in producing food and clothing are different. Europe’s price ratio is \(\frac{2}{3}\), reflecting Europe’s relative productivity in food and clothing. (Question 3 at the end of this chapter asks you to construct Figure 25-5 and its accompanying table for Europe.)

Opening Up to Trade

Now admit the possibility of trade between the two regions. Food can be exchanged for clothing at some price ratio, or at some terms of trade, which denote the ratio of export prices to import prices. To indicate the trading possibilities, we put the two PPFs to-
Together in Figure 25-6, p. 562, America’s red PPF shows its domestic production possibilities, while Europe’s black PPF shows the terms on which it can domestically substitute food and clothing. Note that Europe’s PPF is drawn closer to the origin than America’s. Why? Because Europe has lower productivities in both industries; it has an absolute disadvantage in the production of both food and clothing.

However, Europe need not be discouraged by its absolute disadvantage, for it is the difference in relative productivities or comparative advantage that makes trade beneficial. The gains from trade are illustrated by the outer lines in Figure 25-6. If America could trade at Europe’s relative prices, it could produce 600 units of food and move northwest along the outer black line in Figure 25-6(a)—where the black line represents the price ratio or terms of trade that are generated by Europe’s PPF. Similarly, if Europe could trade with America and not affect America’s relative prices, then Europe could specialize in clothing and move southeast along the red line in Figure 25-6(b)—where the red line is America’s pre-trade price ratio.3

This discussion shows why little countries have the most to gain from international trade: they affect world prices the least and therefore can trade at world prices very different from domestic prices. Why might large countries gain least from international trade?

Equilibrium Price Ratio Once trade opens up, some set of prices must reign in the world marketplace. What will be the final prices at which the regions trade food and clothing? To dramatize this question, let us suppose that an auctioneer stands in mid-ocean and attempts to find the prices that balance supply and demand. That is, he wants to find the food and clothing prices at which the offers of food and clothing are exactly equal. He does this by calling out prices and adjusting them when imbalances occur. When he arrives at the equilibrium price level, he raps his gavel and shouts, “Going, going, gone!”

What will be the final prices? Although we can determine what the price range will be, without further information we cannot specify the exact price ratio. We can say at the outset, however, that the prices must lie somewhere between the prices of the two regions. That is, we know that the relative price of food and clothing must lie somewhere in the region \[\frac{1}{3}, \frac{2}{3}\].

The final price ratio will depend upon the relative demands for food and clothing. If food is very much in-demand, then the food price would be relatively high. If food demand were so high that Europe produced food, then the price ratio would be at Europe’s relative prices of \(\frac{1}{3}\). On the other hand, if clothing demand were relatively high, then the relative price of

Figure 25-5 Table and graph give American production data

The constant-cost line DA represents America’s domestic production-possibility frontier. America will produce and consume at B in the absence of trade.
clothing would rise; if clothing demand were so strong that America produced clothing, then the terms of trade would be according to America’s price ratio of \(\frac{5}{3} \). If countries specialize completely in the area of their comparative advantage, with Europe producing only clothing and America producing only food, then the price ratio will lie somewhere between \(\frac{1}{3} \) and \(\frac{2}{3} \). The exact ratio will depend on the strength of demand. \(^4\)

For our example, we assume that the levels of demand are such that the final price ratio is \(\frac{5}{3} \), with 3 units of food selling for 2 units of clothing. With this price ratio, each country can then specialize—America in food and Europe in clothing—and export some of its production to pay for imports at the world price ratio of \(\frac{5}{3} \).

Figure 25-6 illustrates how trade will take place. Each country will face a consumption-possibility curve according to which it can produce, trade, and consume. This consumption-possibility curve begins at a country’s best point of specialization and then runs out at the world price ratio of \(\frac{5}{3} \). Figure 25-6(a) shows America’s consumption possibilities as a thin black arrow with slope of minus \(\frac{5}{3} \) coming out of its best production point at 600 units of food and no clothing. Similarly, Europe’s post-trade consumption possibilities are shown in Figure 25-6(b) by the black arrow running southeast from its point of best specialization with a slope of minus \(\frac{5}{3} \).

The final outcome is shown by the points \(E \) in Figure 25-6. At this free-trade equilibrium, Europe spe-
Figure 25-7 Free trade expands consumption options of America

The red line DA represents America’s domestic production-possibility curve; the black line D’A, its new consumption-possibility curve when it is able to trade freely at the price ratio 2/3 and in consequence has decided to specialize completely in the production of food (at A). The red arrows from S to B’ and A to S show the amounts exported (+) and imported (−) by America. As a result of free trade, America ends up at B’ with more of both goods available than before trade at B.

Figure 25-8 Free trade allows world to move to its production-possibility frontier

We here show the effect of free trade from the viewpoint of the world as a whole.

Before trade is allowed, each region is on its own national PPF. Without trade, regions are producing goods in which they are relatively inefficient, so the world is inside the world PPF, shown as the red line XEZ.

Free trade allows each region to specialize in the goods in which it has comparative advantage. As a result of the specialization, the world as a whole moves out to point E, which is on the world PPF.
point B. This is an inefficient point—inside the world PPF—because regions have different levels of relative efficiency in different goods.

After opening the borders to trade, the world moves out to point E, the free-trade equilibrium. At E, countries are specializing in areas of comparative advantage. With free trade in competitive markets, the world is on the outer limit of its production-possibility frontier.

Qualifications and Conclusions

We have now completed our analysis of the elegant theory of comparative advantage. Its conclusions apply for any number of countries and commodities; advanced books show how it can be generalized to handle many inputs instead of labor alone and that it applies when there are changing factor proportions and diminishing returns.

But having understood this theory, we must also recognize its limitations. The major defect lies in its classical assumptions, for it assumes a smoothly working macroeconomic setting, with rapidly adjusting prices and wages and no involuntary unemployment. Would the theory still hold if autoworkers, laid off when the share of Japanese cars sold in the American market rises rapidly, cannot easily find new jobs? What if an overvalued foreign exchange rate on the dollar leads to a loss of 2 million manufacturing jobs that are not transferred to other sectors? In such cases, trade might well push a nation inside its PPF as un-

employment rose and GNP fell, and the gains from trade along with the theory of comparative advantage would fail.

Given this reservation, there can be little wonder that the theory of comparative advantage sells at a big discount during periods of major macroeconomic dislocations. During the Great Depression of the 1930s, as unemployment soared and real outputs fell, all nations built high tariff walls at their borders and the volume of foreign trade shrank sharply. Comparative advantage gained prestige in the 1950s and 1960s, as economics prospered and lower trade barriers promoted economic integration among the world’s industrial nations. But the theory was again eclipsed in the 1980s as a high dollar exchange rate and protectionism in many indebted countries, along with mounting trade deficits and stagnant manufacturing, crippled the U.S. economy. These epochs of history are an apt reminder that the classical theory of comparative advantage retains its social relevance only when exchange rates, prices, and wages are at appropriate levels and when macroeconomic policies banish major business cycles or trade dislocations from the economic scene.

Oversimplified as it is, the theory of comparative advantage provides a most important glimpse of truth. Economics has uncovered few deeper principles. A nation that neglects comparative advantage may pay a heavy price in terms of living standards and economic growth.

B. THE BALANCE OF INTERNATIONAL PAYMENTS

BALANCE-OF-PAYMENTS ACCOUNTS

Almost daily we can read about the U.S. trade balance, the growing indebtedness of the United States, or the need for balance-of-payments adjustments in Latin American countries. In order to master the elements of international trade, a general understanding of the nature of balance-of-payments accounting is essential.

Up to now we have treated international trade as if nations simply barter goods—oil for aircraft or bananas for computers. In fact, international exchange, like domestic exchange, takes place through the medium of money, and the monetary flows into and out of a country are measured in a nation’s balance of payments.

What exactly do we mean by a country’s balance of international payments? These are the accounting
statements that measure all the economic flows coming into and going out of a country—they form an overall measure of the flows of goods, services, and capital between a country and the rest of the world.

For the United States, the U.S. Department of Commerce keeps records, makes official estimates of all international transactions, and publishes the U.S. balance-of-payments statistics. These include data on merchandise exports and imports, money lent or borrowed abroad, tourist expenditures, interest and dividends paid or received, and so forth.

The balance of international payments is listed in four sections:

I. Current account
 Private:
 Merchandise (or "trade balance")
 Invisible or service items (travel, transportation, income on investments, and other)
 Governmental exports and grants

II. Capital account
 Private
 Government

III. Statistical discrepancy

IV. Official settlements

We will now explain each of these major components of the balance of payments.

Debits and Credits

Like other accounts, balance-of-payments accounts record pluses and minuses. Here a plus item is called a credit, while a negative is called a debit.

In general, exports are credits and imports are debits. A good rule to use in deciding how any item should be treated is to ask whether it earns foreign currencies for the country. Foreign currencies are other countries' monies. For the United States, foreign currencies include German marks, Mexican pesos, and Japanese yen.

Remember the following rule:

Is an item like one of our exports providing us with more foreign currencies? Such an export-type item is called a "credit item." Or is the item like one of our imports, causing us to use up our stock of foreign currencies? Such an import-type item is called a "debit item."

How is the U.S. import of a Toyota recorded? It is clearly a debit, for it depletes our stock of Japanese yen. Or, how shall we treat interest and dividend income on investments received by Americans from abroad? Clearly, they are credit items like exports because they provide us with foreign currencies. Similarly, when we pay interest and dividends to foreigners this is a debit item—like imports, such items use up our foreign currencies.

Details of the Balance of Payments

Balance on Current Account The totality of items under section I is usually referred to as the balance on current account. This important magnitude summarizes the difference between our total exports of goods and services and our total imports of them.

Centuries ago, writers concentrated on the trade balance, which consists of merchandise imports or exports. The composition of merchandise imports and exports was shown in Table 25-1 at the beginning of this chapter; it consists mainly of primary commodities (like food and fuels) and manufactured goods. In an earlier era, the mercantilists strove for a trade surplus (where exports exceed imports), calling this a "favorable balance of trade." They hoped to avoid an "unfavorable trade balance," by which they meant a trade deficit (where imports exceed exports). This choice of terms has carried over to today as many nations seek trade surpluses; economics teaches, however, that trade deficits are sometimes economically advantageous for countries that need an infusion of foreign capital.

In addition to the trade balance, we must not forget the increasing role played by services or "invisibles." These consist of such items as shipping, financial services, and foreign travel. The service component was an important positive or credit item for the United States from World War II until the 1980s, although the U.S. international debt position has eroded this surplus item in the late 1980s.
U.S. BALANCE OF PAYMENTS, 1987 (in billions of dollars)

<table>
<thead>
<tr>
<th>SECTION</th>
<th>ITEMS</th>
<th>(a) CREDITS (+)</th>
<th>(b) DEBITS (−)</th>
<th>(c) NET CREDITS OR DEBITS (−)</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Current account</td>
<td>1. Merchandise trade balance</td>
<td>$250</td>
<td>−$410</td>
<td>−$160</td>
</tr>
<tr>
<td></td>
<td>2. Services, transfers, other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3. Balance on current account</td>
<td></td>
<td></td>
<td>−6</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>−154</td>
</tr>
<tr>
<td>II. Capital account</td>
<td>[lending (−) or borrowing (+)]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4. Capital flows</td>
<td>211</td>
<td>−85</td>
<td>126</td>
</tr>
<tr>
<td></td>
<td>5. Balance on capital account</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>III. Statistical discrepancy</td>
<td>6. Total needing to be offset</td>
<td></td>
<td></td>
<td>−9</td>
</tr>
<tr>
<td></td>
<td>(line 3 + line 5 + statistical discrepancy)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV. Official settlements</td>
<td>7. Official settlements balance</td>
<td></td>
<td></td>
<td>9</td>
</tr>
<tr>
<td></td>
<td>(net change in U.S. official assets)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8. Formal overall net total</td>
<td></td>
<td></td>
<td>0</td>
</tr>
</tbody>
</table>

Table 25-3 By definition, current account plus capital account plus statistical discrepancy must be offset by official government settlements
(Source: Adapted from U.S. Department of Commerce.)

Table 25-3 presents helpful official data on the balance of international payments of the United States for 1987. Note its four main divisions: current and capital accounts, statistical discrepancy, and official settlement items. Each row is numbered to make reference easy. Then, after each item has been listed by name in column (a), we list in column (b) the credits. In column (c), we list the debits. In column (d) are the net credits or debits; it shows a credit if the item added to our stock of foreign currencies or a debit if, on balance, it subtracted from our foreign currency supply.

Thus, in 1987 our merchandise exports gave us credits of $250 billion. But our merchandise imports gave us debits of $410 billion. The net difference between credits and debits was a debit of $160 billion. This "trade deficit" is listed in column (d), on the first row. (Be sure you know why the algebraic sign is shown as − rather than as +.)

Table 25-3 shows that services or invisible items plus transfers were slightly a surplus. Our current account deficit was thus $1/4 billion for 1987.

Capital Account We have now completed analysis of the current account. But how did the United States "finance" its $154 billion current account deficit in 1987? The United States must have either borrowed or run down its assets. For it is definitional that what you buy you must either pay for or owe for. And this fact of double-entry bookkeeping means that the balance of international payments as a whole must by definition show a final zero balance.

So turn now to capital movements: these are loans private citizens or governments make to or receive from foreign private citizens or governments. Such capital movements occur, for example, when a Japanese pension fund buys U.S. government securities or when an American buys stock in a British firm.
It is easy to decide which are credit and which are debit items in the capital account if you use the following rule: Always think of the United States as exporting and importing stocks, bonds, or other securities—or, for short, exporting and importing IOUs in return for foreign currencies. Then you can treat these exports and imports like any other exports and imports. When we borrow abroad to finance a current account deficit, we are sending IOUs (like Treasury bills) abroad and gaining foreign currencies. Is this a credit or a debit? Clearly this transaction gives rise to a credit.

Similarly, if our banks lend abroad to finance a steel mill in Brazil, this means the U.S. banks are importing IOUs from Brazilians and losing foreign currencies; this is clearly a debit item.

Line 5 shows that in 1987 the United States was a net borrower: we were doing more borrowing abroad than foreigners were doing here. We were the net exporters of IOUs in the amount of $126 billion.

Part III shows that there was a modest statistical discrepancy (the net sum of all unrecorded transactions) accounting for $19 billion.

Adding all current and capital account items to the statistical discrepancy, we find a net deficit of $9 billion.

Official Settlements When the United States was on the gold standard and the government followed a virtual hands-off or laissez-faire policy, any net deficit on line 6 had to be settled by the nation’s exporting gold. Now that countries are no longer on the gold standard, they must provide the funds (in domestic or foreign currencies) to balance their books. These balancing flows provided by governments are called “official settlements.” The most common way of providing official settlements today is for countries to buy or sell U.S. government securities. In 1987, you can see in line 7 that there was a small subtraction ($9 billion) from U.S. official assets. In other years, official settlements have run in the tens of billions of dollars.

This summarizes the essentials of balance-of-payments accounting. We turn next to a broad survey of how nations’ balance-of-payments positions develop over time.

STAGES OF THE BALANCE OF PAYMENTS

A review of the economic history of advanced industrial countries finds that they go through four stages in their balance of payments as they grow from a young debtor to a mature creditor. This sequence is found, with variations depending upon their particular histories, in the advanced countries of North America, Europe, and Southeast Asia. We can illustrate the stages by recounting briefly the history of the balance of payments of the United States.

- **Young and growing debtor nation.** From the Revolutionary War until after the Civil War, we imported more than we exported. Europe lent us the difference in order to build up our capital stock. We were a typical young and growing debtor nation.

- **Mature debtor nation.** From about 1873 to 1914, the U.S. balance of trade moved into surplus. But growth of the dividends and interest that we had to pay abroad on our past borrowing kept our current account more or less in balance. Capital movements were also nearly in balance as our lending just offset our borrowing.

- **New creditor nation.** During World War I, we expanded our exports tremendously. American citizens and our government lent money to allies England and France for war equipment and postwar relief needs. We emerged from the war a creditor nation.

- **Mature creditor nation.** In the fourth stage, earnings on foreign capital and investments provided a large surplus on invisibles (running as high as $40 billion per year in the early 1980s); often this was matched by a deficit on visible trade or merchandise trade.

This pattern was followed by the United States through the early 1980s. Countries like Japan and West Germany today play the role of mature creditor nations as they enjoy large current account surpluses which they in turn invest abroad.

The United States, surprisingly, has moved out of the mature creditor nation stage, as is shown in the balance-of-payments data in Table 25-3: We have
now once again become a debtor nation, borrowing large amounts from stage-four countries. The difference between this new situation and stage one is that the borrowings are now for consumption rather than for investment.

Some economists wonder whether the United States has entered a fifth stage, that of senile debtor nation. They note that the macroeconomic policy mix of tight money and high govern- ment deficits of the 1980s has driven the national savings rate (equal to total private saving, foreign and domestic, divided by NNP) from 8 percent to 2 percent over the last decade. The United States is now unable to generate a volume of saving sufficient to provide its capital requirements and must turn to thriftier people abroad to do our saving for us. The counterpart of American dissaving is that foreigners, particularly Japanese investors, are purchasing substantial American assets for their portfolios.

Is this new stage of the U.S. balance of payments a transient period, or does it mark the beginning of a long period of “structural” trade deficits that will last for decades to come? No one can answer this question with certainty. As long as foreign countries continue to desire to accumulate American investments, the pattern of large capital inflows and current account deficits can continue. But eventually, foreign portfolios are likely to become saturated with U.S. investments. At that point, if macroeconomic policies and savings patterns in the United States have not changed, changes in trade flows and exchange rates will put an end to the rapid buildup of foreign indebtedness.

We have now reviewed the principles underpinning the trade of nations and have seen how this trade is recorded in the balance of payments. But we might ask, Do the actual trading flows and practices of nations recorded in balance-of-payments accounts actually reflect nations’ attempts to exploit their comparative advantages? Or are trade policies a product of superstition and political compromises between warring political factions? Why do countries so often interfere with free trade? Is there a sound intellectual basis for protectionism? It is to these questions that we turn in the next chapter.

SUMMARY

A. Economic Basis for International Trade

1. As soon as diversities in productivities arise within a country, specialization and exchange become beneficial. The same holds for nations. International exchange allows an efficient degree of specialization and division of labor—one that is more efficient than having to rely solely on domestic production.

2. Diversity is the fundamental reason that nations engage in international trade. Within this general principle, we see that trade occurs: because of differences in the conditions of production, such as when countries in the tropics produce coffee and bananas while temperate countries produce wheat and salmon; because of decreasing costs (or economies of scale)—particularly in manufacturing industries—whereby countries that get a head start in a particular industry make further gains in productivity to stay ahead of others; and because of diversity in tastes.

3. The most profound reason for international trade is the Ricardian principle of comparative advantage. This principle holds that trade between two regions is advantageous even if one country is absolutely more or less productive than the other in all commodities. As long as there are differences in relative or comparative efficiencies among countries, every country must enjoy a comparative advantage or a comparative
disadvantage in some goods. Powerful benefits will arise when countries specialize in production in their areas of comparative advantage, exporting those goods and trading them for goods in which other nations have a comparative advantage.

4. The law of comparative advantage predicts more than just the geographical pattern of specialization and direction of trade. It also demonstrates that both countries are made better off and that the real wages (or, more generally, returns to the factors of production taken as a whole) are improved by trade and the resulting enlarged totals of world production. Quotas and prohibitive tariffs that are designed to "protect" workers or industries will often hurt real wages and total factor returns—not help them.

5. When there are many goods or many countries, the same principles of comparative advantage apply. With many commodities, we can arrange products along a continuum of comparative advantage, from relatively more efficient to relatively less efficient. We know that a country will produce and export the commodity in which it has greatest comparative advantage and import that one in which it has greatest comparative disadvantage. With many countries, trade may be "triangular," with countries having large bilateral (or two-sided) surpluses or deficits with other individual countries. Triangular trade may allow many imbalances in bilateral trade, but this reflects the fact that a nation's accounts must balance only multilaterally—between a nation and the rest of the world. Imposing bilateral balance would hamper economic efficiency.

B. The Balance of International Payments

6. The balance of international payments is the set of accounts that measures all the economic flows into and out of a nation. It includes exports and imports of goods, services, and financial capital. Exports are credit items, while imports are debits. More generally, a country's credit items are transactions that make foreign currencies available to it; debit items are ones that reduce its holdings of foreign currencies.

7. The major components of the balance of payments are:
 I. Current account (including the merchandise or trade balance along with services and government transfers)
 II. Capital account (private and government purchases and sales of assets like stocks, bonds, and real estate)
 III. Statistical discrepancy
 IV. Changes in official reserve assets

The rule of balance-of-payments accounting is that the sum of all items must equal zero: I + II + III + IV = 0.

8. Historically, countries tend to go through stages of the balance of payments: from the young debtor borrowing for economic development, through mature debtor and young creditor, to mature creditor nation living off earnings from past investments. In the 1980s, the United States moved to yet a different stage where disappearing domestic saving has again led it to borrow heavily abroad and become a debtor nation.
CONCEPTS FOR REVIEW

open economy
sources of trade: cost differences, decreasing costs, differences in tastes, comparative advantage
absolute and comparative advantage (disadvantage)
principle of comparative advantage
economic gains from trade
effects of tariffs and quotas
spectrum of comparative advantage
triangular and multilateral trade
terms of trade
consumption vs. production possibilities with trade
world vs. national PPFs
balance of payments (current account, capital account, official settlements)
balance of payments must total zero: \[I + II + III + IV = 0 \]
debits and credits
stages of balance of payments

QUESTIONS FOR DISCUSSION

1. "Buying a good abroad cheaper than we can produce it at home is to our advantage." Is this consistent with comparative advantage?
2. For each of the following, state whether or not it is correct and explain carefully your reasoning. If the quotation is incorrect, provide the correct statement.
 (a) "We Mexicans can never compete profitably with the Northern colossus. Her factories are too efficient, she has too many computers and machine tools, and her engineering skills are too advanced. We need tariffs, or we can export nothing!"
 (b) "Because of international trade, a nation can consume outside its production-possibility curve."
 (c) "If American workers are subjected to the unbridled competition of cheap foreign labor, our real wages must necessarily fall drastically."
 (d) "The current account for a country need not balance bilaterally (or with each country), but it must balance multilaterally (or with all countries)."
 (e) "The principle of comparative advantage applies equally well to families, cities, and states as it does to nations and continents."
3. Construct Figure 25-5 and its accompanying table for Europe assuming that Europe has 600 units of labor and that labor productivities are given in Table 25-2.
4. What if the data in Table 25-2 changed from (1, 2; 3, 4) to (1, 2; 2, 4)? Show that all trade is killed off. Use this to explain the adage, "Vive la différence!" (freely translated as, "Let diversity thrive").
5. Follow-up to question 4: Suppose that the two countries in Table 25-2 are Korea and America. What are the gains from trade between the two countries? Now suppose that Korea adopts American technology, grows rapidly, and has an identical technology to the American column of Table 25-2. What will happen to international trade? What will happen to Korean living standards and real wages? What will happen to American living standards? Is there a lesson here for the impact of converging economies on trade and welfare?
6. Why do the largest gains to trade flow to small countries whose pre-trade prices are very different from prevailing world prices?

7. Why might a newly discovered continent have a comparative advantage in the production of food and raw materials?

8. Draw up a list of items that belong on the credit side of the balance of international payments and another list of items that belong on the debit side. What is meant by a trade surplus? By the balance on current account? Why the term "invisible items"?

9. Construct hypothetical balance-of-payments accounts for a young debtor country, a mature debtor country, a new creditor country, and a mature creditor country.

10. A Middle East nation suddenly discovers huge oil resources. Show how its balance of trade and current account suddenly turn to surplus. Show how it acquires assets in New York as a capital account offset. Later, when it uses the assets for internal development, show how its current and capital items reverse their roles.

11. A nation records the following data for 1991: Exports of automobiles ($100) and corn ($150); imports of oil ($150) and steel ($75); tourist expenditures abroad ($25); lending to foreign countries ($50); borrowing from foreign countries ($40); official settlements ($30 accumulation by domestic central bank). Calculate the statistical discrepancy and create a balance-of-payments table like Table 25-3.

12. A U.S. senator recently wrote the following:

"Trade is supposed to raise the incomes of all nations involved—or at least that is what Adam Smith and David Ricardo taught us. If our economic decline has been caused by the economic growth of our competitors, then these philosophers—and the entire discipline of economics they founded—have been taking us on a 200-year ride."

Explain why the first sentence is correct. Also explain why the second sentence does not follow from the first. Can you give an example of how economic growth of country J could lower the standard of living in country A? [Hint: The answer to question 5 will help uncover the fallacy in the quotation.]

13. For the period 1980–1982, the current account balances of the United States and Japan were each around zero (with imports approximately equaling exports). Yet during this period, the United States had a $15 billion bilateral trade deficit with Japan. Can you see how such a pattern might reflect comparative advantages of the two countries?

Many are calling for "reciprocity legislation," in which bilateral United States–Japanese trade would be balanced. What would the effect of this be on the efficiency of the multilateral trading system?

14. Advanced problem: To determine the final price ratio for our analysis of trade between Europe and America, we can use John Stuart Mill's "reciprocal demand curves," shown in Figure 25-9. In this diagram, we measure the supply and demand for clothing imports and exports. The D_sD_n demand curve measures America's demand for clothing, while the S_sS_n supply curve measures Europe's supply of clothing. These are not ordinary demand curves, however, for clothing is traded for food, not for money. Therefore, the price ratio here is the price of clothing in terms of food rather than in terms of dollars, and the price ratio, P_C/P_F, is measured on the vertical price axis.
This diagram then finds the equilibrium price ratio as the intersection of supply and demand. Explain the diagram. Then show what would happen if America’s demand for clothing were extremely weak. What would happen if America’s clothing demand were very large? Explain the proposition in the chapter that the price ratio must lie in the range \([\frac{2}{3}, \frac{4}{3}]\).
CHAPTER 26
PROTECTIONISM
AND FREE TRADE

To the Chamber of Deputies: We are subjected to the intolerable competition of a foreign rival, who enjoys such superior facilities for the production of light that he can inundate our national market as reduced price. This rival is no other than the sun. Our petition is to pass a law shutting up all windows, openings and fissures through which the light of the sun is used to penetrate our dwellings, to the prejudice of the profitable manufacture we have been enabled to bestow on the country. Signed: Cudlee Makers.

F. Bastiat

The theory of comparative advantage shows how countries can benefit from specialization and international division of labor. Nonetheless, during the 1980s, legislatures were besieged by groups lobbying for "protective" measures—barriers to imports in the form of tariffs or quotas. In the United States, the Congress and the President struggled over the passage of bills to protect domestic industries from inexpensive imports from other industrial countries.

Is a protectionist stance sound economic policy? Economists generally agree that it is not, for they have learned that trade promotes a mutually beneficial division of labor among nations and that free and open trade allows each nation to expand its production and consumption possibilities, raising the world's living standard.

But many people today disagree with the economists' argument. Just as Alexander Hamilton wanted to build tariff walls around our manufacturing industries in 1789, so today people argue that we need to protect our industries against foreign competition. In this chapter we begin by showing how tariffs affect prices and outputs in an industry. We then evaluate the arguments for and against economic protectionism.
SUPPLY-AND-DEMAND ANALYSIS OF TRADE AND TARIFFS

The last chapter analyzed the theory of comparative advantage, using as a specific example a situation in which Europe had a comparative advantage in clothing while America's comparative advantage lay in food production. In what follows we will see how supply-and-demand analysis can illuminate the determination of prices and quantities in foreign trade; we will then analyze the impact of tariffs.

Supply-and-Demand Analysis of a Single Traded Good

Consider only the clothing market in America. Assume for simplicity that America cannot affect the world price of clothing; this assumption will allow us to analyze supply and demand very easily. (The more realistic case where a country can affect world prices will be considered later in this chapter.)

Figure 26-1 shows the supply and demand curves for clothing in America. The demand curve of American consumers is drawn as DD and the domestic supply curve of American firms as SS. We assume that the price of clothing is determined in the world market (assumed to be much larger than the American market) and is equal to $4 per unit.

Later on, we must recognize that transactions in international trade take place in a variety of different currencies (U.S. dollars, Japanese yen, British pounds, and so forth). But for now we can simplify by translating each of those foreign currencies into dollars. For example, French suppliers would normally want to be paid in francs. But we can turn the French supply schedule into a dollar supply curve by using the current exchange rate. (Thus, if clothing sold for 24 francs a unit, and if the French franc sold for 6 francs to the dollar, we would simply use a scale of $4 per unit for French clothing.)

No-Trade Equilibrium For the moment, let's suppose that transportation costs or tariffs for clothing were prohibitive (say, $100 per unit of clothing).
Where would the no-trade equilibrium lie? In this case, the American market for clothing would be at the intersection of domestic supply and demand, shown at point N in Figure 26-1. At this no-trade point, prices would be relatively high at $8 per unit, and domestic producers would be meeting all the demand.

Free Trade Next open up trade in clothing. For simplicity, assume that there are no transport costs, tariffs, or quotas. Then the price in America must be equal to the world price. Why? Because if the American price were above the European price, sharp-eyed entrepreneurs would buy where clothing was cheap (Europe) and sell where clothing was expensive (America)—Europe would export clothing to America. Once trade flows fully adapted to supplies and demands, the price in America would equal the world price level (adjusted for transportation costs and for tariffs or other trade barriers).

Figure 26-1 illustrates the impact of international trade upon prices, quantities, and trade flows for this clothing example. The horizontal red line at $4 represents the supply curve for imports; it is horizontal, or perfectly price elastic, because American demand is assumed to be too small to affect the world price of clothing.

Once trade opens up, a flood of imports comes into America, lowering the price of clothing to the world price of $4 per unit. At that level, domestic producers will supply the amount ME, or 100 units. But at that low price consumers will want to buy 300 units. The difference, shown by the heavy red line EF, is the amount of imports.

Who decided that we would import just this amount of clothing, and that domestic producers would supply only 100 units? A planning agency? A cartel of clothing firms? Labor unions? No, the amount of trade was determined by supply and demand.

Moreover, we can say that the level of prices in the no-trade equilibrium determined the direction of the trade flows. America’s no-trade prices were higher than Europe’s, so goods flowed into America. Remember this paradoxical rule: Under free trade, goods flow uphill from low-price regions to high-price regions. Clothing flows uphill from the low-priced European market to the higher-priced American market when markets are opened to free trade.

Before we move on to analyze the impact of tariffs upon trade, pause first to consider the relationship of the supply and demand curves just analyzed to the theory of comparative advantage in the last chapter. The supply and demand curves are highly useful for understanding the forces operating upon a single industry, but they are incomplete. Why do the schedules determine a higher no-trade equilibrium clothing price in America than in Europe? Why does trade in clothing flow from Europe to America? To answer these questions we have to analyze the supplies and demands for all industries, as we did in last chapter’s general-equilibrium analysis of an economy’s comparative advantage along Ricardian lines. The same principles of comparative advantage explain why Europe would export clothing and import food.

Tariffs and Quotas

For centuries, one of the major tools that governments have used to raise revenues and to influence the development of individual industries is the imposition of tariffs and quotas. From the eighteenth century—when the British Parliament attempted to impose tariffs on tea, sugar, and other commodities on its American colonies—until today, tariff policy has proved fertile soil for revolution and political struggle.

We can understand the economic impacts of tariffs and quotas using our supply-and-demand analysis. To begin with, note that a tariff is a tax levied on imports. Table 26-1 shows some representative tariff rates in the mid-1980s for the United States and Japan. To take an example, the United States today has a 2.5 percent tariff on automobiles. If a foreign car costs $10,000, then the domestic price including the tariff would be $10,250. A quota is a limit on the quantity of imports. The United States has quotas on products like cheese, textiles, and beef.

Prohibitive Tariff The easiest case to analyze is a "prohibitive tariff"—one that is so high as to com-

1 Economists explain that these supply and demand curves depict only "partial equilibrium." They must be anchored in "general-equilibrium" analysis, of which Chapter 25’s Ricardian theory of comparative advantage is a special case.
<table>
<thead>
<tr>
<th>COMMODITY CLASS</th>
<th>UNITED STATES</th>
<th>JAPAN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agricultural products</td>
<td>1.8</td>
<td>18.4</td>
</tr>
<tr>
<td>Food products</td>
<td>4.7</td>
<td>25.4</td>
</tr>
<tr>
<td>Wearing apparel</td>
<td>22.7</td>
<td>13.8</td>
</tr>
<tr>
<td>Printing and publishing</td>
<td>0.7</td>
<td>0.1</td>
</tr>
<tr>
<td>Iron and steel</td>
<td>3.6</td>
<td>2.8</td>
</tr>
<tr>
<td>Transport equipment</td>
<td>2.5</td>
<td>1.5</td>
</tr>
<tr>
<td>Average, industrial products</td>
<td>4.4</td>
<td>2.8</td>
</tr>
</tbody>
</table>

Table 26-1 Average tariff rates for United States and Japan

The average tariff rates for industrial countries like the United States and Japan are relatively low today. High tariffs or import quotas are generally found in politically sensitive sectors like agriculture in Japan and clothing in the United States. [Source: Congressional Budget Office, The GATT Negotiations and U.S. Trade Policy (U.S. Government Printing Office, Washington, June 1987).]

Completely discourage any imports. Looking back at Figure 26-1, what will happen if the tariff on clothing is more than $4 per unit (that is, more than the difference between America’s no-trade price of $8 and the world price of $4)? This tariff would be so high as to be prohibitive, shutting off all clothing trade.

Why? Because any importer who buys clothing at the world price of $4 can sell it in America for at most the no-trade price of $8. But the tariff the importer has to pay would come to more than the difference between U.S. and world price. Prohibitive tariffs thus kill off all trade.

Nonprohibitive Tariff More moderate tariffs (less than $4 per unit of clothing) would injure but not kill off trade. Figure 26-2 shows the equilibrium in the clothing market with a $2 tariff. Again assuming no transportation costs, a $2 tariff means that foreign clothing will sell in America for $6 per unit (equal to the $4 world price plus the $2 tariff).

The equilibrium result of a $2 tariff is to lower domestic consumption (or quantity demanded) from 300 units in the free-trade equilibrium to 250 units after the tariff is imposed, to raise the amount of domestic production by 50 units, and to lower the quantity of imports by 100 units. This example summarizes the economic impact of tariffs:

A tariff will tend to raise price, lower the amounts consumed and imported, and raise domestic production.

Quotas Quotas have the same qualitative effect as tariffs. A prohibitive quota (prohibiting all imports) would achieve the same result as a prohibitive tariff. The price and quantity would move back to the no-trade equilibrium at N in Figure 26-2. A less stringent quota might limit imports to 100 clothing units; this quota would equal the heavy red line HJ in Figure 26-2. A quota of 100 units would lead to the same equilibrium price and output as did the $2 tariff.

There is thus no essential difference between tariffs and quotas. Some subtle differences arise, however. A tariff at least gives revenue to the government, perhaps allowing other taxes to be reduced and thereby offsetting some of the harm done to customers in the importing country. A quota, on the other hand, puts the profit from the resulting price difference into the pocket of the importers lucky enough to get a permit or license to import. They can afford to wine and dine the officials who give out import licenses and may even engage in bribery.

For these reasons, in choosing between tariffs and quotas, economists generally regard tariffs as the lesser evil. However, they advise that, if governments are determined to interfere with comparative advantage by imposing quotas, the government should auction off the scarce import-quota licenses. An auction will ensure that the government rather than the importer or the exporter gets the revenue from the scarce right to import; and in addition, the bureaucracy will not be tempted to allocate quota rights by bribery, friendship, or nepotism.

Transportation Costs What of transportation costs? The cost of moving bulky and perishable goods has the same effect as tariffs, reducing the extent of beneficial regional specialization. For example, if it costs $2 per unit to transport clothing from Europe to the United States, the supply-and-demand equilibrium
would look just like Figure 26-2, with the American price $2 above the European price.

But there is one difference: transport costs are imposed by nature—by distances, mountains, and rivers. Restrictive tariffs are squarely the responsibility of nations. Indeed, one economist called tariffs "negative railroads." This idea illustrates dramatically that a tariff has the same economic impact as throwing sand in the engines of vessels that transport goods to our shores from other lands.

The Economic Costs of Tariffs

In the last chapter, we saw that all countries would benefit by opening up their borders to international trade. We can also use our supply-and-demand apparatus to analyze the economic costs of tariffs.

What happens when America puts a tariff on clothing, such as the $2 tariff shown in Figure 26-2? We have seen that there are three effects: (a) The domestic producers, operating under a price umbrella provided by the tariff, can now expand production; (b) consumers are faced with higher prices and therefore reduce their consumption; and (c) the government gains tariff revenue. What is the net economic impact of the tariff?

Tariffs create economic inefficiency. More precisely, when tariffs are imposed, the economic loss to consumers exceeds the revenue gained by the government plus the extra profits earned by producers.

Diagrammatic Analysis²

The economic analysis of a tariff’s impact is shown in Figure 26-3. This shows the same curves as those in Figure 26-2, but three new areas are highlighted. Let’s investigate each:

A. A tariff raises the price in domestic markets from $4 to $6. Firms are thereby induced to produce

²The section on diagrammatic analysis is somewhat technical and can be skipped in short courses or in those courses which have not covered Part Two.
more—i.e., to bring on line factories whose marginal costs for producing are between $4 and $6 per unit. Bringing on these high-marginal-cost plants is inefficient, for the clothing produced by those factories could be bought from abroad at $4. We can easily measure the amount of this waste as the area A in Figure 26-3. This area is the sum of the marginal costs of domestic producers (represented by the domestic supply curve) minus the marginal costs of foreign producers ($4). The total loss in A is $50 (which, by geometry, is equal to 1/4 times the tariff times the induced domestic production).

B. In addition, there is a loss of consumer surplus from the too-high price. Recall that the demand curve represents consumers’ marginal utilities, or the value of the different units of clothing. The resource cost of each unit of clothing is the world price, $4. Hence, the triangle B measures the loss in consumer satisfaction from having to cut back on consumption. It is also equal to $50 (which is calculated as equal to one-half the price difference times the consumption reduction).

C. Area C is simply the tariff revenue, equal to the amount of the tariff times the units of imports. Revenues in Figure 26-3 are $200. Note that, unlike triangles A and B, revenue rectangle C need not be an efficiency cost or a deadweight loss. The government revenues raised by tariffs can be employed to finance useful government programs or can be returned to consumers for their own purposes.

Figure 26-3 illustrates one feature that is important in understanding the politics and history of tariffs. When a tariff is imposed, part of the impact is upon economic efficiency but the largest effect is often redistributive. In the example shown in Figure 26-3, areas A and B represent efficiency losses: from inefficiently high domestic production and inefficiently low consumption, respectively. Under the simplifying assumptions used above, the efficiency losses are
equal to the two little triangles and sum up to $100. The redistribution involved and shown as area C is much larger, however, equaling $200 raised in tariff revenues levied upon consumers of the commodity. Consumers will be unhappy about the higher product cost, and producers may attempt to capture the potential revenues by shifting from tariffs to quotas. We can see why battles over import restrictions generally center more on the redistributive gains and losses than on the impacts upon economic efficiency.

In summary:

Imposing a tariff has three effects. It encourages inefficient domestic production; it induces consumers to reduce their purchases of the tariffed good below efficient levels; and it raises revenues for the government. Only the first two of these necessarily impose efficiency costs on the economy.

An Example of Tariffs on Textiles

Let’s put some flesh on these analytical bones by discussing the impacts of a particular tariff, such as a tariff on clothing. Today, tariffs on imported textiles and apparel are among the highest tariffs levied by the United States (see Table 26-1). How do consumers and producers feel the impact of these high tariffs?

To begin with, domestic clothing prices are raised. It costs more to buy a suit or dress than it would under free trade. Because of the higher prices, many factories—ones that would otherwise be bankrupt in the face of a declining comparative advantage in textiles—remain open. They are only marginally profitable, but they somehow manage to eke out enough sales to continue domestic production. A few more workers are employed in textiles than would otherwise be the case although, because of pressure from foreign competition, real wages remain among the lowest of any manufacturing industry.

From a national point of view, we are wasting resources in textiles. These workers, materials, and capital would be more productively used in other sectors—perhaps in producing computers or corn or aircraft. The nation’s productive potential is lower because we keep factors of production in an industry like textiles where we have lost our comparative advantage.

Consumers are of course paying for this protection of the textile industry. They face higher prices. They get less satisfaction from their incomes than they would if they could buy textiles at Hong Kong or Singapore prices, that is, at prices that exclude the high tariffs. Consumers are induced to cut back on their clothing purchases, channeling funds into food or transportation or recreation, whose relative prices are lowered by the tariff.

In addition, the government gets a few million dollars of revenues from tariffs on textiles. These revenues can be used to buy useful public goods or to reduce other taxes, so (unlike the consumer loss or the productive inefficiency) this is not a real social burden.

Now that we have completed our analysis of the way that tariffs affect the price and quantity of a good, we turn to an analysis of the arguments for and against protecting a nation’s industries against foreign trade.

THE ECONOMICS OF PROTECTIONISM

The arguments for tariff or quota protection against the competition of foreign imports take many different forms. Here are the main categories:

- Certain non-economic arguments that suggest it is desirable to sacrifice economic welfare in order to subsidize other national objectives
- Arguments that are economically false: some that are clearly defective and some whose falsity can be detected only by subtle and sophisticated economic reasoning
- A few analyses that are invalid in a perfectly competitive full-employment world, but that contain kernels of truth for a nation large enough to affect its import or export prices, as well as for a nation suffering from unemployment

Many of these arguments are a century old; others have been promoted by the “new wave” theorists of
protection. The best way to evaluate the arguments is by a careful economic analysis.

Non-Economic Goals

Let us begin with the first category, for they are most easily considered. If you ever are on a debating team given the assignment to defend free trade, you will strengthen your case at the beginning by conceding that economic welfare is not the only goal of life. A nation surely should not sacrifice its liberty and national security for a few dollars of extra real income gained in trade.

Consider the example of oil. If oil is considered necessary for national defense, the economist should not assert that it is wrong to protect the oil industry. The case for protection is strengthened if foreign oil is controlled by a hostile power or by a cartel that may, on some future occasion, cut off supplies for political reasons. An advocate of protection might conclude that the nation should severely limit imports of oil into the United States.

A close look, however, will reveal faults in this argument. Suppose the nation consumes 15 million barrels of oil a day, of which essential military and civilian needs are 5 million barrels a day. Moreover, our productive capacity is 9 million barrels a day. An appropriate policy would seem to be to ensure that the nation always has access to 5 million barrels a day of oil resources. Clearly, then, there is no need to restrict oil imports to guarantee the essential oil needs of the nation.

In some cases, a nation might not produce enough of a product for its essential military needs. This might be true for cobalt or copper. The domestic copper industry might come before Congress and lobby for a high tariff on copper, arguing that only by this means can the nation guarantee an adequate supply in wartime. A careful analysis of this contention often reveals that there are more efficient ways of ensuring the needed amount of strategic materials than by raising tariffs—a particularly useful policy being the storage of such materials in a strategic stockpile. The United States today does in fact have large stocks of major materials as a way of providing adequate supplies if imports are curbed.

The National Way of Life Proponents of protection can muster yet other arguments to their defense. Sometimes it is argued that the nation's scientific resources (in aircraft, microelectronics, or computers) will wither away if they are not kept hard at work protected from foreign competition. In addition, tariffs are sometimes seen as part of a social strategy—to preserve the farm, the culture of New England or New York, or the centuries-old tradition of Swiss watchmaking.

A thoughtful analyst cannot dismiss such objectives out of hand. But most economists prefer the use of subsidies rather than tariffs as a way of attaining non-economic goals. A subsidy makes direct payments to a person or a firm for the desired service; for example, if Switzerland desires to maintain its watch industry, it may provide low-interest (or subsidized) loans to watch manufacturers. Subsidies are held superior because they are more visible and can be debated openly; they do not raise all prices, but only those of the subsidized goods or workers; and they are subject to periodic review by legislatures.

There are many non-economic goals in a humane society. But to attain them by economic protectionism is usually an inefficient and costly route to follow.

Grounds for Tariffs Not Based on Sound Economics

Mercantilism To Abraham Lincoln has been attributed the remark, "I don't know much about the tariff. I do know that when I buy a coat from England, I have the coat and England has the money. But when I buy a coat in America, I have the coat and America has the money."

This reasoning represents an age-old fallacy typical of the so-called mercantilistic writers of the seventeenth and eighteenth centuries. They considered a country fortunate which sold more goods than it bought because such a "favorable" balance of trade meant that gold would flow into the country to pay for its export surplus.

The mercantilist argument confuses the means and the ends of economic activity. Accumulating gold or other monies will not improve a country's living stan-
dard. Money is worthwhile not for its own sake, but for what it will buy from other countries. Most economists today therefore reject the idea that raising tariffs to run a trade surplus will improve a country's economic welfare.

Tariffs for Special-Interest Groups The single most important source of pressure for protective tariffs comes from powerful special-interest groups. Both business and labor know very well that a tariff on their products will help them, whatever its effect on total production and consumption. This barrier to free trade was understood by Adam Smith, who wrote:

To expect . . . freedom of trade . . . is as absurd as to expect . . . Utopia. Not only the prejudices of the public, but what is much more unconquerable, the private interests of many individuals, irresistibly oppose it.

A century ago, outright bribery was used to get the votes necessary to pass tariff legislation. Today, powerful political action committees (PACs)—financed by industries or labor and in turn making millions of dollars of campaign contributions to members of Congress—drum up support for tariffs or quotas on textiles, autos, steel, sugar, and other goods.

Why do the proponents of protectionism continue to wield such a disproportionate influence in Congress when free trade is so beneficial to the nation as a whole? The answer lies in the dynamics of interest-group politics in our democratic system (a topic analyzed in Chapter 19's discussion of public choice). Free trade helps everybody a little, while protection helps a few people a great deal. If political votes were cast in proportion to total economic benefit, every nation would legislate most tariffs out of existence.

But all dollars of economic interests do not always get proportional representation. It is much harder to organize the masses of consumers and producers to agitate for the benefits of free trade than it is to organize a few companies or labor unions to beat the drums against "cheap foreign labor" or "unfair Japanese competition." Usually, those few firms, farmers, or labor unions who seek protection are the best represented and the most active in the political arena. Their trade groups have many millions of dollars to spend lobbying and supporting friendly legislators while the consumers who lose from protection have but a few poorly funded groups to counter protectionist arguments. In every country, the tireless enemies of free trade are the special interests of protected firms and workers.

Competition from Cheap Foreign Labor Another argument for protection, gauged to appeal to workers, has been the most popular of all in American history. This argument holds, "How can American workers possibly compete with goods produced by cheap foreign labor—whether by Koreans making circuit boards and earning only $2 an hour or by Brazilians earning $1 an hour making carbon steel? We need tariffs on foreign goods so that we can compete effectively."

The flaw in the argument is that it ignores the basic principle of comparative advantage. The reason American workers have higher wages is that they are on average more productive. If our equilibrium wage is 10 times that in East Asia, it is because we are on average roughly 10 times more productive in the manufacture of tradable goods.

To put this differently, the principle of comparative advantage shows that it will be beneficial for country A to trade with country B even if country B can produce every good more efficiently than can country A. Trade flows according to comparative advantage, not absolute advantage. If America has higher relative costs than East Asia in basic steel, textiles, shoes, and circuit boards, then America will benefit by importing those goods. Instead of protecting unproductive industries, America should concentrate on areas where its labor is relatively more productive—on sectors like farming, aircraft, petrochemicals, and customized integrated circuits.

Having shown that the nation gains from importing the goods produced by "cheap foreign labor" when those goods are relatively cheap to produce abroad, we should not ignore the costs that this strategy may temporarily impose on the affected workers and firms. If plants in a particular locality are unexpectedly shut down because production moves overseas, the local labor market may be inundated with job seekers. Older workers with outdated job skills may
have trouble finding attractive jobs and suffer a decline in their real incomes. The difficulties of displaced workers will be greater when the overall economy is depressed or when the local labor markets have high unemployment. Over the long run, labor markets will reallocate workers from declining to advancing industries, but the transition may be painful for many people.

In summary, the economic answer to the “cheap foreign labor” argument rests on the comparative-advantage analysis. This shows a country will benefit from trade even though its wages are far above those of its trading partners. High wages come from high efficiency, not from tariff protection.

Tariffs for Retaliation While many people would agree that a world of free trade would be the best of all possible worlds, they note that this is not the world we live in. They reason, “As long as other countries impose import restrictions or otherwise discriminate against our products, we have no choice but to play the same game in self-defense. We’ll go along with free trade only as long as it is fair trade. But we must play on a level playing field.”

While this argument seems sensible, it is not well grounded in economic analysis or history. As we have seen, when another country increases its tariffs, this is akin to increasing its transportation costs. But if France decided to let its roads go to ruin, should we therefore chop holes in ours? If a country decided to lay mines in its harbors, should we mine ours? Few would think so. Similarly, if other countries injure their economies’ vitality by imposing tariffs on their imports, it would not be economically beneficial to add injury to injury by adding tariffs on ours.

The only possible sense in the argument that we should retaliate when a foreign country raises tariffs is that our threat of retaliation may deter the country from raising tariffs in the first place. This rationale was explicitly given by the U.S. government in a 1982 analysis of protection (in the Economic Report of the President):

Intervention in international trade . . . , even though costly to the U.S. economy in the short run, may, however, be justified if it serves the strategic purpose of increasing the cost of interventionist policies by foreign governments. Thus, there is a potential role for carefully targeted measures . . . aimed at convincing other countries to reduce their trade distortions.

But this argument should be used with great caution. Just as building missiles leads to an arms race as often as to arms control, protectionist bluffs may end up hurting the bluffer as well as the opponent. Historical studies show that retaliatory tariffs usually lead other nations to raise their tariffs still higher and are rarely an effective bargaining chip for multilateral tariff reduction.

Import Relief Today, relatively little direct tariff business is conducted on the floor of Congress. Congress realized that tariff politics was too hot to handle and delegated most authority to the President. Most trade barriers are erected as a result of a complaint filed by an industry that feels itself to be adversely affected by foreign competition. In most circumstances, the complaint is analyzed by the International Trade Commission, which makes recommendations for final action by the President. Among the important kinds of actions are the following:

- **The escape clause** allows temporary import relief (tariffs, quotas, or export quotas negotiated with other countries) when an industry has been “injured” by imports. Injury occurs when the output, employment, and profits in a domestic industry have fallen while imports have risen. We have seen such “escape clause” relief provided for televisions, shoes, steel, CB radios, and even nuts and bolts.

- **Antidumping tariffs** are levied when foreign countries sell in the United States at prices below their average costs or at prices that are lower than in the home market. Such duties have been levied on steel imports and semiconductor chips.

- **Retaliation for unfair trade practices** is imposed when other countries discriminate against, or unjustifiably restrict, U.S. commerce. Since 1985, for example, the United States has initiated actions against Japan for restricting sales of American cigarettes, against Korea for restrictions on insurance, against Taiwan for restrictions on alcoholic beverages, and
against Brazil for restrictions in the computer industry.

What is the justification for such retaliatory measures or for protecting an industry threatened by imports? While import relief may sound reasonable, it actually runs completely counter to the economic theory of comparative advantage. A nation gains from trade by specializing, i.e., by giving up certain activities and moving resources into other industries which enjoy a comparative advantage. Suppose an industry (say, steel) formerly had a comparative advantage but has lost it—because other industries have had greater technological improvements, because the domestic factors it uses have become more expensive when they have become more valuable elsewhere, or for any other reason. The theory of comparative advantage says that this industry ought to be injured by imports. Indeed, it ought to be killed off by the competition of more productive industries.

This sounds ruthless indeed. No industry willingly dies. No region gladly undergoes conversion to new industries. Often the shift from old to new industries involves considerable unemployment and hardship. The weak industry and region feel they are being singled out to carry the burden of progress.

A compromise that recognizes the costs of adjusting to economic dislocations is to introduce tariff reductions gradually, so that unemployed workers will have time to move to regions with growing job opportunities. Also, as has occurred since the 1962 Trade Act and was strengthened in the 1988 Trade Act “trade adjustment assistance,” or federal aid to displaced factors of production is given. Such assistance may help shift factors from declining to growing industries, share the burden among the strong and the weak, and lessen effective opposition to a free and open trading system.

Many economists and political leaders feel that adjustment assistance is the most efficient and humane way to respond to the inevitable dislocations wrought by changing patterns of comparative advantage. As Victoria Curzon Price noted, “Trade liberalization coupled with adjustment assistance is a typical example of the capacity for moving forwards while looking backwards.”

Arguments for Protection under Dynamic Conditions

Finally, we can consider three arguments for protection that may have true economic merit:

- Tariffs may move the terms of trade in favor of a country.
- Temporary tariff protection for an “infant industry” with growth potential may be efficient in the long run.
- A tariff may under certain conditions help reduce unemployment.

Let’s examine each of these arguments.

The Terms-of-Trade or “Optimal-Tariff” Argument

One valid argument for a country’s imposing tariffs on its trade is that it will “shift the terms of trade in its favor and against foreign countries.” Recall that terms of trade represent the ratio of export prices to import prices. To shift the terms of trade against foreigners means that levying tariffs on imports will reduce the world price of imports while increasing the prices of our exports. By shifting the terms of trade in our favor, we can export less of our wheat and aircraft in order to pay for imports of oil and cars. The set of tariffs that maximizes our domestic real incomes is called the optimal tariff.

The terms-of-trade argument, which goes back 150 years to the free-trade proponent John Stuart Mill and has been recently dusted off by “new wave” theorists, is the only one that would be valid under conditions of full employment and perfect competition. We can understand it in a simple case by considering an optimal tariff on oil. Mill would note that the optimal tariff on oil will raise the price here above the foreign price. But with our demand now curtailed, and because we are a significant part of the world demand for oil, the world market price of oil will be bid down. So part of the tariff really falls on the foreigner.3 (We

3The analysis is exactly like that of domestic monopolists who raise P above MC, stopping where MR = MC. This approach has been presented as an argument for a large tariff on imported oil. Proponents of an oil tariff argue that a higher domestic price will depress the demand for OPEC’s oil and thereby lower the price of imports (see question 10 at the end of this chapter).
can see that a very small country could not use this argument since a tiny country cannot affect world prices.)

Have we not therefore found a theoretically secure argument for tariffs? The answer would be yes if we could forget that this is a "beggar-thy-neighbor" policy and ignore the reactions of other countries. But other countries are likely to react. After all, if the United States were to impose an optimal tariff of 30 percent on its imports, why should the European Community and Japan and Brazil not put 30 or 40 percent tariffs on their imports? In the end, as every country calculated and imposed its own domestic optimal tariff, the overall level of tariffs might climb to 30 or 50 percent.

But such a situation would surely not in the end represent an improvement of either world or individual economic welfare. When all countries impose optimal tariffs, it is likely that everyone's economic welfare will decline as the impediments to free trade become great. All would benefit if countries were to gather and negotiate an abolition of trade barriers.

Tariffs for "Infant Industries" In his famous Report on Manufactures (1791), Alexander Hamilton proposed to encourage the growth of manufacturing by protecting youthful industries from foreign competition. According to this doctrine, which received the cautious support of free-trade economists like John Stuart Mill and Alfred Marshall, there are lines of production in which a country could have a comparative advantage if only they could get started.

But such "infant industries" would not be able to weather the initial period of start-up and experimentation if they were forced to face unprotected the gales of international competition. On the other hand, if given some temporary shelter, they might develop economies of mass production, a pool of skilled labor, inventions well adapted to the local economy, and the technological efficiency typical of many mature industries. Hence, although protection will at first raise prices to the consumer, the industry will be so efficient once it has grown up that cost and price will actually have fallen. If the benefit to consumers at that later date would be more than enough to make up for the higher prices during the period of protection, a tariff is justified.

This argument must be carefully weighed. Historical studies have turned up some genuine cases of infant industries that grew up to stand on their own feet. And studies of successful newly industrialized countries (such as Singapore and Korea) find that they have often protected their manufacturing industries from imports during the early stages of industrialization. But the history of tariffs reveals even more contrary cases of perpetual infants unable to shed their diapers after many years of protection from international trade.

Tariffs and Unemployment Historically, a powerful motive for protection has been the desire to increase employment during a period of recession or stagnation. How might protection create jobs? A tariff will raise the price of imports and therefore divert demand toward domestic production; Figure 26-2 demonstrates this impact. As domestic demand increases, firms will hire more workers, and unemployment will fall. This too is a "beggar-thy-neighbor" policy, for it raises domestic demand at the expense of output and employment in other countries.

However, while economic protection may raise employment, it does not constitute an effective program to pursue high employment, efficiency, and stable prices. Macroeconomic analysis shows that there are other ways of reducing unemployment than by imposing import protection. By the appropriate use of monetary and fiscal policy, a country can increase output and lower unemployment. More importantly, the use of general macroeconomic policies will allow workers displaced from low-productivity jobs in industries losing their comparative advantage to move to high-productivity jobs in industries enjoying a comparative advantage.

This lesson was amply demonstrated during the 1980s. From 1982 to 1987, the United States created

*Those who have studied macroeconomics can understand the mechanism by which tariffs increase employment as follows: Recall that higher investment or government spending increases aggregate demand, output, and employment. By similar reasoning, greater protection or higher tariffs lower imports, increase net exports (equal to exports minus imports), and thereby increase aggregate demand. The higher net exports will have a multiplier effect much like that of investment or government spending on goods and services.
15 million net new jobs while maintaining open markets and low tariffs and sharply increasing its trade deficit; by contrast, the European Community created virtually no new jobs while moving toward a position of trade surpluses.

Another way of analyzing the impact of trade barriers upon employment is to measure the "cost of a job created by import restraints." Numerous economic studies have analyzed the economic cost imposed when tariffs or quotas are put upon an industry. As an example, consider the voluntary import quotas on Japanese cars during the 1980s. According to government studies, these quotas increased employment in the automobile industry by around 30,000 workers during 1983 and 1984. For the 7 million cars bought annually during that period, it is estimated that consumers paid an average of $500 per car more than they would have without the quotas. The consumer cost per job then averaged about $3.5 billion/30,000 = slightly over $100,000 per job. Calculations such as these show how inefficient tariffs are as a technique for increasing employment.

In summary, tariffs and import protection are an inefficient way to create jobs or to lower unemployment. A more effective way to increase productive employment is through domestic monetary and fiscal policy.

Other Barriers to Trade

While this chapter has usually spoken of tariffs, almost everything it has said would apply equally well to any other impediments to trade. Quotas have much the same effects as tariffs, for they prevent the comparative advantages of different countries from being determined in the marketplace. In recent years, countries have negotiated quotas with other countries. The United States, for example, forced Japan to put "voluntary" export quotas on automobiles and negotiated similar export quotas on televisions, shoes, and steel.

Finally, we should mention the so-called non-tariff barriers (or NTBs). These consist of informal restrictions or regulations that make it difficult for countries to sell in foreign markets. The growth of NTBs was

one of the major problems faced by trade negotiators in the 1980s.

MULTILATERAL TRADE NEGOTIATIONS

This completes our discussion of the political economy of tariffs. Given the tug of war between the economic benefits of free trade and the political appeal of protection, which force has prevailed? The history of tariffs, shown in Figure 26-4, has been a bumpy one. For most of the life of the American republic, we have been a high-tariff nation. The pinnacle came after the infamous Smoot-Hawley tariff of 1930. This was opposed by virtually every American economist, yet it sailed through Congress.

The trade barriers erected during the Depression helped raise prices and exacerbated that period's economic distress. The 1930s witnessed trade wars in which countries attempted to raise employment and output by raising trade barriers at the expense of their neighbors. Nations soon learned that at the end of the tariff game, all were losers.

Negotiating Free Trade

As nations gathered at the end of World War II, they designed a number of institutions that could promote peace and economic prosperity by encouraging cooperative policies. One of the most successful of these was the General Agreement on Tariffs and Trade (GATT), whose charter speaks of raising living standards through "substantial reduction of tariffs and other barriers to trade and the elimination of discriminatory treatment in international commerce." The GATT currently has 92 member countries; these account for 85 percent of international trade.

Among the principles underlying the GATT are: (1) countries should work to lower trade barriers; (2) all trade barriers should be applied on a nondiscriminatory basis (i.e., all nations should enjoy the "most-favored-nation" status); (3) when a country increases its tariffs above agreed-upon levels, it must compensate its trading partners for their economic injury; and (4) trade conflicts should be settled by consultations and arbitration.
The history of trade negotiations has proved one of the major successes in international economic cooperation. Every few years, all major industrial countries gather under the auspices of the GATT to identify major trade barriers and negotiate their removal. The current negotiations are called the "Uruguay Round." In addition to the traditional goal of reducing tariff and quota barriers, the new round has undertaken the ambitious goals of reducing trade barriers in services or invisibles. Some of the targets are opening up financial markets (such as banking and insurance), protecting intellectual property rights (through patents, copyrights, and trade secrets), and removing barriers to investment (such as limits on foreign ownership of firms and currency restrictions).

Recent Steps At the end of the 1980s, governments took a number of steps to promote free trade or to broaden markets. Among the most important were the following:
In 1987, the United States and Canada negotiated a set of principles for free trade between the two countries. This agreement was particularly significant because Canada is the United States' largest trading partner, with total trade flows between the two of $130 billion in 1987. Trade barriers have remained high between the two nations: Canada has among the highest tariff rates of any major industrial country, and Canada curtails foreign investment on nationalist grounds. Canada in turn seeks abolition of U.S. tariffs and non-tariff barriers along with better access to U.S. government procurement. Economists have estimated that a free-trade agreement would raise Canadian real incomes by 5 percent and those of the United States by 1 percent. As of the end of 1988, the two governments had not yet ratified the free-trade pact.

"Europe 1992" is another movement toward regional free trade. This plan for the 12 nations of the European Community, designed to be completed by 1992, will reduce all internal tariff and regulatory barriers to trade, will harmonize taxes and subsidies, and will allow companies operating in Europe to manage their production and trade with much the same freedom as do companies in the United States.

In late 1988, the United States completed and enacted landmark trade legislation. The 1988 Trade Acts, drafted in response to the enormous trade deficits of the mid-1980s, attempted to require "fair" trade as well as free trade. Table 26-2 summarizes the high points of the 1988 trade legislation.

Appraisal: How successful have nations and the GATT been in achieving the goals of reducing trade barriers? Figure 26-4 shows dramatically how, as a result of the many rounds of successful tariff negotiations, the United States has ceased to be a high-tariff nation. Indeed, the average tariff rate in the United States has fallen to less than one-tenth of the level reached under the Smoot-Hawley tariff, and similar reductions have been achieved in other nations. But the political proponents of protection remain powerful. Many feel that the industrial world is always perilously near the point where a spark of protection and retaliation like that of the 1930s might ignite a major trade war between nations. Up to now, however, the forces of conciliation have prevailed.

Table 26-2: 1988 Trade Acts authorize trade negotiations while protecting against foreign trade barriers

SUMMARY

1. Completely free trade equalizes prices at home with those in world markets. Under trade, goods flow uphill from low-price to high-price markets.
2. A tariff raises the domestic prices of imported goods, leading to a decline in con-
sumption and imports along with an increase in domestic production. Quotas have very similar effects and may, in addition, cost the government revenues.

3. A tariff causes economic waste. The economy suffers losses from decreased home consumption and from wastage of resources on goods lacking comparative advantage. The losses generally exceed government revenues from the tariff.

4. Most arguments for tariffs are simply rationalizations for special benefits to particular pressure groups and cannot withstand analysis. Only three arguments can stand up to careful analysis: (a) The terms of trade or "optimal tariff" can in principle raise a country's consumption at the expense of its trading partners. (b) Under dynamic conditions, tariffs might push an economy toward fuller employment, but monetary or fiscal policies could attain the same employment goal with fewer inefficiencies. (c) The only exception of any practical importance in a full-employment economy is provided by the case of infant industries that need temporary protection in order to realize their true long-run comparative advantages.

CONCEPTS FOR REVIEW

price equilibrium with and without trade
tariff, quota
effects of tariffs on price, imports,
domestic production
mercantilist, cheap foreign labor,
retaliatory arguments
terms-of-trade shifts and the optimal
tariff
unemployment and tariffs
infant-industry tariff
GATT and trade negotiations

QUESTIONS FOR DISCUSSION

1. What do you think are the single most favorable arguments for and against protection?
2. What arguments have been made for import protection of the computer or automobile industries? Weigh the pros and cons. Present your point of view carefully.
3. Comment critically on the infant-industry argument for tariffs. What is its relation to comparative advantage? What are today's infant industries?
4. The 1988 Trade Act allows for tariff protection for industries "injured" by imports. Construct the best possible defense for this provision; attack it with the most important opposing arguments.
5. Since the 1930s, industrial nations have negotiated a series of agreements in which they lowered their tariff barriers. Explain how a mutual reduction of tariffs helps countries in four ways. (HINT: Each side's tariff reductions helps both itself and its trading partners.)
6. The “new wave” of protectionism put forth during the 1980s made the following arguments for protecting domestic industries against foreign competition:

(a) “In some situations, a country could improve its standard of living by imposing protection if no one else retaliated.”
(b) “If the marketplace is not working well, and there is excessive unemployment, tariffs might lower the unemployment rate.”
(c) “A country might be willing to accept a small drop in its living standard to preserve certain industries that it deems necessary for national security, such as shipping or steel, by protecting them from foreign competition.”
(d) “Wages in Korea are but one-tenth of those in the United States. Unless we limit the imports of Korean manufactures, we face a future in which our trade deficit continues to deteriorate under the onslaught of competition from low-wage East Asian workers.”

In each case, relate the argument to one of the traditional defenses of protectionism. State the conditions under which it is valid and decide whether you agree with it.

7. (For those who have studied Chapter 12’s appendix on game theory.) Examine the payoff matrix in Figure 26-5 and explain how these data illustrate the optimal-tariff or terms-of-trade argument for tariffs. Describe how nations acting noncooperatively might well end up in an equilibrium with high tariff barriers. Further explain how a negotiated reduction of tariffs will benefit all countries.

8. Why might the political system lead to high tariffs even though these reduce overall national income? Using this analysis, explain why the United States imposes high duties on textiles and sugar but not on bananas or coffee?

9. The United States has quotas on steel, shipping, automobiles, textiles, and many other products. Economists estimate that by auctioning off the quota rights, the Treasury would gain at least $10 billion annually. Use Figure 26-3 to analyze the economics of quotas as follows: Assume that the government imposes a quota of 100 on imports,
allocating the quotas to importing countries on the basis of last year's imports. What would be the equilibrium price and quantity of clothing? What would be the efficiency losses from quotas? Who would get revenue rectangle C? What would be the effect of auctioning off the quota rights?

10. Consider a situation in which the industrial countries import all their oil from oil-exporting OPEC countries and where OPEC countries are competitive suppliers with a completely inelastic supply curve. What would be the effect on oil imports, OPEC oil prices, and industrial-country oil prices if all oil-consuming countries placed a $10-per-barrel import tariff on oil? Which tariff argument might be used to support such a tariff on oil imports?
DURING THE 1970s AND 1980s, Americans woke up to discover their economic interdependence with the rest of the world. Time and again, people saw how world events could affect financial or goods markets in the United States. Bad harvests in the Soviet Union drove up food prices in American grocery stores. Technological advances in the Japanese automobile industry threw people out of work in Detroit. The overthrow of the Shah of Iran drove oil prices from $14 to $32 per barrel, produced a great inflation, and thereby contributed to the deepest recession since the 1930s. A mounting trade deficit at home plus rising interest rates abroad triggered a stock market panic that wiped out over $500 billion in American wealth in one day.

Economically, no nation is an island unto itself. When the bell tolls for one nation, it tolls for all. What are the economic mechanisms that increasingly link nations together? We saw in the last two chapters the way international trade allows nations to specialize in areas of comparative advantage, exporting goods in which they have relative efficiency and importing those in which they are relatively inefficient. But how does international exchange take
place? Not by bartering American computers for Japanese cars, but through the medium of money—by buying or selling commodities for dollars or yen or pounds or francs or other currencies. A full understanding of the mechanism of international trade requires a mastery of the principles of international finance.

This concluding chapter surveys the essentials of exchange rates and of the international financial system. The first section examines exchange rates between different currencies and explains different exchange-rate systems. The second part analyzes how the fixed exchange-rate system (known as the Bretton Woods system) fueled the great postwar expansion but then broke down in the 1970s. It also examines how nations today are struggling to rebuild a workable international financial system.

The history of international finance has been marked by alternating periods of smooth functioning, breakdown, and reconstruction. The late 1980s was a period in which many economists and policymakers felt a strong dissatisfaction with the current international financial system; they searched actively for a more stable system. But, however severe the shortcomings of today's or any era's system, we must recognize the essential role of exchange rates in lubricating the wheels of international trade. Some have said of our current international financial system what is said of democracy: Although it is a highly imperfect system, we know of nothing better.

A. THE DETERMINATION OF FOREIGN EXCHANGE RATES

FOREIGN EXCHANGE RATES

We are all familiar with domestic trade. When I buy Florida oranges or California shirts, I naturally want to pay in dollars. Luckily, the orange grower and the shirt manufacturer are willing to accept U.S. dollars for their expenses. Trade can be carried on in dollars. Economic transactions within a country are relatively simple.

If I want to buy a British bicycle, however, matters become more complicated. I must ultimately pay in British money, or "British pounds," rather than in dollars. Similarly, if the British want to buy U.S. merchandise, they must obtain U.S. dollars. And the requirement to obtain foreign currencies holds for other countries as well.

We see, then, that international trade introduces a new element: the foreign exchange rate, which denotes the price of a foreign country's currency in terms of our own.

Here are some examples: The U.S. dollar price of a British pound was recently $1.80; for a British resident wanting to buy U.S. goods, the price of a dollar was £1/$1.80 = £0.56. There is also a foreign exchange rate between U.S. dollars and the currency of each and every country. In mid-1988, the foreign exchange rate was 60 cents for a German mark, 18 cents for a French franc, 80 cents for a Canadian dollar, and 0.8 cent for a Japanese yen. For foreigners desiring to buy dollars, the reciprocal prices were 1.67 German marks, 5.56 French francs, 1.25 Canadian dollars, or 125 Japanese yen for each U.S. dollar.

Given the foreign exchange rate, it is now possible for me to buy my English bicycle. Suppose its quoted price is £100 (i.e., 100 British pounds). All I have to do is look in the newspaper for the foreign exchange rate for pounds. If this is $1.80 per pound, I simply go to a bank with $180 and ask that the money be used to pay the English bicycle exporter. Pay with what? The bank pays with pounds, of course, the kind of money the exporter needs.

You should be able to show what British importers of American grain have to do if they want to buy, say, a $36,000 shipment from an American exporter. Here pounds must be converted into dollars. You will see that, when the foreign exchange rate is $1.80 per pound, the grain shipment costs them £20,000.

Businesses and tourists do not have to know anything more than this for their import or export transactions. But the true economics of foreign exchange rates cannot be grasped until we find out why the foreign exchange rate is at a given level.
What economic principles determine foreign exchange rates? And what forces underlie their movements?

THE FOREIGN EXCHANGE MARKET

To understand the determination of the foreign exchange rate, we need to analyze the workings of the foreign exchange market. The foreign exchange market is the market in which currencies of different countries are traded; it is here that the foreign exchange rate is determined. Foreign exchange is traded at the retail level in many banks and firms specializing in that business. Organized markets in New York, Tokyo, London, and Zurich trade hundreds of billions of dollars worth of currencies each day.

We can use our familiar supply and demand curves to illustrate how markets determine the price of foreign currencies. Figure 27-1 shows the supply and demand for British pounds in a simplified example in which we consider only the bilateral trade between Britain and the United States. The demand for British pounds comes from people who need pounds to purchase British goods, services, or financial instruments; the supply of pounds arises from people who are supplying goods, services, or investments to the British. The price of foreign exchange—the foreign exchange rate—settles at that price where supply and demand are in balance.

To understand this relationship in greater depth, let us begin on the demand side. The demand for British pounds originates when Americans need pounds to buy British bicycles and other commodities, to vacation in Wales, to hire British insurance services, and for similar items in the British current account (recall Chapter 25's discussion of the balance of payments). In addition, foreign exchange is required if American firms want to buy land in London or to purchase shares in British companies. In short, we demand foreign currencies when we purchase foreign goods, services, and assets. The demand curve shown in Figure 27-1 is represented by the downward-sloping DD curve, with the vertical axis representing the price of the British pound. The demand curve slopes downward to indicate that as the price of the British pound falls, foreigners tend to want to buy more British goods. For example, if the pound were to fall from $1.80/£ to $1.20/£, other things being equal, Americans would want to buy more British bicycles and spend more time visiting Britain.

What lies behind foreigners' supply of their currency (represented in Figure 27-1 by the SS supply curve of British pounds)? The British supply their currency when they import goods, services, and assets. For example, when a British student buys an American book or takes a trip to the United States, she supplies the British pounds necessary for the ex-
the foreign exchange rate up or down to balance the inflows and outflows of pounds; the price will settle at the equilibrium foreign exchange rate at which the pounds willingly bought just equal the pounds willingly sold.

The balance of supply and demand for foreign exchange determines the foreign exchange rate of a currency. At the market exchange rate of $1.80 per £1, shown at point E in Figure 27-1, the exchange rate is in equilibrium, having no tendency to rise or to fall.

We saw above that the exchange rate is a reciprocal relationship. Just as we sell a British pound for $1.80, we buy a dollar for £0.56. We could also have drawn the reciprocal demand-and-supply relationship by analyzing the demand and supply of U.S. dollars. In our simplified bilateral trading world, the British supply of pounds would translate into a demand for dollars, while the American demand for pounds would have represented a supply of dollars. We could then have drawn the supply and demand for the dollar foreign exchange, and the equilibrium would have come at £0.56/$ rather than $1.80/£.

Moreover, this supply and demand for foreign exchange exists for every currency. And in a world of many nations, it is the many-sided exchange and trade, with demands and supplies coming from all quarters, that determines the entire array of foreign exchange rates.

Effects of Changes in Trade What would happen if there were changes in the volume of international trade? For example, what would be the result if the United States withdrew its troops from Europe or decided to curb imports from Britain, or if we traveled less abroad because domestic airfares were lower?

In each case, America’s demand for foreign currencies would decrease. The result is shown in Figure 27-2 for the case where the shift affects Britain. The decline in purchases of goods, services, and investments decreases the demand for foreign currencies. This change is represented by a leftward shift in the demand curve. The result will be a lower price of foreign currencies, that is, a lower exchange rate on the pound and a higher exchange rate for the dollar. How much will exchange rates change? Just enough so that American exports and capital flows are increased, and British imports and capital flows de-
creased, until supply and demand are again in balance. In the example shown in Figure 27-2, the pound has declined from $1.80 to $1.25 per £1.

Terminology for Exchange-Rate Changes

Foreign exchange markets have a special vocabulary. A doubling of the pound is a halving of the dollar. By definition, a fall in the price of one currency in terms of one or all others is called a “depreciation.” A rise in the price of a currency in terms of another currency is called an “appreciation.” In our example above, when the price of the pound went from $1.80 to $1.25, the pound depreciated and the dollar underwent an appreciation.

The term “devaluation” is often confused with the term “depreciation.” Devaluation is confined to situations in which a country has officially pegged its exchange rate to another currency or to gold and in which the pegged rate or parity is changed by raising the price of the other currency or gold.

For example, when the United States in 1971 changed the official price of gold from $35 to $38 per ounce, we say the dollar was devalued. But when the dollar fell from 150 yen/$ to 120 yen/$, we say that the dollar depreciated.

When a country’s foreign exchange rate has declined relative to that of another country, we say that the domestic currency has depreciated while the foreign currency has appreciated.

When a country’s official foreign exchange rate (relative to gold or other currencies) is lowered, we say that the currency has undergone a devaluation, while an increase in the official foreign exchange rate is called a revaluation.

THREE MAJOR EXCHANGE-RATE SYSTEMS

Having reviewed the principles underlying the market determination of exchange rates, we can now turn to an analysis of the exchange-rate system, which denotes the set of rules, arrangements, and institutions under which payments are made and received for transactions reaching across national boundaries.

At the outset, we must ask why there is an exchange-rate system to regulate exchange rates, when there is no “lettuce system” to regulate lettuce prices or even a “machinery system” to affect the machinery market. The reason is that all governments feel that the foreign exchange rate is too important to be left to the unregulated market. Foreign exchange rates affect output, inflation, foreign trade, and many other central economic goals, so it is natural that governments will choose to try to affect exchange markets in ways they think favorable for their political and economic health.

The importance of the international monetary system was well stated by international economist Robert Solomon:

> Like the traffic lights in a city, the international monetary system is taken for granted until it begins to malfunction and to disrupt people’s lives. ... A well-functioning monetary system will facilitate international trade and investment and smooth adaptation to change. A monetary system that functions poorly may not only discourage the development of trade and investment among nations but subject their economies to disruptive shocks when necessary adjustments to change are prevented or delayed.¹

In understanding the functioning of the exchange-rate system, three important cases should be studied:

- The gold standard
- The case of “pure” floating exchange rates, in which prices fluctuate incessantly according to supply and demand (much as the price of soybeans fluctuates in response to market conditions)
- Today’s system of “managed floating” exchange rates, which involves some currencies whose values float (or fluctuate) freely in the market; some currencies whose values are determined by a combination of government intervention and the market; along with others that are pegged or fixed to one currency (such as the dollar) or a group of currencies

THE CLASSICAL GOLD STANDARD

Historically, one of the most important exchange-rate systems was the gold standard. This system, which provided for fixed exchange rates among participating countries, held sway in its purest form during the period 1880–1913. As we will describe, most countries defined their currencies in terms of a fixed amount of gold, thereby establishing fixed exchange rates among the countries on the gold standard.

The functioning of the gold standard can be seen easily by a simplified example. Suppose people everywhere insisted on being paid in bits of pure gold metal. Weight alone would count, so long as there was a guarantee of purity. Then buying a bicycle in Britain would merely require payment in gold at a price expressed in ounces of gold. By definition there would be no foreign-exchange-rate problem. Gold would be the common world currency.

The gold standard evolved into essentially this system. It became customary for each country to issue gold coins carrying the seal of the state to guarantee purity and weight. Once gold coins became the medium of exchange—money—foreign trade was no different from domestic trade; everything could be paid for in gold. The only difference would arise if people chose different units for their coins. Thus, Queen Victoria chose to make her coins about 1/4 ounce of gold (the pound) and President McKinley chose to make his unit 1/2 ounce of gold (the dollar). In that case, the British pound, being 5 times as heavy as the dollar, would naturally have an exchange rate of $5 to £1.

That is essentially how the pre-1914 gold standard worked. Of course, countries tended to use their own coins. But anyone was free to melt down coins and sell them at the going price of gold. So, except for the costs of melting down, shipping across the oceans, and recoining, all countries on the gold standard had exchange rates that were fixed; the exchange rates (also called "par values" or "parities") between the different currencies were determined by the gold content of their monetary units.

Only minor qualifications need be brought to the gold-standard example analyzed above. Gold being quite inconvenient to carry around for spending purposes, governments inevitably issued paper certificates that were pledged to be redeemable in gold metal. People had the right to turn in gold for certificates and certificates for gold, and they often exercised that right. Also, in those days ocean transport was slow and costly, so exchange rates fluctuated in a narrow band between "gold points.

Hume's Gold-Flow Equilibrating Mechanism

Now that we have seen the mechanics of foreign exchange, we ask a deeper question: Under the gold standard, what kept America from buying more British goods and services and lending more capital to Britain than Britain did from us? Put differently, what kept us from demanding more British pounds than Britain wanted to supply? We would have had to ship gold to Britain to pay for our trade deficit. Wouldn't we eventually lose all our gold?

Mercantilists fretted that there would be a drain of a country's gold and argued that this drain should be halted by the government's placing tariffs and quotas on imports, subsidies on exports, and numerous other interferences.

Mercantilism came under attack from Adam Smith.

*Thus, if it costs 2 cents to ship 1 ounce of gold either way across the Atlantic Ocean (inclusive of insurance and interest costs), could the exchange rate depart a little from $5? Yes. In New York, the quoted price of a pound could rise to as much as $5.02 before it would pay an arbitrageur to get gold bars and ship them to London to be exchanged for pounds; a price higher than $5.02 could not prevail because enough gold would be flowing to keep the price no higher than the upper "gold point." It should be evident that the pound could fall only to $4.98. When the exchange rate got down to this lower gold point, it would be cheaper for gold to be shipped from Europe to America. All this actually happened (except that $5 is substituted here for the correct pre-1914 parity of $4.87 to simplify the arithmetic, and the shipping costs are only approximate). Before 1914, the foreign exchange rate of the pound and dollar stayed essentially stable, varying but a trifle from these weight-determined mint parities until the gold points were touched and gold flowed in the indicated direction.
EXCHANGE RATES AND THE INTERNATIONAL FINANCIAL SYSTEM

But the clearest refutation of mercantile reasoning flowed from the pen of David Hume, the great British philosopher, in 1752. His argument is as important today as then for understanding how trade flows get balanced.

Hume first pointed out that all countries could not be simultaneously losing gold. Where would it go, into the sea? And even if a single nation were to lose a good deal of its gold, that would be no tragedy if prices were to adjust as well. Suppose Britain lost half of its gold. If at the same time all prices and incomes in Britain were exactly halved, then no one in the country would be any better or worse off. Even though people have only half as much gold, that smaller quantity will buy the same quantity of goods and services. The real value of monetary gold (that is, the quantity of real commodities that the gold will buy) has remained unchanged. So, Hume argued, losing half or nine-tenths of a nation’s gold is of no concern if the nation merely ends up with a balanced reduction of all prices and costs.

The second part of Hume’s reasoning showed that there is an automatic mechanism that tends to keep international payments in balance under the gold standard. This explanation rested in part upon the quantity theory of prices, which related the general price level to the money supply. Before turning to Hume’s explanation, it is well to recall the quantity theory.

Gold and the Quantity Theory—Hume was, in fact, one of the earliest proponents of the quantity theory of prices. Under this doctrine, the overall price level in an economy is proportional to the supply of money. Under the gold standard, gold formed an important part of the money supply—either directly, in the form of gold coins, or indirectly, when governments used gold as backing for paper money.

What would be the impact of a country losing gold? First, the country’s money supply would decline either because gold coins would be exported or because some of the gold backing for the currency would leave the country. Putting both these consequences together, we would find that a loss of gold leads to a reduction in the money supply. The next step, according to the quantity theory, is that prices and costs change proportionally to the change in the money supply. If Britain loses 10 percent of its gold to pay for a trade deficit, the quantity theory predicts that Britain’s prices, costs, and incomes would fall 10 percent. If gold discoveries in California lead to a sharp increase in gold supplies, we would expect to see a proportional increase in the price level in the United States.

The Four-Pronged Mechanism—We now can explain Hume’s brilliant theory of how international payments equilibrium arises. It runs as follows: Suppose that America runs a large trade deficit and begins to lose gold. According to the quantity theory of prices, this loss of gold reduces America’s money supply and hence drives down America’s prices and costs.

As a result, (1) America decreases its imports of British and other foreign goods that have become relatively expensive; moreover, (2) because America’s domestically produced goods are now relatively inexpensive on world markets, America’s exports increase.

The opposite effect occurs in Britain and other foreign countries. When Britain’s exports grow rapidly, it receives gold in return. Britain’s money supply increases, driving up British prices and costs according to the quantity theory.

Two more prongs of the Hume mechanism now come into play: (3) British and other foreign exports have become more expensive, so the volume of goods exported to America declines; and (4) British citizens, faced with a higher domestic price level, now import more of America’s low-priced goods.

The result of Hume’s four-pronged gold-flow mechanism is to improve the balance of payments of the country losing gold and to worsen that of the country gaining the gold. In the end, an equilibrium of international trade and finance is reestablished at new relative prices that keep trade and international lending in balance with no net gold flow. This equilibrium is a stable one and requires no tariffs or other government intervention.

FLEXIBLE EXCHANGE RATES

Having seen how a gold standard works, we turn next to the case of flexible exchange rates. A system of
flexible exchange rates is one in which the foreign exchange rate is predominantly determined by the market forces of supply and demand. That is, in a flexible exchange-rate system, the relative prices of currencies are determined by buying and selling among people, firms, and governments.

We saw that under the gold standard the dollar and the pound were tied in a $5-to-£1 relationship. But what would have happened in 1913 if the United States decided not to define its dollar in terms of a fixed weight of gold? Would the dollar have sold for $4 per £1? Or $6 per £1? The world has learned during the period after 1973 that flexible exchange rates tend to fluctuate widely, as we will see later in this chapter.

Within the class of flexible exchange-rate systems, we can distinguish the two important subcases of a free-floating system and a managed-floating system depending on the degree of government intervention. The government intervenes, or engages in exchange-rate intervention, when it buys or sells its own or foreign currencies to affect exchange rates. For example, the Japanese government on a given day might buy $1 billion worth of Japanese yen with U.S. dollars. This would cause a rise in value, or appreciation, of the yen. Governments generally tend to intervene heavily when they believe their country’s foreign exchange rate is higher or lower than is desirable.

A freely floating exchange rate is one determined purely by supply and demand without any government intervention. When the government intervenes in exchange markets to affect its exchange rate, this system is called managed floating.

The first case we examine is of freely floating exchange rates.

Freely Floating Exchange Rates

In a system of freely floating exchange rates, the prices will be determined by the forces of supply and demand, as was illustrated at the beginning of this chapter. Say that at an exchange rate of $1.50 per £1, Americans are importing many British goods, while the British import few American goods. This means that Americans will be demanding a large quantity of British pounds to buy British goods, while the British will be supplying few British pounds.

What will be the outcome? Our excess demand for British pounds will bid up the price of pounds (or, in other words, will bid down the price of the dollar).

How far will exchange rates move? Just far enough that—at the new higher price of, say, $2 for the British pound—the foreign exchange market is in equilibrium. The price of the pound must move up until the diminished quantity of British pounds demanded is equal to the increased supply of British pounds.

Two main steps are involved: (1) With the pound more expensive, it will cost more to import British goods, services, and investments, causing our demand for imports to fall off in the usual fashion. (2) With the dollar now cheaper, our goods will cost less to foreigners. They will want to purchase more of our export goods. (If we look at these two effects from both their viewpoint and our own, we have something much like the four-pronged mechanism of Hume.)

Managed Floating Exchange Rates

In the freely floating exchange-rate system just described, the government was passive. It allowed the foreign exchange market to determine the value of the dollar (just as it allows markets to determine the value of oats, GM stock, or copper).

Few countries, in reality, allow their currencies to float freely. Rather, they intervene—buying and selling currencies—to prevent wide swings in exchange rates, or even to maintain a parity (an announced target exchange rate with other countries).

A particularly important example of a managed exchange-rate system, known as pegged exchange rates, prevailed during the period from World War II until 1971. Called the "Bretton Woods system," it allowed countries to set fixed parities or pegged exchange rates with each other; the rates might be $2.40 per British pound, 4 German marks per $1, and so forth. Countries then took steps to defend the set of exchange rates. From time to time, when exchange rates deviated too far from the official rates, countries would adjust the official parities. The essence of the Bretton Woods system, then, was that the exchange
rates were fixed but adjustable—that is, fixed in the short run but adjustable in the long run.

Today, we see a variety of different exchange-rate systems coexisting. The European countries have joined together in a system similar to the Bretton Woods system. But each of the three major currency areas—the U.S. dollar, the Japanese yen, and the European currencies—have floated more or less freely against the others over the period since 1973. Many countries in Latin America peg their exchange rates to the U.S. dollar. In addition, almost all countries tend to intervene whenever markets become "disorderly" or when exchange rates seem far out of line with what is thought appropriate given price levels, trade flows, and historical levels of exchange rates. This system—with a mixture of different components—is called managed floating. We return to a full discussion of this system in a later section of this chapter.

B. EVOLUTION OF THE INTERNATIONAL MONETARY SYSTEM

Now that we have surveyed the highlights of exchange rates and of the international monetary system, we will analyze the history of international economic institutions along with current problems of international finance.

In the balance of this chapter, we will describe how the industrial countries organized trade and finance after the economic and physical devastation of the Great Depression and World War II. This era marked the establishment of the General Agreement on Tariffs and Trade (the GATT) as well as the design of the Bretton Woods system. The Bretton Woods system survived until the early 1970s, after which it was replaced by a host of different systems in today's international economy.

Finally, we will review the major issues of international finance facing major countries today. Should the United States and other countries continue to allow their currencies to float flexibly? Or should we return to some kind of fixed exchange-rate system? Should gold be returned to its former place as the kingpin of the international currency system, or should some form of international money be devised? This last section discusses these central issues for the 1990s.

BUILDING INTERNATIONAL INSTITUTIONS AFTER WORLD WAR II

In the winter of 1946, Europe and Japan were buried under mountains of rubble. America alone emerged with her economy intact, able to meet the urgent need to rebuild the countries of allies and foes alike. In contrast to the bitter recriminations that followed World War I—with hyperinflations, revolutions, and the Great Depression—the international political system after World War II responded to the needs by constructing durable institutions within which the international economy could recover quickly. The four major economic institutions of the 1940s—the GATT (described in Chapter 26), the Bretton Woods exchange-rate system, the International Monetary Fund, and the World Bank—stand as monuments to wise and farsighted statecraft.

The Bretton Woods System

The economic and social turmoil of the 1930s deeply impressed economic thinkers of the 1940s. They were determined to avoid the economic chaos and competitive devaluations of the Great Depression.

In order to map out a new international economic order, the United States, Britain, and their major allies gathered in Bretton Woods, New Hampshire, in 1944. Under the intellectual leadership of J. M. Keynes and the American diplomat H. D. White, this landmark conference hammered out an agreement that led to formation of the International Monetary Fund (IMF), the World Bank, and the Bretton Woods exchange-rate system. For the first time in history, nations agreed upon a system for regulating the international financial system. Even though some of the rules have changed since 1944, the basic institutions
designed there play even more vital roles today than many imagined at the time.

The conference designed a framework for managing exchange rates that is known as the Bretton Woods system. Those who attended the Bretton Woods conference remembered well the failings of the earlier gold standard. Among the severest critic of the gold standard was Lord Keynes, who wrote at the beginning of his career:

If ... gold is at last deposed from its despotism control over us and reduced to the position of a constitutional monarch, a new chapter of history will be opened. Man will have made another step forward in the attainment of self-government.2

Under the Bretton Woods system, gold was established as a dual monarch along with the dollar. Instead of using gold as the only international money, each currency had an established parity that was set in terms of both the U.S. dollar and gold. As the key or reserve currency, the parity of the dollar was pegged in terms of gold, initially at $35 per ounce of gold. Other currencies were defined in terms of both gold and the dollar. For example, the parity of the British pound was set at £12.5 per ounce of gold. Given the gold price of the dollar, this implied an official exchange rate between the dollar and the pound of $35/£12.5 = $2.80 per £1, which was thereby set as the official parity on the pound. Under the Bretton Woods system, therefore, because each currency’s parity was set in terms of gold and the dollar, a set of exchange rates among currencies was fixed by international agreement.

The Bretton Woods system succeeded in keeping exchange rates fixed for most of the period from 1945 until 1971. However, whenever one currency got too far out of line with its appropriate or “fundamental” value, the parity could be adjusted. The German mark was adjusted upward, or revalued, on several occasions, while the British pound was devalued from $2.80 per £1 to $2.40 per £1 in 1967.

The ability to adjust exchange rates when fundamental disequilibrium arose was the central distinction between the Bretton Woods system and the gold standard, making the former a fixed but adjustable exchange-rate system. The changes in exchange rates would ideally be worked out among countries in a cooperative way. By having a fixed but adjustable system, the designers of Bretton Woods hoped to have the best of two worlds: (1) the stability of the gold standard, a world in which exchange rates would be predictable from one month to the next, thereby encouraging trade and capital flows, along with (2) the adaptability of flexible exchange rates, under which persistent relative price differences among countries could be adjusted to by exchange-rate changes rather than by the painful deflation and unemployment necessary under the gold standard.

The International Monetary Fund (IMF)

Another major contribution of the Bretton Woods conference was the establishment of the International Monetary Fund (or IMF), which today continues to administer the international monetary system and to operate as a central bank for central banks. Member countries subscribe by lending their currencies to the IMF; the IMF then relends these funds to help countries in balance-of-payments difficulties. In recent years, the IMF has played a useful role in helping middle-income countries with balance-of-payments deficits and in organizing a cooperative response to the international debt crisis.

How would an IMF mission operate today? Let us say that Mexico has a balance-of-payments deficit. It is having trouble paying interest and principal on its $110 billion of government-guaranteed foreign loans. American and Japanese banks are unwilling to provide any funds. (See the analysis of the international debt problem in Chapter 24.)

At this point the IMF might send a team of specialists to pore over the country’s books; it would come up with an austerity plan for Mexico, generally involving slowing GNP growth and cutting imports. When Mexico and the IMF agree on the plan, the IMF will lend Mexico $1 or $2 or $8 billion to “bridge” the country over until its balance of payments improves. In addition, there is likely to be a “debt re-

2Economic Journal, December 1914.
scheduling," wherein banks lend more funds and stretch out existing loans.

If the IMF program is successful, the country's balance of payments soon will regain health, and the country will resume economic growth.

The World Bank

The Bretton Woods conference also established the World Bank. The Bank is capitalized by lending nations who subscribe in proportion to their economic importance. The Bank can use its capital to make international loans to countries whose projects seem economically sound but who cannot get private loans at low interest rates.

As a result of such long-term loans, goods and services flow from the advanced nations to developing countries. In recent years, the World Bank has made new loans averaging $8 billion per year.

While the loans are being spent, the advanced world is forgoing domestic spending. When the loans are being "serviced" or repaid, the advanced nations can enjoy somewhat higher imports of useful goods. Production in the borrowing lands will have risen by more than enough to pay interest on the loans; wages and living standards generally will be higher, not lower, because of what foreign capital has added to the GNP of the borrowing country.

Demise of the Bretton Woods System

During the first three decades after World War II, the world was on a dollar standard. The U.S. dollar was the key currency; most international trade and finance were carried out in dollars and payments were most often made in dollars. Exchange-rate parities were set in dollar terms, and private and government reserves were kept in dollar balances.

The world economy thrived during this period. The industrial nations began to lower trade barriers and to make all their currencies freely convertible. The economies of Europe and East Asia recovered from war damage and grew at spectacular rates. But recovery contained the seeds of its own destruction. Dollars began to pile up abroad as Germany and Japan developed trade surpluses while U.S. deficits were fueled by heavy spending for military programs abroad (including the Vietnam war) and growing overseas investment by American firms. By the 1960s, the United States began to incur balance-of-payments deficits, and dollar holdings abroad grew from next to nothing in 1945 to $50 billion in the early 1970s.

By 1971, the international economy was experiencing severe strains. The amount of liquid dollar balances grew so large that governments had difficulty defending the official parities. People began to lose confidence in the "almighty dollar." And the lowered barriers to capital flows meant that billions of dollars could cross the Atlantic in minutes. Many economists believe that by 1971 the world had crossed an irreversible threshold and that countries could no longer maintain fixed exchange rates in the face of enormous pools of mobile financial capital.

In August 1971, President Nixon formally severed the link between the dollar and gold, bringing the Bretton Woods era to an end. No longer would the United States automatically convert dollars into other assets; no longer would the Treasury trade dollars for gold at $35 per ounce; no longer would the United States set an official parity of the dollar relative to gold or other currencies and then defend those exchange rates at all costs. As the United States abandoned the Bretton Woods system, the world moved into the modern era of managed flexible exchange rates.

Today's System of Managed Floating Exchange Rates

When an old system breaks down, it does not mean a perfected new system is at hand to be adopted. Conference after conference was held in the 1970s by the leading IMF member countries trying to agree on a new system to replace Bretton Woods. But countries could not agree on a new system. So without anyone having planned it that way, the world has moved on to a managed floating exchange-rate system. How does this system work? The following describes how exchange rates have been determined since the breakdown of the Bretton Woods system:

* A very few countries allow their currencies to
float freely, as the United States did during the mid-1970s and during the first years of the Reagan administration. In this approach, a country abstains from virtually all exchange-market intervention, allowing markets to determine its currency’s value.

- Most major countries have managed but flexible exchange rates—this group including today the United States, Japan, and the United Kingdom. Under this system, a country will buy or sell its currency to reduce the day-to-day volatility of currency fluctuations. In addition, a country will sometimes engage in systematic intervention to move its currency toward what it believes to be a more appropriate level. Such a strategy prevailed for Britain, Canada, Japan, and the United States during most of the period from 1973 to 1988.

- Some countries pursue flexible rates with target zones, whereby they individually or collectively set broad zones within which currencies can fluctuate, intervening to keep exchange rates within these zones.

- Many countries, particularly small ones, peg their currencies to a major currency or to a “basket” of currencies. This approach or the next one is followed by virtually all small countries. Sometimes, the peg is allowed to glide smoothly upward or downward in a system known as a gliding or crawling peg (see question 8 at the end of this chapter).

- Finally, some countries gather in a currency block in order to stabilize exchange rates among themselves while allowing their currencies to move flexibly relative to the rest of the world. The most important of these blocks is the European Monetary System (discussed below).

We return to a discussion of recent proposals for international monetary reform toward the end of this chapter.

CURRENT INTERNATIONAL ECONOMIC PROBLEMS

Such is the shape of today’s international financial system. We turn now to analyze some of the major issues on the international scene. These are the role of gold, the problem of the U.S. current-account deficit, and an evaluation of the managed floating exchange-rate system.

What Role for Gold?

After 1971, nations dropped the pretense that their currencies were freely convertible into gold. Yet many people continue to lobby for the use of gold in the international monetary system. What are the current proposals?

Currently, gold is held both in the free market and by governments. Free-market gold is owned by many people who either believe that a great inflation will drive gold’s price sky-high or who distrust paper currencies. Most gold today is held by national treasuries or by the IMF. Official gold holdings are part of a nation’s international reserves—along with dollars, German marks, and other reserve currencies. Hardpressed nations can sell off or pledge their gold when they encounter balance-of-payments difficulties.

Two decades ago, specialists in international finance hoped to replace gold with “paper gold.” They reasoned that just as national trade moved from gold to managed paper currencies, so should international trade move to a paper reserve asset that would be managed by the IMF. The result was the creation of the special drawing right (or SDR), which became an international money. What exactly is this SDR?

In the first place, the SDR is a new unit of account, a basket of five major currencies of the world (the U.S. dollar, the German mark, the French franc, the British pound, and the Japanese yen). Each is given a weight depending upon its importance. A basket of currencies is more diversified than is any one currency; that is why some private transactions are also beginning to be expressed in SDR units.

Second, the SDR is also used as an international reserve asset. SDRs can be used in a very limited way to buy key currencies from the IMF and to perform other minor functions.

A decade ago, some enthusiasts believed that the SDR would displace gold as the new international money, becoming the major reserve asset held by governments. This hope has been largely dashed. The SDR lacked the single requirement for being money.
It was not accepted because it was not accepted. Why was the SDR not accepted? Fundamentally because it did not have any intrinsic value (like that of gold), nor was it backed by a powerful government (as is the dollar). Without value as a commodity money or backing as fiat money, SDRs simply never became common coin.

A Return to Gold? In the early 1980s, many people—prominently led by supply-side economists like Arthur Laffer and Columbia’s Robert Mundell—called for a return to the gold standard. Others urged a more broadly based commodity standard as the link between money and the real world.

These clarion calls for a return to the golden age are based on the observation that the general price level has no anchor. Prices can be stable, rising 10 percent a year, or galloping at 100 percent a year. Nothing stands between a stable currency and ruinous hyperinflation but the weak flesh of political resolve. By anchoring the price level to gold or commodities, it is argued, we can once and for all banish the specter of inflation from our lands.

Critics of the gold standard disagree. They concede that gold provides an anchor—but an anchored ship is often more dangerous than one under way. Critics of gold would rather trust the fate of inflation and the price level to the fiscal and monetary policies of human governments than to the vagaries of South African mine production, Russian gold sales, or the highly inelastic supply and demand curves for gold. They add that during the period of the gold standard, from 1870 to 1914, inflation and output were more volatile than over the last four decades of the dollar standard. The cruel dilemmas of macroeconomics—the large social cost of disinflation or of unemployment—would not magically disappear with the wave of a golden wand.

What is the likely role for gold in the coming years? Those who regard gold as a barbaric relic of an earlier age have not succeeded in barring gold from discussions about international finance. Those who hanker to launch a gold standard to do battle against inflationary government policies have found the winds of professional and political opinion blowing against them. From time to time—as when the United States establishes a gold commission in the early 1980s or when a Treasury secretary floats a proposal to include gold as an indicator of inflationary trends in the late 1980s—hopes are rekindled in the hearts of gold bugs. But, funeral by funeral, the advocates of a revived gold standard lose their influence.

The Volatile Dollar

We have seen how strains in the Bretton Woods system led to its breakdown in the early 1970s. During the years that followed, industrial countries attempted to find a system that secured the twin advantages of the earlier system—stability of exchange rates in the short run with adaptability of exchange rates over the long run. Figure 27-3 shows the average exchange value of the dollar against major currencies over this period. Note how stable the dollar’s exchange rate was until the Bretton Woods system broke down in 1971; also examine the steady depreciation of the dollar from 1971 to 1980.

The decade of the 1980s witnessed a dramatic cycle of dollar rise and decline, or appreciation and depreciation. The rise of the dollar began in 1980 after a tight U.S. monetary policy drove interest rates up sharply. Real interest rates averaged around zero during the period from 1954 to 1978 but rose to an average of 4 percent per year in the 1980–1984 period.

High interest rates, a conservative administration in the United States, and a cut in U.S. tax rates attracted mobile funds from other currencies into U.S. dollars. These events coincided with economic difficulties in continental Europe along with political unrest and a debt crisis in many Latin American countries. Foreigners asked in effect, “Why risk your nest egg in socialist France or in strife-torn Brazil when you can obtain a high real return on your funds in the safe dollar?”

Figure 27-3 shows the result: from 1979 to early 1985, the exchange rate on the dollar rose 80 percent. Indeed, the dollar rose to levels far above those attained just before the Bretton Woods system collapsed because of an “overvalued dollar” in 1971. Many economists and policymakers became convinced that the dollar was overvalued in 1985, and a swift decline soon followed. Over the next 3 years, the dollar lost almost all the value that it had gained in the early 1980s.
Impacts of the Overvalued Dollar

What were the impacts of U.S. financial policies and the overvaluation of the dollar in the 1980s? The consequences were profound not only for the United States but for virtually the entire world economy.

The first results came from the impact of the high interest rates slowing economic growth in the United States and abroad. High interest rates tend to reduce business and residential investment, thereby reducing aggregate spending, slowing economic activity, and raising unemployment. The United States experienced an economic slowdown beginning in 1980, with the trough of the recession coming in 1982.

In addition, the high U.S. interest rates pulled up the interest rates of other major countries. These high interest rates slowed investment in other industrial economies, triggering a sharp slowdown in overall economic activity in the industrial world starting in 1981, a slowdown from which the European economies had not fully recovered by the late 1980s. In addition, high interest rates led to increased debt-service burdens in poor and middle-income countries (especially the Latin American economies).

The next reaction came in exchange markets. As we saw, the high dollar interest rates pulled up the exchange rate on the dollar. As the dollar rose, this tended to increase American export prices abroad and reduce the prices of goods imported into the United States. As a result, America's exports declined while its imports mounted sharply. The data on imports and exports illustrate the impacts: from 1980 to 1985, the prices of imported goods and services fell by 1 percent, while the prices of our exports in foreign currencies rose over 60 percent. In response, the volume of imports rose 42 percent while export volumes fell 5 percent.

The impact on the overall economy is measured by the changes in real net exports, which measure the trade balance in volume terms; more precisely, real
net exports are the volume of exports minus the volume of imports, where both are measured in constant dollars. Figure 27-4 shows the dramatic impact of the rising exchange rate of the dollar upon real net exports. From the peak in 1980 to the trough in 1986, real net exports declined by $195 billion, a decline representing 5.2 percent of 1986 GNP (all these figures are in 1982 prices).

What was the impact of the decline in real net exports upon the American economy? As we learned in the macroeconomic chapters, a decline in real net exports has a contractionary multiplier impact upon domestic output and employment. When foreigners spend less here and Americans spend more abroad, the demand for American goods and services declines, our real GNP falls, and unemployment tends to rise. Economic studies indicate that the fall in real net exports was a major contributor to the deep recession in the early 1980s and tended to retard the growth of real GNP during the entire 1980s.

Deindustrialization of America. The overvalued dollar produced severe economic hardships in many U.S. sectors exposed to international trade. Industries like automobiles, steel, textiles, and agriculture found the demand for their products withering as their prices rose relative to the prices of foreign competitors. Unemployment in the manufacturing heartland rose sharply as factories were closed and the midwest became known as the "rust belt."

The political response to the soaring trade deficit took many forms. Economists tended to emphasize macroeconomic forces such as the overvalued dollar, tight monetary policy, and a growing fiscal deficit. They called for fiscal austerity, which would force down the dollar's exchange rate and stem the rising trade deficit.

Many non-economists interpreted America's trade problems as indicative of "America in decline." They sometimes called for economic protection against stronger trading partners like Japan, Korea,

Figure 27-4 Real net exports react to exchange rate changes, but with a time lag

The rising real exchange rate of the dollar during the early 1980s increased U.S. export prices and reduced prices of imported goods into the United States. As a result, real net exports (that is, exports minus imports, both measured in constant 1982 prices) fell sharply. After the dollar began to fall in 1985, real net exports began to react only after a considerable time lag. (Source: Real exchange rate is trade-weighted exchange rate corrected for differences in national price levels, from Federal Reserve Board; real net exports from U.S. Department of Commerce.)
and Western Europe. Others argued for "industrial policies," fiscal aid to beleaguered industries to help stem the "deindustrialization of America."

The Dollar's Decline In early 1985, the dollar peaked and began a sharp decline. The reversal was caused in part by governments who used intervention to sell dollars and buy other currencies, in part by speculators who believed that the dollar was overvalued, and in part by lower relative dollar interest rates. As can be seen in Figure 27-4, the dollar declined steadily for the next 3 years, and by mid-1988 it had lost all the ground gained between 1980 and 1985.

The recovery in U.S. net exports was surprisingly slow, and the current and trade accounts remained deeply in deficit at the end of 1988. What was the reason for the slow improvement after the dollar's decline? Trade flows react to exchange-rate changes with a substantial lag because both prices and volumes change slowly in response to exchange-rate movements. Prices react slowly because importers into the United States tend to keep their dollar prices stable and squeeze their profit margins rather than lower their market shares. When importers ultimately raise their prices, people substitute domestic for imported goods only after they have evaluated and selected new products; brand loyalties become entrenched, so that Toyotas and Canons may retain a substantial market share many years after these products have migrated to the high end of the price range. All these forces imply that the full reaction to the exchange-rate depreciation of 1985–1988 may not be felt until the early 1990s. As a result, the United States may continue to experience deficits in its trade and current accounts and in its real net exports for a substantial period of time.

The Lessons of Interdependence The turbulent 1980s marked the era in which the United States fully realized its economic interdependence with the rest of the world. It saw its domestic monetary and fiscal policies spill over to affect exchange rates and trade flows; the country even found its unemployment rate buffeted by the ups and downs of foreign trade. From our vantage point, the central lesson of the 1980s is clear: In a world where economies are increasingly linked by trade and capital flows, interdependence is unavoidable. No walls can prevent domestic actions from spilling over territorial boundaries. National strengths can be leveraged in a global marketplace, while national weaknesses fall prey to intense foreign competitors. Isolationism is today no more feasible in economic affairs than it is in political or military affairs.

Assessment of Flexible Exchange Rates

The year 1989 marks almost two decades of experience with flexible exchange rates. How well have they functioned? Figure 27-5 tells the story of how different currencies have evolved over the 1970s and 1980s. Note how much greater are the fluctuations after the flexible-rate regime began in 1973.

Many economists and policymakers, having lived through the violent ups and downs of the last two decades, have concluded something like the following:

We had high hopes that flexible exchange rates would allow our economies to adjust to changes in national economic conditions without unacceptable business cycles or currency fluctuations. But currencies left to free markets wander around like a bunch of drunken sailors. We must put some kind of controls on these wayward exchange rates by moving back toward the fixed or stable exchange rates of the Bretton Woods period.

A careful examination of the historical record will find that flexible exchange rates have indeed performed less well than their advocates had hoped. Exchange rates have been extremely unstable, with key currencies like the dollar appreciating by almost four-fifths in the early 1980s only to lose an equal amount within a few years. The sharp currency movements have, moreover, had unwelcome macroeconomic effects, with the dollar's rise causing a severe external deficit in the United States and turning it into the world's largest debtor. Critics of flexible exchange rates argue that the exchange rate is too important a price to be left to the free market and that it must be brought under the control of governments and central banks.

The EMS Many countries have moved to curb exchange-market fluctuations. One early step was the
creation in 1978 of a currency block known as the European Monetary System (or EMS). This system comprises a group of West European countries, notably Germany, France, and Italy, which have recreated a system, similar to the earlier Bretton Woods regime, in which countries intervene to keep their relative exchange rates within narrow limits.

This arrangement is often called the "snake," getting its name because the exchange rates of the group slither up and down relative to the dollar or the yen. But each currency relative to all others in the EMS must remain within the narrow band that constitutes the snake's diameter.

This has some of the advantages of both worlds: the French and the Germans can conveniently transact with each other on quite predictable currency terms. At the same time, any fundamental change in world affairs, such as the major shift in American monetary policy in 1979 or the stock market crash of October 1987, can be absorbed by having the EMS exchange rates float flexibly upward or downward.

The European Monetary System has been moderately successful in reducing short-run exchange-rate fluctuations among European countries. But this has not prevented periodic crises—particularly as French economic difficulties under President Mitterrand's Keynesian socialism drove down the value of the French franc and led it to break through the skin of the
snake on numerous occasions, or as German surpluses periodically caused a revaluation of the mark.

Target Zones Another set of proposals for stabilizing exchange rates would have governments take forceful policy steps to keep exchange rates within certain target zones. At the informal end of the spectrum were practices in the mid-1980s, such as the Louvre accord of 1987. Under this arrangement, the largest countries attempted to stabilize their currencies within agreed "reference ranges." The ranges were set by private negotiations among governments and were not announced as formal targets. When the United States became dissatisfied with other governments' policies in October 1987, it abandoned the reference ranges and allowed the dollar to fall sharply.

More wide-ranging proposals by economists would go further toward a regime of fixed exchange rates. One ambitious proposal by John Williamson and Marcus Miller would have governments formally agree on goals for macroeconomic variables (such as nominal GNP) along with target zones for real (or price-adjusted) exchange rates. If national or world conditions deviated from targets, countries would take fiscal- or monetary-policy measures to correct the imbalances. This ambitious program, along with other proposals to replace the flexible exchange-rate non-system, will be debated in the years to come.

Floating Rates and Discipline We saw that under fixed exchange rates, such as the gold standard, a country would be under very tight discipline. If domestic prices began to rise and a balance-of-payments deficit occurred, gold would leave the country, leading to monetary contraction and recession or worse. A similar (albeit somewhat less powerful) chain of events would occur under the Bretton Woods system.

Under a floating-rate system, these earlier constraints are removed. Countries are now free to determine their own domestic price levels: they can be high-inflation countries or low-inflation countries—through their domestic macroeconomic policies—without automatically triggering a balance-of-payments crisis. But removing the old constraints leads to new ones. Freedom to choose price levels does not mean that a nation can have any real wage rate it chooses. Let's see why not.

Suppose the United States raises money wage rates 50 percent overnight. Our costs are now high. Our exports can no longer compete. The dollar floats down to correct the imbalance. That makes imports (raw materials, etc.) more expensive, which raises U.S. prices. In the end, our prices are likely to rise about as much as money wage rates rose.

The moral here is that floating exchange rates do indeed remove the discipline of the gold or dollar standard on the nominal price and wage levels. But nothing can remove the irreducible constraint of a system's real productivity level. Flexible exchange rates remove one set of constraints (the straightjacket of gold) and impose another (the harsh verdict of markets about a currency's true value).

America in Decline?

At the end of the 1980s, many observers worried that the United States was traveling rapidly down the road to economic and political decline. They pointed to a variety of symptoms: a declining national savings rate, a persistent federal budget deficit, slow productivity growth, and a large external deficit, which was turning the United States into the world's largest debtor nation. At the same time, the country appeared to lack the political will to take forceful steps to reverse these trends.

Against this backdrop, Yale historian Paul Kennedy published a massive study of economic change and political conflict, *The Rise and Fall of the Great Powers.* Kennedy argued that, because of underlying long-term economic trends, the United States was likely to suffer a significant decline in political and military power in the decades to come.

Having reviewed five centuries of economic, political, and military history, Professor Kennedy puts forth the following theses:

1. "The historical record suggests that there is a very clear connection in the long run between an individual Great Power's economic rise and fall and its growth and decline as an important military power (or world

empire). . . . Both wealth and power are always relative. . . . He buttressed his argument by a thorough historical study of Spain, France, the British Empire, the Soviet Union, and the United States.

2. "The relative strengths of the leading nations in world affairs never remain constant, principally because of the uneven rate of growth among different societies and of the technological and organizational breakthroughs which bring a greater advantage to one society than to another." Economic and technological developments from the development of steam power to the introduction of nuclear weapons illustrate the way technology changes the economic and political fortunes of nations differently and unpredictably.

Kennedy then applied these lessons of history to world economic and political affairs today. He noted that the United States' share of world GNP and manufacturing has declined significantly since its zenith in 1945; that many critical industries and skills have declined, to be replaced by those of foreign countries; that the political consensus has become less favorable to economic growth; and that high defense spending and research and development (R&D) has sapped the nation's civilian economy. At the same time, other regions—particularly Japan, China, and the European Community—are growing rapidly, producing an increasing share of world GNP and manufacturing, and possessing the potential of becoming Great Powers. From these and other facts, Kennedy concluded:

The only answer to the question . . . of whether the United States can preserve its existing [military and political] position is "no"—for it simply has not been given to any one society to remain permanently ahead of all the others, because that would imply a freezing of the differentiated patterns of growth rates, technological advance, and military developments which has existed since time immemorial. . . . One is tempted to paraphrase Shaw's deadly serious quip and say, "Rome fell; Babylon fell; Scarsdale's turn will come."\footnote{The quotes above are from Kennedy, ibid., pp. xxii, xv, and 533.}

Kennedy's thesis provoked a storm of debate and criticism. Some argued that the lessons of Europe do not apply to a continental power like the United States; others contend that America has the means if not necessarily the will to regain its earlier economic preeminence; yet another group believes that, as the exchange rate of the dollar falls, American industry will reconquer sectors lost to foreigners.

Only the future will reveal the correct forecast. But as the debate continues in the years to come, Kennedy's bold hypothesis serves as a stern reminder of the continuing importance of productive efficiency and economic growth. At a deeper level, we recognize in his words the age-old dilemma of choice—guns vs. butter vs. machines. Should the nation spend vast amounts on armaments to protect its vital interests abroad, but run the risk of economic decline that will weaken it in the future? Or should the country enjoy the fruits of its past investments with high consumption today and let the future take care of itself? Or should the nation devote more resources to investment in machines and education and research, thereby ensuring a higher level of production of guns and butter and machines in the future?

There are no right answers to such profound questions about the ultimate economic goals of society. Rather, these final reflections on the economic dilemmas facing America take us full circle to the first question asked in the book: Why study economics? Even though industrial countries are many times wealthier than they were in the age of Adam Smith, the vitality of economics knows no diminishing returns. The catalogue of unsolved economic questions remains long while the list of secure answers is short. Much useful work remains for those who would pursue the purest economic theory or apply economic analysis to the thorniest political problems. As you contemplate further study of our exciting science, take heart from the words of this century's greatest economist:

For the next twenty-five years, economists will be the most important group of scientists in the world. And it is to be hoped—if they are successful—that after that they will never be important again.\footnote{John Maynard Keynes, "The Dilemma of Modern Socialism," \textit{Political Quarterly}, 1932.}
SUMMARY

A. The Determination of Foreign Exchange Rates

1. International trade involves use of different national currencies, which are linked by relative prices called foreign exchange rates. When Americans import British goods, they ultimately need to pay in British pounds. In the foreign exchange market, British pounds might trade for $1.80 per £1 (or reciprocally, $1 would trade for £0.56).

2. In the foreign exchange market involving only two countries, the demand for British pounds comes from Americans who want to purchase goods, services, and investments; the supply of British pounds comes from Britons who want to import commodities or financial assets from America. The interaction of these supplies and demands determines the foreign exchange rate. More generally, foreign exchange rates are determined by the complex interplay of many countries buying and selling among themselves. When trade or capital flows change, this shifts supply and demand and changes the equilibrium exchange rate.

3. When the market price of a currency falls, this is a depreciation; a rise in a currency’s value is called an appreciation. In a system where governments announce official foreign exchange rates, a decrease in the official exchange rate is called a devaluation while an increase is a revaluation.

4. A well-functioning international economy requires a smoothly operating exchange-rate system, which denotes the rules and institutions which govern transactions among nations. Three important exchange-rate systems are: (a) the gold standard, in which countries define their currencies in terms of a given weight of gold and then buy and sell gold to balance their international payments; (b) a pure floating exchange-rate system, in which a country’s foreign exchange rate is entirely determined by market forces, of supply and demand; and (c) a managed floating exchange-rate system, in which government interventions and market forces interact to determine the level of exchange rates.

5. Classical economists like David Hume explained adjustments to trade imbalances by the gold-flow mechanism. Under this process, gold movements would change the money supply and the price level. For example, a trade deficit would lead to a gold outflow which would (a) raise exports and (b) curb imports of the gold-losing country while (c) reducing exports and (d) raising imports of the gold-gaining country.

B. Evolution of the International Monetary System

6. After World War II, countries invented a group of international economic institutions that would help organize international trade and finance. These included the International Monetary Fund (IMF) to oversee exchange-rate systems and help countries with their balance of payments; the World Bank, which lends money to low-income countries; and the Bretton Woods exchange-rate system. The Bretton Woods system allowed countries to “peg” their currencies to the dollar and to gold, providing fixed but adjustable exchange rates. When official parities deviated too far from funda-
mentals, countries could adjust parities and achieve a new equilibrium without incurring the hardships of inflation or recession.

7. When the Bretton Woods system broke down in 1971, it was replaced by today’s system of generally flexible exchange rates. Some large countries allow their currencies to float independently; most small countries peg their currencies to the dollar or to other currencies; and most European countries adhere to the European Monetary System (EMS), which resembles closely the Bretton Woods system. Governments often intervene when their currencies get too far out of line with fundamentals or when exchange markets become disorderly.

8. Gold no longer has the key official role that it did under the automatic gold standard. Today, gold’s price is determined on competitive markets, much as is that of wheat or GM stock. Monetary reformers hoped that special drawing rights (SDRs or “paper gold”) would replace gold as an international money, but instead the dollar has replaced gold as the standard of value and intervention currency. The hope for a return to gold lingers in the hearts of gold bugs and supply siders, but few central bankers believe that such a reform is either realistic or desirable.

9. The most dramatic development of the last few years has been the rise and fall of the dollar. After a decade in which it drifted downward, the dollar surged in 1980. The appreciation led to a sharp fall in real net exports, exacerbating the 1980–1982 recession. The fall in the dollar after 1985 has been slow to cure the enormous trade deficit of the United States.

10. Floating exchange rates appear to remove the automatic discipline of the earlier gold or dollar standards—allowing countries to pursue their own inflationary or non-inflationary policies. But in fact a new discipline emerges—that of markets which move exchange rates in response to divergent relative price levels or interest rates, or even to people’s expectations about prices or interest rates.

CONCEPTS FOR REVIEW

- foreign exchange rate
- supply of and demand for foreign currencies
- currency: appreciation and depreciation; revaluation and devaluation
- exchange-rate systems: gold standard, freely floating, managed floating
- Hume’s four-pronged gold-flow mechanism
- fixed exchange rates; pegged parities
- intervention
- World Bank and IMF
- SDR
- Bretton Woods conference
- Bretton Woods system and its breakdown, EMS
QUESTIONS FOR DISCUSSION

1. Define the following and explain the significance of each: foreign exchange rate, gold standard, Bretton Woods system, and freely floating exchange rate.

2. The following table shows some foreign exchange rates (in dollars per unit of foreign currency) as of October 7, 1988:

<table>
<thead>
<tr>
<th>CURRENCY</th>
<th>PRICE ($ per unit of foreign currency)</th>
<th>PRICE (foreign currency per $1)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Britain (pound)</td>
<td>1.699</td>
<td></td>
</tr>
<tr>
<td>France (franc)</td>
<td>0.1577</td>
<td></td>
</tr>
<tr>
<td>Japan (yen)</td>
<td>0.00750</td>
<td></td>
</tr>
<tr>
<td>South Korea (won)</td>
<td>0.00140</td>
<td></td>
</tr>
<tr>
<td>West Germany (mark)</td>
<td>0.5370</td>
<td></td>
</tr>
</tbody>
</table>

Fill in the last column of the table with the reciprocal price of the dollar in terms of foreign currencies, being especially careful to note the relevant units.

3. International reserves are a kind of international money: they are used by nations or central banks to settle accounts among countries. Explain how gold, the dollar, and SDRs could serve as reserves under different exchange-rate systems.

4. Figure 27-1 shows the demand and supply for British pounds in an example where Britain and the United States trade only with each other. Describe the reciprocal supply and demand schedules for U.S. dollars. Explain why the supply of pounds is equivalent to the demand for dollars. Also explain the schedule that corresponds to the demand for pounds. Find the equilibrium price of dollars in this new diagram and relate it to the equilibrium in Figure 27-1.

5. James Tobin has written, "A great teacher of mine, Joseph Schumpeter, used to find puzzling irony in the fact that liberal devotees of the free market were unwilling to let the market determine the prices of foreign currencies ..." [National Economic Policy (Yale University Press, New Haven, Conn., 1966), p. 161]. What are some reasons why economists might allow the foreign exchange market to be an exception to a general inclination toward free markets?

6. Show an initial equilibrium in the foreign exchange market for Japanese yen (similar to that for pounds in Figure 27-1). Let the initial equilibrium be 150 yen to the dollar and consider the impact on the market equilibrium of the following:

 (a) The Japanese government decides to sell very large quantities of yen at 160 yen to the dollar.

 (b) Higher interest rates in New York lower the demand for yen.

 (c) The demand for Toyotas and Hondas by Americans increases sharply.

 (d) Japan pays the United States in dollars for American forces in the Far East.

7. In the Louvre accord in 1987, major countries agreed to keep their currencies within "reference zones." Say that the United States and Germany agree to keep the German mark in the range of 1.60 to 1.80 marks to the dollar. Show with the help of a supply-and-demand diagram how the governments could implement this policy.
8. Figure 27-6 shows a proposal for a "gliding peg" or "crawling peg" for the exchange rate between the dollar and the German deutsche mark (DM). Such a system lets an exchange rate change a few percent per year. What are its pros and cons relative to fixed exchange rates or freely floating rates?

9. Show in a supply-and-demand diagram how government intervention would change a nation's exchange rate. What would be the effect on the dollar if the United States sold dollars for foreign currencies? Why would intervention be ineffective if, as some believe, the supply of dollars is virtually perfectly elastic?

10. Suppose a country discovers oil, but it takes a decade actually to exploit the new find. What would happen to the country's trade balance after oil begins to flow onto world markets? What might happen to the nation's freely floating currency today once people realize that the trade balance will soon turn favorable? Why would the trade balance thus turn unfavorable in the period before the oil is actually recovered?

11. The 1988 Economic Report of the President states:

Dollar appreciation, not slow productivity growth or spiraling wage costs, was the primary cause of the decline in the international competitiveness [i.e., the large trade deficit] of U.S. manufacturing in the first half of the 1980s.

Explain how each of the three factors listed might produce a trade deficit. If domestic prices are determined by a markup relationship in which price is proportional to the wage rate divided by productivity (output per worker), what would the quotation imply about differential rates of inflation in the United States and abroad? Refer to a source book with international data on exchange rates and prices (such as the Economic Report) to verify the statement.

12. Consider the following three exchange-rate systems: classical gold standard, freely floating exchange rates, and Bretton Woods system. Compare and contrast the three systems with respect to the following characteristics:

(a) Roles of government vs. market in determining exchange rates
(b) Degree of exchange-rate volatility
(c) Method of adjustment of relative prices across countries
(d) Need for international cooperation and consultation in determining exchange rates
(e) Potential for establishment and maintenance of severe exchange-rate misalignment
13. The 1984 *Economic Report of the President* states:

In the long run, the exchange rate tends to follow the differential trend in the domestic and foreign price level. If one country’s price level gets too far out of line with prices in other countries, there will eventually be a fall in demand for its goods, which will lead to a real depreciation of its currency.

The first sentence espouses the "purchasing-power parity" or "PPP" theory of exchange rates. The PPP theory, which was proposed by David Ricardo in 1817 and by Sweden’s Gustav Cassel around 1916, holds that floating exchange rates will move in proportion to relative prices in different countries; that is, if prices in the United States are rising 7 percent annually while those in Germany are rising 3 percent annually, the PPP theory holds that the U.S. dollar will tend to depreciate about 4 percent annually relative to the German mark. Explain the reasoning behind the PPP theory of exchange rates. In addition, using a supply-and-demand diagram like that of Figure 27-1, explain the sequence of events, described in the second sentence of the quotation, whereby a country whose price level is relatively high will find that its exchange rate depreciates.
WE HAVE COME a long way in our studies. We have encountered the major microeconomic problems of the day. Economies here and abroad are stricken by stubborn unemployment, poverty in the midst of plenty, the heavy burdens of middle-income countries and middle-income families, rising pollution levels, and volatile financial markets. Our economic investigation has presented many solutions to these entrenched problems. We have learned the first step toward fruitful application is finding the correct analysis. When unemployment or inflation impairs our prosperity, we must sort through the competing claims of monetarists, Keynesian supply-side, and rational-expectations doctrines to find the most applicable solution. If global pollution threatens to change our climate, we must explore different approaches to correcting externalities. In finding the right answer, there is no substitute for economic analysis, statistical studies, and a careful review of the historical record.

An economics textbook today is inevitably weighted down by gloomy thoughts about the problems we have long been known for their dire predictions.
Remember that at the beginning of the nineteenth century, Reverend Malthus condemned the human race to perpetual poverty as unbridled population growth dragged down living standards. It was then that Thomas Carlyle baptized economics "the dismal science." Is it possible that, by constantly reminding people about constraints and production-possibility frontiers, economists have subtly persuaded themselves that there are stringent limits to growth and happiness?

The statistics of economic history reveal that Malthus and Carlyle were dead wrong. Shortly after they issued their baleful predictions, Europe and North America entered an unprecedented century, and a half of tremendous growth in real wages, life expectancies, and living standards.

We remind ourselves of the Malthusian errors as an antidote to the pervasive gloom that infects many economic circles today. In the late 1980s, the United States was burdened by large fiscal and external deficits, rising inflation, and the threat of a serious recession. After the stock-market meltdown of October 1987, many drew the parallel between the supply-side euphoria of the 1980s and the speculative atmosphere of the roaring 1920s. Some forecast that the 1990s would be a rerun of the 1930s, with a trade war, deflation, a Great Depression, and social unrest in the industrial world.

In the midst of these fretful thoughts, we recall a famous prophesy made by John Maynard Keynes in 1930. In a crumbling world economy, Keynes was able to look beyond the looming Great Depression and offer a startling vision of the economic future of the human race:

[S]uppose that a hundred years hence we are all of us... eight times better off... than we are today....
Assuming no important wars and no important increase in population, the economic problem may be solved...
... This means that the economic problem is not—if we look into the future—the permanent problem of the human race.

Why, you may ask, is this so startling? It is startling because—if instead of looking into the future, we look into the past—we find that the economic problem, the struggle for subsistence, always has been hitherto the primary, most pressing problem of the human race—not only of the human race, but of the whole of the biological kingdom from the beginnings of life in its most primitive forms.

Thus we have been expressly evolved by nature—with all our impulses and deepest instincts—for the purpose of solving the economic problem. If the economic problem is solved, mankind will be deprived of its traditional purpose... I think with dread of the readjustment of the habits and instincts of the ordinary man, bred into him for countless generations, which he may be asked to discard within a few decades.

To use the language of today—must we not expect a general "nervous breakdown"?... Thus for the first time since his creation man will be faced with his real, his permanent problem—how to use his freedom from pressing economic cares, how to occupy the leisure, which science and compound interest will have won for him, to live wisely and agreeably and well...

There are changes in other spheres too which we must expect to come. When the accumulation of wealth is no longer of high social importance, there will be great changes in the code of morals. We shall be able to rid ourselves of many of the pseudo-moral principles which have hag-ridden us for two hundred years, by which we have exalted some of the most distasteful human qualities into the position of the highest virtues... The love of money as a possession—as distinguished from the love of money as a means to the enjoyments and realities of life—will be recognized for what it is, a somewhat disgusting morbidity, one of those semi-criminal, semi-pathological propensities which one hands over with a shudder to the specialists in mental disease.

But beware! the time for all this is not yet. For at least another hundred years we must pretend to ourselves and to every one that fair is foul and foul is fair; for foul is useful and fair is not. Avarice and usury and precaution must be our gods for a little longer still.

We close with Keynes' vision to remind ourselves that the future is longer than the present. Today's dilemmas will soon be part of history. New and unforeseen problems will emerge. The age-old struggle between scientific advance and the law of diminishing returns will continue. But if history is a guide to the

future, we can expect that our economic fortunes will continue to improve in the coming decades.

If economic progress does indeed continue, then Keynes' reflections may pose the crucial question for affluent societies: affluence for what? How shall we use the resources and time that technological progress liberate: from drudgery? For arms? For grain and tractors for poor lands? For classrooms and test tubes? For poetry and ballet? For baseball and tennis? For yachts and furs?

The keenest economic question facing advanced economies is not how, what, or for whom—but for what? One answer was given by the first Keynesian President, John F. Kennedy, who shared his vision of the just society a quarter-century ago: "Now the trumpet summons us again—not as a call to bear arms [but in]-a struggle against the common enemies of man: tyranny, poverty, disease, and war itself."

Ultimately, this might serve as the trumpet call for our science as well. The heart has reasons that reason will never know. Economics, poised between an art and a science, can combat the common enemies of humanity by combining reasons drawn from history with purposes drawn from the heart.
GLOSSARY OF TERMS

Ability-to-pay principle (of taxation) The principle that one's tax burden should increase with one's relative income or wealth. This principle does not specify how much more those who are better off should pay.

Absolute advantage (in international trade) The ability of country A to produce a commodity more efficiently (i.e., with greater output per unit input) than country B. Possession of such an absolute advantage does not necessarily mean that A can export this commodity to B successfully. Country B may still have the comparative advantage.

Accelerator principle A theory of investment spending which holds that the level of investment is governed by the rate of increase in real GNP. That is, there will be positive (or high) net investment when GNP is rising, and there will be zero (or low) net investment when GNP is just holding steady (even if GNP is already very high).

Actual, cyclical, and structural budget The actual budget deficit or surplus is the amount recorded in a given year. This is composed of the structural budget, which calculates what government revenues, expenditures, and deficits would be if the economy were operating at potential output; and the cyclical budget, which measures the effect of the business cycle on the budget.

Adaptive expectations See expectations.

Adjustable peg An exchange-rate system in which countries maintain a fixed or "pegged" exchange rate with respect to other currencies. This exchange rate is subject to periodic adjustment, however, when it becomes too far out of line with fundamental forces. This system was used for major currencies during the Bretton Woods period, from 1944 to 1971.

Administered prices (or inflexible prices) A term originated by Gardner C. Means to describe prices that are not "flexible" (refer to price flexibility). Administered prices are typically set by imperfectly competitive firms and may stay at the same level for a period of weeks or months.

Aggregate demand Total planned or desired spending in the economy as a whole during a given period. It is determined by the aggregate price level and influenced by domestic investment, net exports, government spending, and the money supply.

Aggregate demand (AD) curve The curve showing the relationship between the quantity of goods and services that people are willing to buy and the aggregate price level. As in any demand curve, important variables lie behind
the aggregate demand curve, e.g., government spending, exports, and the money supply.

Aggregate supply The total value of goods and services that firms would willingly produce in a given time period. Aggregate supply is a function of the available inputs, technology, and the price level.

Aggregate supply (AS) curve Curve showing the relationship between the real output that firms would willingly supply and the aggregate price level. The AS curve tends to be vertical at potential output in the very long run but may be relatively flat in the short run because of inflexible wages and prices (such as labor contracts) built into the economy.

Allocative efficiency An economic outcome in which no reorganization or trade could occur that would raise the utility or satisfaction of one individual without lowering the utility or satisfaction of another individual. This is sometimes stated as “you cannot make anyone better off without making someone else worse off.” Such an outcome is thus on the utility-possibility frontier. Under certain limited conditions, perfect competition leads to allocative efficiency. Also called **Pareto efficiency**.

Antitrust legislation Laws prohibiting monopolization, restraints of trade, and collusion among firms to raise prices or inhibit competition.

Appreciation (of a currency) See **depreciation** (of a currency).

Arbitrage The act of buying a currency or a commodity in one market and simultaneously selling it for a profit in another market. Arbitrage is an important force in eliminating price discrepancies, thereby making markets function more efficiently.

Asset A physical property or intangible right that has economic value. Important examples are plant, equipment, land, patents, copyrights, and financial instruments such as money or bonds.

Asset demand for money See **demand for money**.

Asset, intangible Asset that is not physical or financial in nature, such as the extra value placed on a firm because it is a going concern with a recognized name (its **goodwill**).

Automatic (or built-in) stabilizer The property of a government tax and spending system that cushions income changes in the private sector. Examples include unemployment insurance and progressive income taxes.

Average cost Refer to cost, average.

Average cost curve, long-run (LRAC, or LAC) The graph of the minimum average cost of producing a commodity for each level of output, assuming that technology and input prices are given but that the producer is free to choose the optimum size of plants.

Average cost curve, short-run (SRAC) The graph of minimum average cost of producing a commodity, for each level of output, using the given state of technology, input prices, and existing plant.

Average product Total product or output divided by the quantity of one of the inputs. Hence, the average product of labor is defined as total product divided by the amount of labor input, and similarly for other inputs.

Average propensity to consume See **marginal propensity to consume**.

Average revenue Total revenue divided by total number of units sold—i.e., revenue per unit. Average revenue is generally equal to price.

Average variable cost Refer to cost, average variable.

Balance of international payments A statement showing all a nation’s transactions with the rest of the world for a given period. It includes purchases and sales of goods and services, gifts, government transactions, and capital movements.

Balance of trade The part of a nation’s balance of payments that deals with merchandise (or visible) imports or exports. When “invisibles,” or services, are included, the total accounting for imports and exports of goods and services is called the **balance on current account**.

Balance on current account See **balance of trade**.

Balance sheet A statement of a firm’s financial position as of a given date.

Bank, commercial A financial intermediary whose prime distinguishing feature until recently was that it accepts checking deposits. Also it holds savings or time deposits and money market deposit accounts; sells traveler’s checks and performs other financial services; and lends to individuals and firms. Since 1980, savings banks and other depository institutions have been allowed to accept checking accounts and are thus becoming more like commercial banks.

Bank money Money created by banks, particularly the checking accounts (part of **M1**) that are generated by a multiple expansion of bank reserves.

Bank reserves Refer to reserves, bank.

Barriers to competition Factors that reduce the amount of competition or the number of producers in an industry, allowing greater economic concentration to occur. Important examples are legal barriers, regulation, and product differentiation.

Barter The direct exchange of one good for another without using anything as money or as a medium of exchange.

Benefit principle (of taxation) The principle that people should be taxed in proportion to the benefits they receive from government programs.

Bond An interest-bearing certificate issued by a government or corporation, promising to repay a sum of money (the principal) plus interest at specified dates in the future.

Breakeven point For an individual, family, or community (in macroeconomics), that level of income at which 100 percent is spent on consumption (i.e., the point where there is neither saving nor dissaving). Positive saving begins at higher income levels.

Breakeven price (or level, or point)
For a business firm, that level of price at which the firm "breaks even," covering all costs but earning no profit.

Budget, balanced A budget in which total expenditures just equal total receipts (excluding any receipts from borrowing).

Budget constraint See budget line.

Budget deficit For a government, the excess of total expenditures over total receipts, with borrowing not included among receipts. This difference (the deficit) is ordinarily financed by borrowing.

Budget, government A statement showing, for the government in question, its planned expenditures and revenues for some period (typically 1 year).

Budget line A line indicating the combination of commodities that a consumer can buy with a given income at a given set of prices. If the graph shows food and clothing, then each point on the line represents a combination of food and clothing that can be bought for a certain income level and with a given set of prices for the two goods. Also sometimes called the budget constraint.

Budget surplus Excess of government revenues over government spending; opposite of budget deficit.

Built-in stabilizer See automatic stabilizer.

Business cycles Fluctuations in overall economic activity, characterized by the simultaneous expansion or contraction of output in most sectors. In modern parlance, business cycles are said to occur when actual GNP rises relative to potential GNP (an expansion) or falls relative to potential GNP (a contraction or recession).

C + I, C + I + G, or C + I + G + X schedule A schedule showing the planned or desired levels of aggregate demand for each level of GNP, or the graph on which this schedule is depicted. The schedule includes consumption (C), investment (I), government spending on goods and services (G), and net exports (X).

Capital (capital goods, capital equipment) (1) In classical and neoclassical economic theory, one of the triad of productive inputs (land, labor, capital). Capital consists of durable produced goods that are in turn used in production. The major components of capital are equipment, structures, and inventory. When signifying capital goods, the reference is made to real capital. (2) In accounting and finance, "capital" means the total amount of money subscribed by the shareholders-owners of a corporation, in return for which they receive shares of the company's stock.

Capital consumption allowance See depreciation.

Capital deepening In economic growth theory, a rise in the capital-labor ratio. Contrast with capital widening.

Capital gains The rise in value of a capital asset, such as land or common stocks, the gain being the difference between the sales price and the purchase price of the asset.

Capital markets Markets in which financial resources (money, bonds, stocks) are traded. These, along with financial intermediaries, are institutions through which savings in the economy are transferred to investors.

Capital-output ratio In economic growth theory, the ratio of the total capital stock to annual GNP.

Capital widening A rate of growth in real capital stock just equal to the growth of the labor force (or of population), so that the ratio between total capital and total labor remains unchanged (contrast with capital deepening).

Capitalism Traditionally defined as an economic system in which most property (land and capital) is privately owned. In such an economy, private markets, with little government intervention, are the prime instruments used to allocate resources and generate incomes.

Cartel An association of producers in a given industry whose purpose is to restrict or bar competition in the industry. They do this by colluding on the prices, by dividing markets, or by engaging in other anticompetitive practices. Cartels are illegal under U.S. antitrust laws.

Central bank A government-established agency (in the United States, the Federal Reserve System) responsible for controlling the nation's money supply and credit conditions and for supervising the financial system, especially commercial banks.

Change in demand vs. change in quantity demanded A change in the quantity buyers want to purchase, prompted by any reason other than a change in price (e.g., increase in income, change in tastes, etc.), is a "change in demand." (In graphical terms, it is a shift of the demand curve.) If, in contrast, the decision to buy more or less is prompted by a change in the good's price, then it is a "change in quantity demanded." (In graphical terms, a change in quantity demanded is a movement along an unchanging demand curve.)

Change in supply vs. change in quantity supplied This distinction is the same for supply as for demand, so change in demand vs. change in quantity demanded.

Checking accounts (or bank money) A deposit in a commercial bank or other financial intermediary upon which checks can be written and which is therefore transactions money (M1). The major kinds of checking accounts are demand deposits (which can be withdrawn without notice and do not bear interest) and NOW accounts (which are indistinguishable from traditional demand deposits except that they earn interest). Checking accounts form the bulk of M1.

Chicago School of Economics A group of economists (among whom Henry Simons, F. A. von Hayek, Milton Friedman, and George Stigler have been the most prominent) who believe that competitive markets free of government intervention will lead to the most efficient operation of the economy.

Classical economics The predominant school of economic thought prior to the appearance of Keynes' work, founded by Adam Smith in 1776. Other major figures who followed him include David Ricardo, Thomas Malthus, and John Stuart Mill. By and large, this
school believed that economic laws (particularly individual self-interest and competition) determine prices and factor rewards and that the price system is the best possible device for resource allocation. Their macroeconomic theory rests on Say's Law of Markets.

Clearing market A market in which prices are sufficiently flexible to equilibrate supply and demand very quickly. In markets that clear, there is no rationing, unemployed resources, or excess demand or supply. In practice, this is thought to apply to many commodity and financial markets but not to labor or many product markets.

Closed economy See open economy.

Coase theorem A view (not actually a theorem) put forth by Ronald Coase that externalities or economic inefficiencies will be corrected by bargaining between the affected parties.

COLA (cost-of-living adjustment) See escalator clause.

Collective bargaining The process of negotiations between a group of workers (usually a union) and their employer. Such bargaining leads to an agreement about wages, fringe benefits, and working conditions.

Collusion Agreement between different firms to cooperate by raising prices, dividing markets, or otherwise restraining competition.

Collusive oligopoly A market structure in which a small number of firms (i.e., a few oligopolists) collude and jointly make their decisions. When they succeed in maximizing their joint profits, the price and quantity in the market closely resemble those prevailing under monopoly.

Command economy A mode of economic organization in which the key economic functions—what, how, and for whom—are principally made by government directive. Also called a centrally planned economy.

Commodity money Money with intrinsic value; also, the use of some commodity (cattle, beads, etc.) as money. As monetary transactions become more widespread, the use of commodity money becomes increasingly awkward. Hence the gradual transition to fiat money (paper money).

Common stock The financial instrument representing ownership and, generally, voting rights in a corporation. A certain share of a company's stock gives the owner title to that fraction of the votes, net earnings, and assets of the corporation.

Communism At the same time (1) an ideology, (2) a set of political parties, and (3) an economic system. A communist economic system is one in which private ownership of the means of production, particularly industrial capital, is prohibited (for such ownership of capital goods is believed to result in exploitation of workers). In addition, communism holds that income should be distributed equally, or, more ideally, according to 'need.' In today's communist countries (the Soviet Union, China, and Eastern Europe) most capital and land are owned by the state. These countries are also characterized by extensive central planning, with the state setting many prices, output levels, and other important economic variables.

Comparative advantage (in international trade) The law of comparative advantage says that a nation should specialize in producing and exporting those commodities which it can produce at relatively lower costs, and that it should import those goods in which it is a relatively high-cost producer. Thus it is a comparative advantage, not an absolute advantage, that should dictate trade patterns.

Compensating differentials Differences in wage rates among jobs that serve to offset or compensate for the nonmonetary differences of the jobs. For example, unpleasant jobs that require isolation for many months in the Arctic usually pay wages much higher than those for similar jobs nearer to civilization.

Competition, imperfect Refers to markets in which perfect competition does not hold because at least one seller is large enough to affect the market price and therefore faces a downward-sloping demand curve. Imperfect competition refers to any kind of imperfection—pure monopoly, oligopoly, or monopolistic competition.

Competition, perfect A market situation in which (1) the number of sellers and buyers is very large and (2) the products offered by sellers are homogeneous (or indistinguishable). Under such conditions, no firm can affect the market price, and each firm faces a horizontal (or perfectly elastic) demand curve.

Competitive equilibrium The balancing of supply and demand in a market or economy characterized by perfect competition. Because perfectly competitive sellers and buyers have no power to influence the market, price will move to the point at which price equals both marginal cost and marginal utility.

Competitive market See competition, perfect.

Complements Two goods which "go together" in the eyes of consumers (e.g., left shoes and right shoes). Goods are substitutes when they compete with each other (as do gloves and mittens).

Compounded interest Interest computed on the sum of all past interest earned as well as on the principal. For example, suppose $100 (the principal) is deposited in an account earning 10 percent interest compounded annually. At the end of year 1, interest of $10 is earned. At the end of year 2, the interest payment is $11 (10% on the original principal and 1 dollar on the interest—and so on in future years.

Concentration ratio The percentage of an industry's total output accounted for by the largest firms, typically the largest four or eight firms.

Conglomerate A large corporation producing and selling a variety of unrelated goods (e.g., some cigarette companies have expanded into such unrelated areas as liquor, car rental, and movie production).

Conglomerate merger See merger.

Constant returns to scale See returns to scale.

Consumer price index (CPI) The most widely used index of the cost of living. It is a price index of the cost of a fixed
basket of consumer goods in which the
weight assigned to each commodity is
the share of expenditures on that com-
modity by urban consumers in 1982–
1984.

Consumer sovereignty The outcome
of a pure market or price system in
which consumers are the ultimate dic-
tators of the kind and quantity of com-
modities to be produced. Consumers
are said to exercise this power by bid-
ing up the prices of those goods they
want most; and suppliers, following the
lure of higher prices and profits, pro-
duce more of those goods. Consumer
sovereignty is limited when consumers
lack complete information or when
tastes are manipulated by producer ad-
vertising.

Consumer surplus The difference
between the amount that a consumer
would be willing to pay for a commod-
ity and the amount he or she actually
pays. This difference arises because the
marginal utility (in dollar terms) of the
first unit bought exceeds the price. Only
for the last unit is marginal utility equal
to price. Thus the monetary equivalent
of the total utility of the commodity
consumed may be well above the
amount spent. Under quite rigorous
assumptions, the money value of con-
sumer surplus can be measured (using a
demand-curve diagram) as the area
under the demand curve but above the
price line.

Consumption In macroeconomics, the
total spending, by individuals or a na-
ton, on consumer goods during a given
period. Strictly speaking, consumption
should apply only to those goods totally
used, enjoyed, or “eaten up” within
that period. In practice, consumption
expenditures include all consumer
goods bought, many of which last well
beyond the period in question—e.g.,
notes, clothing, and automobiles.

Consumption function A schedule re-
lating total consumption to the level of
income. The measure of income used
might be disposable income (DI) or in
the case of the national consumption
function, GNP. Total wealth and other
variables are also frequently assumed to
influence consumption.

Consumption-possibility line Refer to
budget line.

Corporate income tax A tax levied on
the annual net income of a corporation.

Corporation The predominant form of
business organization in modern capi-
talist economies. A corporation is a
firm owned by individuals or other cor-
porations and has the same rights to
buy, sell, and make contracts as a per-
son would have. It is legally separate
from those who own it, so its owners
have “limited liability.” At worst, they
can lose their investment in the corpo-
ration; beyond that, they are not respon-
sible for its liabilities.

Correlation The degree to which two
variables are systematically associated
with each other.

Cost, average Total cost (refer to cost,
total) divided by quantity of goods pro-
duced. Short-run and long-run average
costs are associated respectively with
short-run and long-run total costs.

Cost, average variable Total variable
cost (refer to cost, variable) divided by
quantity of output produced.

Cost, fixed The cost a firm would incur
even if its output for the period in ques-
tion were zero. Total fixed cost is made
up of such individual fixed costs as in-
terest payments, mortgage payments,
and directors’ fees.

Cost, marginal The increase in total
cost required to produce 1 extra unit of
output (or the reduction in total cost
from producing 1 unit fewer). Short-run
and long-run marginal costs are asso-
ciated with short-run and long-run total
costs, respectively.

Cost, minimum The lowest attainable
cost per unit (whether average, vari-
able, or marginal). Every point on an
average cost curve is a minimum in the
sense that it is the best the firm can do
with respect to cost for the output which
that point represents. Minimum average
cost is the lowest point, or points, on
that curve.

Cost-push inflation Inflation originat-
ing on the supply side of markets, such
as from a sharp increase in wages or oil
prices (i.e., for reasons other than ex-
cess demand for goods, which leads to
demand-pull inflation). In the aggre-
gate supply-and-demand framework,
cost-push is illustrated as an upward
shift of the AS curve.

Cost, total The minimum attainable
total cost, given a particular level of
technology and set of input prices.
Short-run total cost takes existing plant
and other fixed costs as given. Long-
run total cost is the cost that would be
incurred (again, given the level of tech-
nology and input prices) if the firm had
complete flexibility with respect to all
inputs and decisions.

Cost, variable Total cost incurred
minus fixed cost. That is, the costs that
vary with the level of output, such as
raw materials, labor, and fuel costs.

Craft union A union with membership
restricted to those having the same skill
or craft (e.g., carpenters, machinists,
electricians).

Crawling (or sliding) peg A technique
for managing a nation’s exchange rate
that allows the exchange rate (or the
bands around the rate) to “crawl” up or
down by a small amount each day or
week (say, 0.25 percent per week).

Credit The use of someone else’s funds
in exchange for a promise to pay (usu-
ally with interest) at a later date. The
major examples are short-term loans
from a bank, credit extended by suppli-
ers, or commercial paper.

Cross elasticity of demand A measure
of the influence of a change in one
good’s price on the demand for another
good. More precisely, the cross elastic-
ity of demand equals the percentage
change in quantity demanded of good A
when the price of good B changes by 1
percent, assuming other variables are
held constant.

Crowding out Proposition that govern-
ment spending or deficits or govern-
ment debt reduces the amount of busi-
ness investment. Although the term is
often used loosely, there are two gen-
eral conditions in which genuine
crowding out may occur. First, govern-
ment spending may crowd out invest-
ment because of resource limitations (if
the economy is at full employment); sec-
ond, deficits may raise interest rates
and choke off interest-sensitive invest-
ment.
Currency Coins and paper money.
Currency appreciation (or depreciation) See depreciation (of a currency).
Current account See balance of trade.
Cyclical budget See actual, cyclical, and structural budget.
Cyclical unemployment See frictional unemployment.
Deadweight loss Loss of consumer surplus or producer surplus due to departures of output from its most efficient level. Thus when a monopolist raises its price, the loss in consumer satisfaction is more than the gain in the monopolist’s revenue—the difference being the deadweight loss to society due to monopoly.
Debit An accounting term signifying an increase in assets or decrease in liabilities. In balance-of-payments accounting, a debit is an import (or equivalent) item.
Decreasing returns to scale See returns to scale.
Deficit spending Government expenditures on goods and services and transfer payments in excess of its receipts from taxation and other revenue sources. The difference must be financed by borrowing from the public.
Deflating (of economic data) The process of converting “nominal” or current-dollar variables into “real” terms. This is accomplished by dividing current-dollar variables by a general price index.
Deflation A fall in the general level of prices. Also sometimes used, incorrectly, to mean a fall in GNP or an increase in unemployment.
Demand curve A schedule or curve showing the quantity of a good that buyers would purchase at each price, other things equal. Normally a demand curve has price on the vertical or Y axis and quantity demanded on the horizontal or X axis. Also see change in demand vs. change in quantity demanded.
Demand for money A summary term used by economists to explain why individuals and businesses hold money.

The major motivations for holding money rather than other assets are (1) transactions demand, signifying that people need money to purchase things, and (2) asset demand, relating to the desire to hold a very liquid, risk-free asset. Note that the demand for money is a demand for a stock, not a flow.

Demand-pull inflation Price inflation caused by an excess demand for goods in general, caused, for example, by a major increase in aggregate demand. Often contrasted with cost-push inflation.

Demography The study of the behavior of a population.

Depreciation (of an asset) A decline in the value of an asset. In both business and national accounts, depreciation is the dollar estimate of the extent to which capital has been used up or worn out over the period in question. Also termed capital consumption allowance in national income accounting.

Depreciation (of a currency) A nation’s currency is said to depreciate when it declines relative to other currencies. For example, if the foreign exchange rate of the dollar falls from 6 to 4 French francs per U.S. dollar, the dollar’s value has fallen, and the dollar has undergone a depreciation. The opposite of a depreciation is an appreciation, which occurs when the foreign exchange rate of a currency rises. In flexible exchange-rate systems, currencies depreciate and appreciate largely as a result of the market forces of supply and demand.

Depression A prolonged period characterized by high unemployment, low output and investment, depressed business confidence, falling prices, and widespread business failures. A milder form of business downturn is a recession, which has many of the features of a depression to a lesser extent; the precise definition of a recession today is a period in which real GNP declines for at least two consecutive calendar quarters.

Derived demand The demand for a factor of production that results from (is derived from) the demand for the final good to which it contributes. Thus the demand for tires is derived from the demand for automobile transportation.

Devaluation A decrease in the official price of a nation’s currency, as expressed in the currencies of other nations or in terms of gold. Thus when the official price of the dollar was lowered with respect to gold in 1971, we say that the dollar was devalued. The opposite of devaluation, occurring when a nation raises its official foreign exchange rate relative to gold or other currencies, is called revaluation.

Diminishing marginal utility, law of The law which says that, as more and more of any one commodity is consumed, its marginal utility declines.

Diminishing returns, law of The law of production stating that the incremental output from successive increases of one input will eventually diminish when other inputs are held constant. Technically, the law is equivalent to saying that the marginal product of the varying input declines after a point.

Direct taxes Those levied directly on individuals or firms, such as taxes on income, labor earnings, and profits. Direct taxes contrast with indirect taxes, which are those levied on particular commodities and thus only indirectly on people; and include sales taxes and taxes on property, alcohol, imports, and gasoline.

Discount rate (1) The interest rate charged by a Federal Reserve Bank (the central bank) on any loan that it makes to a commercial bank. (2) The rate used to calculate the present value of some asset.

Discounting (of future income) The process of converting future income into an equivalent present value. This process takes a future dollar amount and reduces it by a discount factor that reflects the appropriate interest rate. For example, if someone promises you $121 in 2 years, and the appropriate interest rate or discount rate is 10 percent per year, then we can calculate the present value by discounting the $121 by a discount factor of $(1.10)^{-2}$. The rate at which future incomes are discounted is called the discount rate.
Discrimination Differences in earnings that arise because of personal characteristics that are unrelated to job performance, especially those related to gender, race, or religion.

Disequilibrium An economy not in the state of equilibrium. This may arise when shocks (to income or prices) have shifted demand or supply schedules but the market price (or quantity) has not yet adjusted fully. In macroeconomics, unemployment is often thought to stem from market disequilibria.

Disinflation The process of reducing a high inflation rate. Thus, the deep recession of 1980–1983 led to a sharp disinflation over that period.

Disposable income (DI) Roughly, take-home pay, or that part of the total national income that is available to households for consumption or saving. More precisely, it is equal to GNP less all taxes, business saving, and depreciation plus government and other transfers and government intergovernmental payments.

Dissaving Negative saving; spending more on consumption goods during a period than the disposable income available for that period (the difference being financed by borrowing or drawing on past savings).

Distribution In economics, the manner in which total output is distributed among individuals or factors (e.g., the distribution of income between labor and capital). National-income theory recognizes five categories of income (hence, implicitly, five groups of recipients): (1) wages and salaries; (2) interest payments; (3) rental income; (4) corporation profits; and (5) earnings from unincorporated business.

Division of labor A method of organizing production whereby each worker specializes in one small stage of production. Specialization of labor yields higher total output because labor can become more skilled at a particular task and because specialized machinery can be introduced to perform more carefully defined subtasks.

Downward-sloping demand, law of The rule that says that when the price of some good or service falls, consumers will purchase more of that good when other things are held equal.

Duopoly A market structure in which there are only two sellers. Compare with oligopoly.

Durable goods Equipment or machines that are normally expected to last longer than 3 years, e.g., computers, trucks, and automobiles.

Easy-money policy The policy of a central bank to increase the money supply to reduce interest rates. The purpose of such a policy is to increase investment, thereby raising GNP. Contrast with tight-money policy.

Econometrics The branch of economics that uses the methods of statistics to measure and estimate quantitative economic relationships.

Economic good A good that is scarce relative to the total demand for it. It must therefore be rationed, usually by charging a positive price.

Economic growth Increase in the total output of a nation over time. Economic growth is usually measured as the annual rate of increase in a nation's real GNP (or real potential GNP).

Economic regulation See regulation.

Economies of scale Increases in productivity, or decreases in average cost of production, that arise from increasing the size or scale of plant. For example, a firm operating with large volumes can often get quantity discounts on large purchases or can subdivide tasks to attain greater efficiency.

Economies of scope Economies of producing multiple goods or services. Thus economies of scope exist if it is cheaper to produce both good X and good Y together rather than separately. For example, an airline selling trips from New York to Chicago and back can produce air transportation more cheaply than one selling only one-way routes.

Efficiency The use of economic resources that produces the maximum level of satisfaction possible with the given inputs and technology. A shorthand expression for allocative efficiency.

Efficient-market theory See random-walk theory (of stock market prices).

Elastic demand (with respect to price) The situation in which price elasticity of demand exceeds 1 in absolute value. This signifies that the percentage change in quantity demanded is greater than the percentage change in price. In addition, elastic demand implies that total revenue (price times quantity) rises when price falls because the increase in quantity demanded is so large. Contrast with inelastic demand.

Elasticity A term widely used in economics to denote the responsiveness of one variable to changes in another. Thus the elasticity of X with respect to Y means the percentage change in X for every 1 percent change in Y. For especially important examples, see price elasticity of demand and price elasticity of supply.

Employed According to official U.S. definitions, persons are employed if they perform any paid work, or if they hold jobs but are absent because of illness, strike, or vacations. Also see unemployment.

Entrepreneur In general terms, the person who organizes production. The person who performs this function hires inputs, manages day-to-day operations, and bears risk. An important role of the entrepreneur is to take risks by engaging in innovation.

Equilibrium The state in which an economic entity is at rest or in which the forces operating on the entity are in balance so that there is no tendency for change.

Equilibrium, competitive See competitive equilibrium.

Equilibrium (for a business firm) That position or level of output in which the firm is maximizing its profit, subject to any constraints it may face, and therefore has no incentive to change its output or price level. In the standard theory of the firm, this means that the firm has chosen an output at which marginal revenue is just equal to marginal cost.

Equilibrium (for the individual consumer) That position at which the consumer is maximizing utility, i.e., has chosen the bundle of goods which, given income and prices, best satisfies the consumer’s wants.
Equilibrium, general See general equilibrium.

Equilibrium, macroeconomic A GNP level at which intended aggregate demand equals intended aggregate supply. At the equilibrium, desired consumption (C), government expenditures (G), investment (I), and net exports (X) just equal the quantity that businesses wish to sell at the going price level.

Equity capital Funds supplied by the owner of a business. Such an investment yields a share in the ownership along with the corresponding risk of loss and the chance of profit.

Escalator clause Provisions in a contract that tie payments to a price index. When the escalation is complete (i.e., when a 10 percent increase in the price index results in a 10 percent increase in the contract price) the obligation is converted from a nominal to a real one. The most important escalators are cost-of-living adjustments (COLAs) in wage contracts, which raise wage rates when the consumer price index increases.

Exchange rate See foreign exchange rate.

Exchange rate system The set of rules, arrangements, and institutions under which payments are made among nations. Historically, the most important exchange rate systems have been the gold exchange standard, the Bretton Woods system, and today's flexible exchange rate system.

Excise tax vs. sales tax An excise tax is one levied on the purchase of a specific commodity or group of commodities (e.g., on alcohol or tobacco). A sales tax is one levied on all commodities with only a few specific exclusions (e.g., on all purchases except food).

Exclusion principle A criterion by which public goods are distinguished from private goods. When a producer sells a commodity to person A—and can easily exclude B, C, D, . . . from enjoying the benefits of the commodity—the exclusion principle holds and the good is a private good. If, as in public health or national defense, people cannot easily be excluded from enjoying the benefits of the good's production, then the good has public-good characteristics.

Expectations Views or beliefs about uncertain variables (such as future interest rates, prices, or tax rates). Expectations are said to be rational if they are not systematically wrong and use all available information. Expectations are said to be adaptive if people assume the future will be pretty much like the past but change or adapt their expectations if they have made forecast errors in the past.

Exports Goods or services that are produced in the home country and sold to another country. These include merchandise trade (like cars) and services (like transportation or interest on loans and investments). Imports are simply goods in the opposite direction—into the home country from another country.

External diseconomies A firm's actions that impose uncompensated costs on other parties. Steel factories that emit smoke and sulfur fumes harm local property and public health, yet the injured parties are not paid for the damages. The pollution is an external diseconomy.

External economies Economies that occur if a firm's operations yield positive benefits to others without those others paying. A firm that hires a security guard scaring thieves from the neighborhood, thus providing external security services. Together with external diseconomies, these are often referred to as externalities.

External vs. induced change External change is any change in a variable that is caused by circumstances outside the system. It is contrasted with induced change, which is caused by the internal workings of the economic system. Changes in the weather are external; changes in consumption are often induced by changes in income.

Externalities An activity that affects others for better or worse, without those others paying or being compensated for the activity. Externalities exist when private costs or benefits do not equal social costs or benefits. The two major species are external economies and external diseconomies.

Factors of production Productive inputs: the machinery, equipment, tools, labor services, land, and raw materials needed to produce goods and services. Also called inputs.

Fallacy of composition Fallacy of assuming that what holds for individuals also holds for the group.

Federal Reserve notes Paper money, issued by the Federal Reserve System, which today comprises almost all the paper money in the United States.

Federal Reserve System The central bank of the United States.

Fiat money Money, like today's paper currency, without intrinsic value but decreed (by fiat) to be legal tender by the government. Fiat money is accepted only as long as people have confidence that it will be accepted.

Final good A good that is produced for final use and not for resale or further manufacture. Compare with intermediate goods.

Financial intermediary An institution that receives funds from savers and lends them to borrowers. These include depository institutions (such as commercial or savings banks) and nondepository institutions (such as money market mutual funds, brokerage houses, insurance companies, or pension funds).

Firm (business firm) The basic, private producing unit in a capitalist or mixed economy. It hires labor and buys other inputs in order to make and sell commodities.

Fiscal-monetary mix Refers to the combination of fiscal and monetary policies used to influence macroeconomic activity. A tight monetary—loose fiscal policy will tend to encourage consumption and retard investment, while an easy monetary—tight fiscal policy will have the opposite effect.

Fiscal policy A government's program with respect to (1) the purchase of goods and services and spending on transfer payments, and (2) the amount and type of taxes. Fiscal policy and monetary policy are the major tools used by governments to regulate the macroeconomy.
Fixed cost Refer to cost, fixed.

Fixed exchange rate See foreign exchange rate.

Flexible exchange rates A system of foreign exchange rates among countries wherein the exchange rates are predominantly determined by private market forces (i.e., by supply and demand) without government’s setting and maintaining a particular pattern of exchange rates. Also sometimes called floating exchange rate. When the government refrains from any intervention in exchange markets, the system is called a pure floating exchange-rate system.

Floating exchange rates See flexible exchange rates.

Flow vs. stock A flow variable is one that has a time dimension or that flows over time (like a stream). A stock variable is one that measures a quantity at a point of time (like the water in a lake). Income represents dollars per year and is thus a flow. Wealth as of December 1990 is a stock. Similarly, investment is a flow, while the total inventory of computers is a stock.

Foreign exchange Currency or other financial instruments that allow one country to settle amounts owed to other countries.

Foreign exchange rate The rate, or price, at which one country’s currency is exchanged for the currency of another country. For example, if one British pound costs $1.80, then the exchange rate for the pound is $1.80. A country has a fixed exchange rate if it “lags” its currency at a given exchange rate and then stands ready to defend that rate. An exchange rate which is not fixed is said to “float.” See also flexible exchange rates.

Fractional-reserve banking A regulation in modern banking systems whereby financial institutions are legally required to keep a specified fraction of their deposits in the form of deposits with the central bank (or in vault cash). In the United States today, large banks must keep 12 percent of checking deposits in reserves.

Free enterprise system Usually has the same meaning as capitalism.

Free goods Those goods that are not economic goods. Like air or seawater, they exist in such large quantities that they need not be rationed out among those wishing to use them. Thus, their market price is zero.

Free trade A policy whereby the government does not intervene in trading between nations—by tariffs, quotas, or other means.

Frictional unemployment Temporary unemployment caused by incessant changes in the economy. It takes time, for example, for new workers to search among different job possibilities; even experienced workers often spend a minimum period of unemployed time moving from one job to another. Frictional is thus distinct from cyclical unemployment, which results from a low level of aggregate demand in the context of sticky wages and prices.

Full employment A term that is used in many senses. Historically, it was taken to be that level of employment at which no (or minimal) involuntary unemployment exists. Today, economists rely upon the concept of the natural rate of unemployment to indicate the highest sustainable level of employment over the long run.

Galloping inflation See inflation.

Game theory Theory seeking to draw a parallel between the behavior of participants in games of chance and strategy (such as poker and chess) and behavior of firms or people in small groups, particularly in oligopolies.

General equilibrium An equilibrium state for the economy as a whole in which prices of all goods and services are such that all markets are simultaneously in equilibrium. Since at these prices producers want to supply exactly the amount of goods that consumers want to buy, there are no pressures encouraging any agent in the economy to change behavior. By contrast, a partial equilibrium is an equilibrium condition in only one market.

GNP See gross national product.

GNP deflator The “price” of GNP, that is, the price index that measures the average price of the components in GNP relative to a base year.

GNP gap The difference or gap between potential GNP and actual GNP; in Keynesian macroeconomics, taken to measure the macroeconomic loss due to inadequate aggregate demand.

Gold standard A system under which a nation (1) declares its currency unit to be equivalent to some fixed weight of gold, (2) holds gold reserves and will buy or sell gold freely at the price so proclaimed, and (3) puts no restriction on the export or import of gold. With two or more countries on the gold standard, this sets a “gold parity price,” or exchange rate, between their currencies. If the “gold content” of the pound is 5 liras that of the dollar, then the pound will sell for $5 in the foreign exchange market. Great Britain in the later half of the nineteenth century was the classic example of the operation of the gold standard. Today, no nation is fully on (or even close to) the gold standard.

Goodwill Refer to asset, intangible.

Government debt The total of government obligations in the form of bonds and short-term borrowings. Government debt held by the public excludes bonds held by quasi-governmental agencies such as the Federal Reserve System.

Graduated income tax See income tax, personal.

Gresham’s Law A law first attributed to Sir Thomas Gresham, adviser to Queen Elizabeth I of England, who stated in 1558 that “bad money drives out good”—i.e., that if the public is suspicious of one component of the money supply, it will hoard the “good money” and try to pass off the “bad money” to someone else.

Gross national product, nominal (or nominal GNP) The value, at current market prices, of all final goods and services produced within some period by a nation (without any deduction for depreciation of capital goods).

Gross national product, real (or real GNP) Nominal GNP corrected for inflation, i.e., real GNP = nominal
GNP/GNP deflator. An increase in real GNP indicates the increase in the physical volume of output for that period and excludes any price increases.

Growth accounting A technique for estimating the contribution of different factors to economic growth. Using marginal-productivity theory, growth accounting decomposes the growth of output into the growth in labor, land, capital, education, technical knowledge, and other miscellaneous sources.

Hedging A technique for avoiding a risk by making a counteracting transaction. For example, a farmer produces wheat that will be harvested in the fall, the risk of price fluctuations can be offset, or hedged, by selling in the spring or summer the quantity of wheat that will be produced.

Herfindahl index (of market power) A measure of concentration of an industry, calculated as the sum of squared market shares of the individual firms.

High-powered money Same as monetary base.

Horizontal integration Refer to integration, vertical vs. horizontal.

Horizontal merger See merger.

Horizontal vs. vertical equity Horizontal equity refers to the fairness or equity in treatment of persons in similar situations; the principle of horizontal equity states that those who are essentially equal should receive equal treatment. Vertical equity refers to the equitable treatment of those who are in different circumstances; there are no universally accepted practical applications of vertical equity, although some hold that vertical equity requires progressive taxation.

Human capital The stock of technical knowledge and skill embodied in a nation’s work force, resulting from formal education and on-the-job training.

Hyperinflation See inflation.

Imperfect competition Refer to competition, imperfect.

Imperfect competitor Any firm that buys or sells a good in large enough quantities to be able to affect the price of that good.

Implicit-cost elements Costs that do not show up as explicit money costs but nevertheless should be counted as such. For example, if you run your own business, then in reckoning your profit you should include as one of your implicit costs the wage or salary you could have earned if you had worked elsewhere. Sometimes called opportunity cost although opportunity cost has a broader meaning.

Imports See exports.

Incidence The ultimate economic burden of a tax (as opposed to the legal requirement for payment). Thus a sales tax may be paid by a retailer, but it is likely that the incidence falls upon the consumer. The exact incidence of a tax depends on the price elasticities of supply and demand.

Income The flow of wages, interest payments, dividends, and other receipts accruing to an individual or nation.

Income effect (of a price change) Change in the quantity demanded of a commodity because the change in its price has the effect of raising or lowering a consumer’s real income. Thus it supplements the substitution effect of a price change.

Income elasticity of demand The demand for any given good is influenced not only by the good’s price but by buyers’ incomes. Income elasticity measures this responsiveness. Its precise definition is: percentage change in quantity demanded divided by percentage change in income. Compare with price elasticity of demand.

Income statement A company’s statement for a specified time period (usually a year), showing sales or revenue earned during that period, all costs properly charged against the goods sold, and the profit (net income) remaining after deduction of such costs. Also called a profit-and-loss statement.

Income tax, negative Refer to negative income tax.

Income tax, personal Tax levied on the income received by individuals, either in the form of wages and salaries (“earned” income), or income from property, such as rents, dividends, or interest (“unearned” income). In the United States, personal income tax is graduated, meaning that people with higher incomes pay taxes at a higher average rate than people with lower incomes.

Income velocity of money Refer to velocity of money.

Incomes policy A government policy that attempts directly to restrict wage and price change in an effort to slow inflation. Such policies range from voluntary wage-price guidelines to outright legal control over wages, salaries, and prices.

Increasing relative costs, law of The law of scarcity for an economy with full employment states that if a society wants more of good A, it must sacrifice some output of another good, B. The law of increasing relative costs says that if a society wants more and more of good A, the quantity of B that must be sacrificed, for each extra unit of A, will increase as the production of A increases. In terms of a production-possibility frontier, this law is illustrated by a curve that is bowed outward (like a dome).

Increasing returns to scale See returns to scale.

Independent goods Goods whose demands are relatively independent. More precisely, goods A and B are independent when a change in the price of good A has no effect on the quantity demanded of good B, when factors other than A’s price are held equal.

Indexing (or indexation) A mechanism whereby prices or payments are adjusted to reflect movements in a price index. Labor contracts are the most important example (see escalator clause).

Indifference curve A curve drawn on a graph whose two axes measure amounts of different goods consumed. Each point on one curve (indicating different combinations of the two goods) yields exactly the same level of satisfaction for a given consumer. That is, the consumer is indifferent between any two points on an indifference curve.
Indifference map A graph showing a family of indifference curves for a consumer. In general, curves that lie farther northeast from the graph's origin represent higher levels of satisfaction.

Indirect taxes See direct taxes.

Induced change See external vs. induced change.

Industry Group of firms producing similar or identical products.

Inelastic demand (with respect to price) The situation in which price elasticity of demand is below 1 in absolute value. This signifies that when price changes by 1 percent, the quantity demanded changes by less than 1 percent. Alternatively, when price declines, total revenue declines, and when price is increased, total revenue goes up. Perfectly inelastic demand means that there is no change at all in quantity demanded when price goes up or goes down. Contrast with elastic demand and unitelastic demand.

Infant industry In foreign-trade theory, an industry that has not had sufficient time to develop the experience or expertise, or that has not developed sufficiently to exploit the economies of scale needed to compete successfully with more mature industries producing the same commodity in other countries. Infant industries are often thought to need tariffs or quotas to protect them while they develop.

Inferior good A good whose consumption goes down as income rises.

Inflation The inflation rate is the percentage annual increase in a general price level, commonly measured by the consumer price index (CPI) or some comparable price index. Hyperinflation is inflation so severe—1000, 1 million, or even 1 billion percent a year—that people try to get rid of their currency before prices rise further and render the money worthless. Galloping inflation is a rate of 50 or 100 or 200 percent annually. Moderate inflation is a price-level rise that does not distort relative prices or incomes severely.

Innovation A term particularly associated with Joseph Schumpeter, who meant by it (1) the bringing to market of a new and significantly different product, (2) the introduction of a new production technique, or (3) the opening up of a new market. Contrast with invention.

Input See factors of production.

Input-output table A table showing the flows of goods among industries.

Integration, vertical vs. horizontal The production process is one of stages—e.g., iron ore into steel ingots, steel ingots into rolled steel sheets, rolled steel sheets into an automobile body. Vertical integration is the combination in a single firm of two or more different stages of this process (e.g., iron ore with steel ingots). Horizontal integration is the combination in a single firm of different units that operate at the same stage of production.

Interest The return paid to those who lend money.

Interest rate The price paid for borrowing money for a period of time, usually expressed as a percentage of the principal per year. Thus, if the interest rate is 10 percent per year, then $100 would be paid for a loan of $1000 for 1 year.

Intermediate goods Goods that have undergone some manufacturing or processing but have not yet reached the stage of becoming final products. For example, steel and cotton yarn are intermediate goods.

Intervention An activity in which a government buys or sells its currency in the foreign exchange market in order to affect its currency's exchange rate. For example, the U.S. government would buy U.S. dollars when it wants the exchange rate on the dollar to rise, or appreciate.

Intrinsic value (of money) The commodity value of a piece of money (e.g., the market value of the weight of copper in a copper coin).

Invention The creation of a new product or discovery of a new production technique; to be distinguished from innovation.

Investment (1) Economic activity that forgoes consumption today with an eye to increasing output in the future. The major forms of investment are in tangible capital (structures, equipment, and inventories) and in intangible investments (education or "human capital," research and development, and health). Net investment is the value of total investment after an allowance has been made for depreciation. Gross investment is investment without allowance for depreciation. (2) In finance terms, investment has an altogether different meaning: the purchase of a security, such as a stock or a bond.

Investment demand The schedule showing how the level of investment responds to the cost of borrowing (or more specifically, to the real interest rate). Behind this relationship lies an assumption that firms select only profitable investment projects, and that as the cost of borrowing rises, fewer projects can earn a profit.

Investment schedule or function See investment demand.

Invisible hand A concept introduced by Adam Smith in 1776 to describe the paradox of a laissez-faire market economy. The invisible-hand doctrine holds that, with each participant pursuing his or her own private interest, a market system nevertheless works to the benefit of all as though a benevolent invisible hand were directing the whole process.

Iron law of wages In the economic theories of Malthus and Marx, the theory that there is an inevitable tendency in capitalism for wages to be driven down to a subsistence level.

Keynesian economics The body of thought developed by John Maynard Keynes culminating in his General Theory. The central theme was that (primarily because of sticky wages) a capitalist system does not automatically tend toward a full-employment equilibrium. According to Keynes, the resulting "underemployment equilibrium" could be cured by fiscal or monetary policies to raise aggregate demand.

Labor force In official U.S. statistics, the population 16 years of age and older who are either working or looking for work.
Labor-Force participation rate Ratio of those in the labor force to the entire population 16 years or older.

Labor supply The number of workers (or, more generally, the number of labor-hours) available to an economy. The principal determinants of labor supply are population, real wages, and social traditions.

Labor theory of value The view, often associated with Karl Marx, but developed earlier, that every commodity should be valued solely according to the quantity of labor required for its production.

Laissez-faire ("Leave us alone") The view that government should not interfere in economic activity. As expressed by classical economists like Adam Smith, this view held that the role of government should be limited to (1) maintenance of law and order, (2) national defense, and (3) provision of certain public goods that private business would not undertake (e.g., public health and sanitation).

Land In classical and neoclassical economics, one of the three basic factors of production (along with labor and capital). More generally, land is taken to include land used for agricultural or industrial purposes as well as natural resources taken from above or below the soil.

Least-cost production rule The rule that the cost of producing a specific level of output is at its minimum when the ratio of the marginal revenue product of each input to the price of that input is the same for all inputs.

Legal tender Money that by law must be accepted as payment for debts. All U.S. coins and currency are legal tender, but checks are not.

Less developed country (LDC) A country with a per capita income far below that of a "developed" nation (the latter usually includes most nations of North America or Europe).

Liabilities In accounting, debts owed to other firms or persons.

Libertarianism (also sometimes called "liberalism") An economic philosophy that emphasizes the importance of personal freedom in economic and political affairs. Libertarian writers, including Adam Smith in an earlier age and Milton Friedman and James Buchanan today, hold that people should be able to follow their own interests and desires; government activities should be limited to guaranteeing contracts and to provision of police and national defense, thereby allowing maximum personal freedom.

Limited liability The restriction of an owner's loss in a business to the amount of capital that the owner has contributed to the company. This limitation allows people to invest in a corporation without fear of losing all their personal assets should the corporation become unprofitable. Limited liability was an important factor in the rise of large corporations. By contrast, owners in partnerships and individual proprietorships generally have unlimited liability for the debts of those firms.

Long run A term used to denote a period over which full adjustment to changes can take place. In microeconomics, it denotes the time over which firms can expand or leave an industry and the capital stock can be changed. In macroeconomics, it is often used to mean the period over which all prices and wage contracts, tax rates, and expectations can fully adjust.

Lorenz curve A graph showing cumulative percentage of population on the horizontal axis and cumulative percentage of income received on the vertical axis. It is used to show the degree of equality or inequality in income distribution. The greater the departure of the Lorenz curve from the 45° line, the more unequal the distribution of income.

Lump-of-labor hypothesis The belief that there is only a fixed amount of work to be done so that, if you work faster or if new and better machines are introduced, the only result can be to raise unemployment.

\[M_1, M_2 \text{ Refer to money supply.} \]

Macroeconomics Analysis dealing with the behavior of the economy as a whole with respect to output, income, the price level, and unemployment. To be contrasted with microeconomics, which deals with the study of individual firms, people, or markets.

Malthusian theory of population growth The belief, first expressed by Thomas Malthus, that the "natural" tendency of population is to increase at a geometric rate (1, 2, 4, 8, ..., whereas food supply tends to increase at an arithmetic rate (1, 2, 3, 4, ...). Per capita food production would thus decline over time, thereby putting a check on population.

Managed float The most prevalent exchange-rate system today. In this system, a country occasionally intervenes to stabilize its currency.

Marginal cost Refer to cost, marginal.

Marginal product (MP) (sometimes marginal physical product) The extra output resulting from 1 extra unit of a specified input when all other inputs are held constant.

Marginal product theory of distribution A theory of the distribution of income proposed by John B. Clark, according to which each productive input is paid according to its marginal product.

Marginal propensity to consume (MPC) That fraction of an additional dollar of disposable income which a family or community would spend on additional consumption (the remainder being saved). Not the same thing as the average propensity to consume, which is the ratio of total consumption to total disposable income.

Marginal propensity to import (MPM) In macroeconomics, the increase in the dollar value of imports resulting from each dollar increase in the value of GNP.

Marginal propensity to save (MPS) That fraction of an additional dollar of disposable income that a family or community would save (rather than consume). Note that, by definition: \[MPC + MPS = 1. \]

Marginal revenue (MR) The additional revenue a firm would obtain if it sold 1 extra unit of output. In perfect competition, \(MR \) equals price. Under imperfect competition, \(MR \) is less than price because, in order to sell the extra unit, the price must be reduced on all prior units sold.
Marginal revenue product (MRP) (of an input) Equals marginal revenue multiplied by marginal product. It is the extra revenue that would be brought in if a firm were to buy 1 extra unit of an input, put it to work, and sell the extra product it produced.

Marginal tax rate For an income tax, the percentage of the last dollar of income paid in taxes. If a tax system is progressive, the marginal tax rate is higher than the average tax rate.

Marginal utility (MU) The additional or extra satisfaction yielded from consuming 1 additional unit of a commodity, with amounts of all other goods consumed held constant.

Market An arrangement whereby buyers and sellers interact to determine the prices and quantities of a commodity. Some markets (such as the stock market or a flea market) take place in physical locations; other markets are conducted over the telephone or are organized by computers.

Market economy An economy in which the what, how, and for whom questions concerning resource allocation are primarily determined by supply and demand in markets. In this form of economic organization, firms, motivated by the desire to maximize profits, buy inputs and produce and sell outputs. Households, armed with their factor incomes, go to markets and determine the demand for commodities. The interaction of firms’ supply and households’ demands then determines the prices and quantities of goods.

Market equilibrium Same as competitive equilibrium.

Market failure An imperfection in a price system that prevents an efficient allocation of resources. Important examples are externalities and imperfect competition.

Market power The degree of control that a firm or group of firms has over the price and production decisions in an industry. In a monopoly, the firm has a high degree of market power while firms in perfectly competitive industries have no market power. Concentration ratios are the most widely used measures of market power.

Market share Fraction of an industry’s output accounted for by an individual firm or group of firms.

Market socialism A socialist economy in which most microeconomic questions are left to the market mechanism. The state would own most capital and land and would direct investment, but the techniques of production, pricing, and the exact composition of the output would be left to supply and demand.

Markup pricing The pricing method used by many firms in situations of imperfect competition; under this method they estimate average cost and then add some fixed percentage to that cost in order to reach the price they charge.

Marxism The set of social, political, and economic doctrines developed by Karl Marx in the nineteenth century. As an economic theory, Marxism predicted that capitalism would collapse as a result of its own internal contradictions, especially its tendency to exploit the working classes. The conviction that workers would inevitably be oppressed under capitalism was based on the iron law of wages, which holds that wages would decline to subsistence levels.

Mean In statistics, the same thing as "average." Thus for the numbers 1, 3, 6, 10, 20, the mean is 8.

Median In statistics, the figure exactly in the middle of a series of numbers ordered or ranked from lowest to highest (e.g., incomes or examination grades). Thus for the numbers 1, 3, 6, 10, 20, the median is 6.

Mercantilism A political doctrine perhaps best known as the object of Adam Smith’s attack in The Wealth of Nations. Mercantilists emphasized the importance of balance of payments surpluses as a device to accumulate gold. They therefore advocated authoritarian control of economic policies, believing that laissez-faire policies might lead to a loss of gold.

Merger The acquisition of one corporation by another, which usually occurs when one firm buys the stock of another. Important examples are: (1) vertical mergers, which occur when the two firms are at different stages of a production process (e.g., iron ore and steel), (2) horizontal mergers, which occur when the two firms produce in the same market (e.g., two automobile manufacturers), and (3) conglomerate mergers, which occur when the two firms operate in unrelated markets (e.g., golf balls and oil refining).

Microeconomics Analysis dealing with the behavior of individual elements in an economy—such as the determination of the price of a single product or the behavior of a single consumer or business firm. To be contrasted with macroeconomics, which studies economic aggregates (total national product, total employment, inflation, money supply, etc.).

Minimum cost Refer to cost, minimum.

Mixed economy The dominant form of economic organization in non-communist countries. Mixed economies rely primarily on the price system for their economic organization but use a variety of government interventions to cope with macroeconomic instability and market failures.

Model A formal framework for representing the basic features of a complex system by a few central relationships. Models take the form of graphs, mathematical equations, and computer programs.

Moderate inflation See inflation.

Momentary inflation See inflation.

Monetary base The net monetary liabilities of the government held by the public. In the United States, the monetary base is equal to currency and bank
reserves. Sometimes called high-powered money.

Monetary policy The objectives of the central bank in exercising its control over money, interest rates, and credit conditions. The instruments of monetary policy are primarily open-market operations, reserve requirements, and the discount rate. (Refer also to easy-money policy, tight-money policy.)

Money Anything that serves as a medium of exchange, i.e., is widely accepted as a means of payment. (For the items constituting money in a developed economy, refer to money supply.)

Money demand schedule The relationship between holdings of money and interest rates. As interest rates rise, bonds and other securities become more attractive, lowering the demand for money. See demand for money.

Money funds Shorthand expression for very liquid short-term financial instruments whose interest rates are not regulated. The major examples are money market mutual funds and commercial bank money market deposit accounts.

Money market A term denoting the set of institutions that handle the purchase or sale of short-term credit instruments like Treasury bills and commercial paper. Unlike a stock market, the money market is not located in a place—it is rather a network of brokers, buyers, and sellers.

Money supply The narrowly defined money supply \(M_1 \) consists of coins, paper currency, plus all demand or checking deposits; this is narrow, or transactions, money. The broadly defined supply \(M_2 \) includes all items in \(M_1 \) plus certain liquid assets or near monies—savings deposits, money market funds, and the like.

Money-supply multiplier The ratio of the increase in the money supply (or of deposits) to the increase in bank reserves. Generally, the money-supply multiplier is equal to the inverse of the required reserve ratio. For example, if the required reserve ratio is 0.125, then the money-supply multiplier is 8.

Money, velocity of See velocity of money.

Monopolistic competition A market structure in which there are many sellers who are supplying goods that are close, but not perfect, substitutes. In such a market, each firm can exercise some effect on its product's price.

Monopoly A market structure in which a commodity is supplied by a single firm. Also see natural monopoly.

Monopsony The mirror image of monopoly: a market in which there is a single buyer: A "buyer's monopoly."

Multiplier A term in macroeconomics denoting the change in an induced variable (GNP, money supply, imports) per unit of change in an external variable (government spending, income, exports, or bank reserves). The investment multiplier refers to the increase in GNP that would result from a $1 increase in investment. In the simple multiplier model, the investment (or government expenditure) multiplier exceeds 1 because the original spending increase sets off a series of further "induced" spending increases.

Multiplier model In macroeconomics, a theory developed by J. M. Keynes that emphasizes the importance of changes in autonomous expenditures (especially investment, government spending, and net exports) in determining changes in output and employment. Also see multiplier.

National debt Same as government debt.

National income and product accounting A set of accounts that measures the spending, income, and output of the entire nation for a quarter or a year.

Natural monopoly A firm or industry whose average cost per unit of production falls sharply over the entire range of its output, as for example in local electricity distribution. Thus a single firm, a monopoly, can supply the industry output more efficiently than can multiple firms.

Natural rate of growth The rate of growth of the labor force, plus the rate of growth of labor productivity. Thus, if the labor force is growing at 1 percent per year, and output per labor-hour is growing at 2 percent per year, the natural rate of growth of the economy is 3 percent per year.

Natural rate of unemployment The unemployment rate at which pressures on wages are in balance, so they neither increase nor decrease the rate of inflation. Equivalently, the unemployment rate at which the long-run Phillips curve is vertical.

"Near-money" Financial assets that are risk-free and so readily convertible into money that they are close to actually being money. Examples are money funds and Treasury bills.

Negative income tax A plan for replacing the current complex set of income-support programs (welfare, food stamps, etc.) with a unified program. Under such a plan, poor families would receive an income-support payment (or "negative" tax) whose size would depend on their income.

Neoclassical growth model A theory or model for explaining long-term trends in economic growth of industrial economies. This model emphasizes the importance of capital deepening (i.e., a growing capital-labor ratio) and technological change in explaining the growth of potential real GNP.

Net economic welfare (NEW) A measure of national output that corrects several limitations of the GNP measure.

Net exports In the national product accounts, exports of goods and services minus imports of goods and services.

Net investment Gross investment minus depreciation of capital goods.

Net national product (NNP) GNP less an allowance for depreciation of capital goods.

Net worth In accounting, total assets minus total liabilities.

NNP See net national product.

Nominal GNP See gross national product, nominal.

Nominal (or money) interest rate The interest rate paid on different assets. This represents a dollar return per year per dollar invested. Compare with the real interest rate, which represents the return per year in goods per unit of goods invested.
Normative vs. positive economics
Normative economics considers "what ought to be"—value judgments, or goals, of public policy. Positive economics, by contrast, is the analysis of facts and data, "the way things are."

NOW (negotiable order of withdrawal) account An interest-bearing checking account. See also checking accounts.

Okun's Law Empirical relationship, uncovered by Arthur Okun, between cyclical movements in GNP and unemployment. The law states that when actual GNP declines 2 percent relative to potential GNP, the unemployment rate increases by about 1 percentage point. (Earlier estimates placed the ratio at 3 to 1.)

Oligopoly A situation of imperfect competition in which an industry is dominated by a small number of suppliers.

Open economy An economy that engages in trade (i.e., imports and exports) of goods and capital with other countries. A closed economy is one that has no imports or exports.

Open-economy multiplier In an open economy (i.e., one open to international trade), income leaks into imports as well as into saving. Therefore, the open-economy multiplier for investment or government expenditure is given by

\[
\text{Open-economy multiplier} = \frac{1}{MPS + MPm}
\]

where \(MPS \) = marginal propensity to save and \(MPm \) = marginal propensity to import.

Open-market operations The activity of a central bank in buying or selling government bonds to influence bank reserves, the money supply, and interest rates. If securities are bought, the money paid out by the central bank increases commercial bank reserves, and the money supply increases. If securities are sold, the money supply contracts.

Opportunity cost The value of the next best use (or opportunity) for an economic good, or the value of the sacrificed alternative. Thus, say that the inputs used to mine a ton of coal could have been used to grow 10 bushels of wheat. The opportunity cost of a ton of coal is thus the 10 bushels of wheat that could have been produced but were not.

Opportunity cost is particularly useful for valuing non-marketed goods such as environmental health or safety.

Option A contract allowing a party to buy or sell a commodity or a security at a given price during a specified period of time. Options today are widely traded for valuing non-marketed goods, such as environmental health or safety.

Other things equal A phrase that signifies that a factor under consideration is changed while all other factors are held equal or constant. For example, a demand curve states that the quantity demanded will decline as the price rises, as long as other things (such as incomes) are held equal.

Output See total product.

Paradox of thrift The paradox, first noted by J. M. Keynes, that a community's desire to save (to be more thrifty) may result in its actually saving less. To save more is to spend less on consumer goods; to spend less on consumer goods may reduce aggregate demand and GNP; this may lead to lower induced investment, lower incomes, and ultimately, reduced saving.

Paradox of value The paradox that many necessities of life (e.g., water) have a low "market" value, while many luxuries (e.g., diamonds) that have little "use" value have a high market price. It is explained by the fact that a price does not reflect the total utility of a commodity but its marginal utility.

Pareto efficiency (or Pareto optimality) See allocative efficiency.

Partial-equilibrium analysis Analysis that concentrates upon the effect of changes in an individual market, holding "other things equal" (for example, disregarding changes in income). Partial-equilibrium analysis might be used to assess the effect of a gasoline-price rise on demand for gasoline. But if the price rise causes GNP to decline, this will "feed back" into the gasoline market; partial-equilibrium analysis does not consider this feedback effect.

Partnership An association of two or more persons to conduct a business which is not in corporate form and does not enjoy limited liability.

Patent An exclusive right granted to an inventor to control the use of an invention lasting, in the United States, over a period of 17 years. They create temporary monopolies as a device for rewarding inventive activity and are the principal tool for promoting invention among individuals or small firms.

Perfect competition Refer to competition, perfect.

Phillips curve A graph first devised by A. W. Phillips, showing the tradeoff between unemployment and inflation. The view that first evolved from Phillips' work was that the lower the rate of unemployment, the higher the rate of inflation. In modern mainstream macroeconomics, the downward-sloping "tradeoff" Phillips curve is generally held to be valid only in the short run; in the long run, the Phillips curve is usually thought to be vertical at the natural rate of unemployment.

Portfolio theory An economic theory that describes how rational investors allocate their wealth among different financial assets—that is, how they put their wealth into a "portfolio." For example, a family might have a portfolio of $50 in cash, $400 in a checking account, and $2500 in a money market mutual fund.

Positive economics Refer to normative vs. positive economics.

Post hoc, ergo propter hoc fallacy ("After this, therefore because of this") This fallacy arises when it is assumed that because event A precedes event B, it follows that A causes B.

Potential GNP The maximum level of GNP that can be sustained with a given state of technology and population size without accelerating inflation; sometimes called "high-employment output." Today, generally taken to be equivalent to the level of output corresponding to the natural rate of unemployment.
Potential output Same as potential GNP.

Poverty Today, the U.S. government defines the "poverty line" to be the minimum adequate standard of living.

PPF See production possibility frontier.

Present value (of an asset) Today's value for an asset that yields a stream of income over time. Valuation of such time streams of returns requires calculating the present worth of each component of the income, which is done by applying a discount rate (or interest rate) to future incomes.

Price elasticity of demand A measure of the degree to which quantity demanded by buyers responds to a price change. The elasticity coefficient, or quantitative measure of elasticity, is: percentage change in quantity bought divided by percentage change in price. In figuring percentages, use the averages of old and new quantities in the numerator and of old and new prices in the denominator; disregard the minus sign. (Refer also to elastic demand, inelastic demand, unit-elastic demand.)

Price elasticity of supply Conceptually similar to price elasticity of demand, except that it measures the supply responsiveness to a price change. More precisely, the price elasticity of supply measures the percentage change in quantity supplied divided by the percentage change in price. Supply elasticities are most useful in perfect competition, where the suppliers are "price-takers" (i.e., have no individual influence in the setting of market price).

Price flexibility Price behavior in "auction" markets (e.g., for many raw commodities or the stock market), in which prices immediately respond to changes in demand or in supply. (In contrast, refer to administered prices.)

Price index An index number that shows how the average price of a bundle of goods has changed over a period of time. In computing the average, the prices of the different goods are generally weighted by their economic importance (e.g., by each good's share of total consumer expenditures in the consumer price index).

Private good See public good.

Producer price index The price index of goods sold at the wholesale level (such as steel, wheat, oil).

Product, average See average product.

Product differentiation The existence of characteristics that make similar goods less than perfect substitutes. Thus locational differences make the gasoline sold at separate points imperfect substitutes. Firms enjoying product differentiation face a downward-sloping demand curve instead of the horizontal demand curve of the perfect competitor.

Product, marginal See marginal product.

Production function A relation (or mathematical function) specifying the amount of output that can be achieved with given inputs. Applies to a firm or, as an "aggregate production function," to the economy as a whole.

Production-possibility frontier (PPF) A graph showing the menu of goods that can be produced by an economy. In a frequently cited simple case, the choice is reduced to two goods, guns and butter. Points outside the PPF (to the northeast of it) are unattainable. Points inside it would be inefficient since resources are not being fully employed, resources are not being used properly, or outdated production techniques are being utilized.

Productivity A term referring to the ratio of output to inputs (total output divided by labor inputs is "labor productivity"). Productivity increases if the same quantity of inputs produces more output. Labor productivity increases because of improved technology, improvements in labor skills, or capital deepening.

Productivity growth The rate of increase in productivity from one period to another. For example, if an index of labor productivity is 100 in 1987 and 103 in 1988, the rate of productivity growth is 3 percent per year for 1988 over 1987.

Productivity of capital, net Refer to rate of return.

Profit (1) In accounting terms, total revenue minus costs properly chargeable against the goods sold (refer to income statement). (2) In economic theory, the difference between sales revenue and the full opportunity cost of resources involved in producing the goods.

Profit-and-loss statement Refer to income statement.

Progressive, proportional, and regressive taxes A progressive tax weighs more heavily upon the rich; a regressive tax does the opposite. More precisely, a tax is progressive if the average tax rate (i.e., taxes divided by income) is higher for those with higher incomes and regressive if the average tax rate declines with higher incomes. A graduated income tax would be progressive; a sales tax on food would be regressive. A proportional tax is one in which the average tax burden is equal at all levels of income.

Proportional tax Refer to progressive, proportional, and regressive taxes.

Proprietors' income In national-income accounting, the net income earned by the owners of unincorporated firms (individual proprietorships and partnerships).

Proprietorship, individual A business firm owned and operated by one person.

Protectionism Any policy adopted by a nation to protect domestic industries against competition from imports (most commonly, by a tariff or quota imposed on such imports).

Public choice Branch of economics and political science dealing with the way that governments make economic choices: the what, how, and for whom of the public sector. The theory differs from the theory of markets in emphasizing the role of vote maximizing played by politicians, which contrasts to profit maximizing by firms.

Public debt See government debt.

Public good A commodity whose benefits may be provided to all people (in a
nation or town) at no more cost than that required to provide it for one person. The benefits of the good are indivisible, and people cannot be excluded from using it. For example, a public-health measure that eradicates smallpox protects all, not just those paying for the vaccinations. To be contrasted with private goods, such as bread, which, if consumed by one person, cannot be consumed by another person.

Quantity demanded See change in demand vs. change in quantity demanded.

Quantity equation of exchange A tautology, \(MV = PQ \), where \(M \) is the money supply, \(V \) is the income velocity of money, and \(PQ \) ("price times quantity") is the money value of total output (nominal GNP). The equation must always hold exactly since \(V \) is defined as \(PQ/M \).

Quantity supplied See change in supply vs. change in quantity supplied.

Quantity theory of prices A theory of the determination of output and the overall price level holding that prices (\(P \)) move proportionately with the money supply (\(M \)). This theory begins with the quantity equation, \(MV = PQ \). It then assumes that velocity (\(V \)) is a constant or smoothly growing trend, while output (\(Q \)) is always at full employment. Under these assumptions, a \(k \) percent increase in \(M \) will produce a \(k \) percent increase in \(P \).

Although few macroeconomists hold to the strict and literal version of the quantity theory of prices, it does have some validity in periods when the money supply changes greatly. A more cautious approach put forth by monetarists holds that the money supply is the most important determinant of changes in nominal GNP (see monetarism).

Quota A form of protectionism in which the total quantity of imports of a particular commodity (e.g., sugar or cars) during a given period is limited.

Random-walk theory (of stock market prices) Increasingly called the efficient-market hypothesis. A view that holds that all currently available information is already incorporated into the price of common stocks (or other assets). Consequently, the stock market offers no bargains that can be found by looking at old or “stale” information or at easily available information (like recent price movements). Stock prices do change, however—on the basis of new information. If we assume that the chances of good news and of bad are 50:50, then stock prices will follow a “random walk,” i.e., are equally likely to move up or down.

Rate of return (or return) on capital The yield on an investment or on a capital good. Thus, an investment costing $100 and yielding $12 annually has a rate of return of 12 percent per year.

Rational expectations (1) For the narrow definition, see expectations. (2) More generally, part of a view of the economy held by proponents of rational-expectations macroeconomics.

Rational-expectations macroeconomics (sometimes new classical macroeconomics) A school, led by Robert Lucas and Thomas Sargent, holding that markets clear quickly and that expectations are rational. Under these and other conditions it can be shown that predictable macroeconomic policies have no effect on real output or unemployment.

Real GNP GNP adjusted for price change. Real GNP equals nominal GNP divided by the GNP deflator. See gross national product, real.

Real interest rate The interest rate measured in terms of goods rather than money. It is thus equal to the money (or nominal) interest rate less the rate of inflation.

Real wages The purchasing power of a worker’s wages in terms of goods and services. Measured by the ratio of the money wage rate to the consumer price index.

Recession Downturn in real GNP for two or more successive quarters (see depression).

Regressive tax Refer to progressive, proportional, and regressive taxes.

Regulation Government laws or rules designed to change the behavior of firms. The major kinds are economic regulation (which affects the prices, entry, or service of a single industry, such as airlines) and social regulation (which attempts to correct externalities that prevail across a number of industries, such as air or water pollution).

Rent, economic This term was applied by nineteenth-century British economists to income obtained from ownership of land. The total supply of land available in a nation or in the world is (with minor qualifications) fixed, and the return paid to the landowner is rent. The term is often extended to the return paid to any factor in fixed supply—i.e., to any input having a perfectly inelastic or vertical supply curve.

Required reserves See reserves, bank.

Reserve army of the unemployed A term used in Marxian economics. In Marx’s argument, there are always unemployed laborers seeking work. Employers can point to, and if necessary draw upon, this army to enforce the iron law of wages—i.e., to hold wages down to the level where workers can just manage to survive.

Reserves, bank That portion of deposits that a bank sets aside in the form of vault cash or non-interest-earning deposits with Federal Reserve Banks. In the United States, banks are required to hold 12 percent of checking deposits (or transactions accounts) in the form of reserves.

Reserves, international Every nation holds at least some reserves, in such forms as gold, currencies of other nations, and special drawing rights. International reserves serve as "international money," to be used when a country encounters foreign liquidity or balance-of-payments difficulties. If a nation were prepared to allow its exchange rate to float freely, it would need no reserves.

Resource allocation The manner in which an economy distributes its resources (its factors of production) among the potential uses so as to produce a particular set of final goods.

Retained earnings The part of a corporation’s profit (net income) not paid out
as dividends to shareholders but instead retained by the corporation, normally to expand its operations. The same as undistributed profit.

Returns to scale The rate at which output increases as all inputs are increased together. For example, if all the inputs double and output is exactly doubled, that process is said to exhibit constant returns to scale. If, however, output grows by less than 100 percent when all inputs are doubled, the process shows decreasing returns to scale; if output more than doubles, the process demonstrates increasing returns to scale.

Revaluation An increase in the official foreign exchange rate of a currency. (See devaluation.)

Revenue, average Refer to average revenue.

Revenue, marginal Refer to marginal revenue.

Revenue, total Price times quantity, or total sales.

Sales tax See excise tax vs. sales tax.

Saving The difference between disposable income and consumption expenditures.

Savings function The schedule showing the amount of saving that households or a nation will undertake at each level of income.

Say's Law of Markets The theory that "supply creates its own demand." J. B. Say argued in 1803 that, because total purchasing power is exactly equal to total incomes and outputs, excess demand or supply is impossible. Keynes attacked Say's Law, pointing out that an extra dollar of income need not be entirely spent (i.e., the marginal propensity to consume is not necessarily unity).

Scarcity, law of The principle that most things that people want are available only in limited supply (the exception being free goods). Thus goods are generally scarce and must somehow be rationed, whether by price or some other means.

Securities A term used to designate a wide variety of financial assets, such as stocks, bonds, options, and notes; more precisely, the document used to establish ownership of these assets.

Separation of ownership and control A characteristic of most large corporations in the United States today: they are owned by their shareholders but operated and controlled by their professional managers. In such situations, the actual control exercised by shareholders is negligible.

Short run Period in which all factors cannot adjust fully. In microeconomics, the capital stock and other "fixed" inputs cannot be adjusted and entry is not free in the short run. In macroeconomics, prices, wage contracts, tax rates, and expectations may not fully adjust in the short run.

Shutdown price (or point, or rule) In the theory of the firm, the shutdown point comes at that point where the market price is just sufficient to cover average variable cost and no more. Hence, the firm's losses per period just equal its fixed costs; it might as well shut down.

Single-tax movement A nineteenth-century movement, originated by Henry George, holding that continued poverty in the midst of steady economic progress was attributable to the scarcity of land and the large rents flowing to landowners. The "single tax" was to be a tax on economic rent earned from landownership.

Slope In a graph, the change in the variable on the vertical axis per unit of change in the variable on the horizontal axis. Upward-sloping lines have positive slopes, downward-sloping curves (like demand curves) have negative slopes, and horizontal lines have slopes of zero.

Social overhead capital (sometimes called infrastructure) The essential investments on which economic development depends, particularly for transportation, power, and communications. Because of the high capital cost and indivisibilities involved, social overhead capital generally depends on government planning and economic support, especially in less developed countries.

Social regulation See regulation.

Socialism A political theory that holds that all (or almost all) the means of production, other than labor, should be owned by the community. This allows the return on capital to be shared more equally than under capitalism.

Speculator Someone engaged in speculation, i.e., who buys (or sells) a commodity or financial asset with the aim of profiting from later selling (or buying) the item at a higher (or lower) price.

Spillovers Same as externalities.

Stagflation A term, coined in the early 1970s, describing the coexistence of high unemployment, or stagnation, with persistent inflation. Its explanation lies primarily in the inertial nature of the inflationary process.

Stock, common Refer to common stock.

Stock market An organized marketplace in which common stocks are traded. In the United States, the largest stock market is the New York Stock Exchange, on which are traded the largest American companies.

Stock vs. flow See flow vs. stock.

Structural budget See actual, cyclical, and structural budget.

Structural unemployment Unemployment resulting from the fact that the regional or occupational pattern of job vacancies does not match the pattern of worker availability. There may be jobs available, but unemployed workers may not have the required skill; or the jobs may be in different regions from where the unemployed workers live.

Subsidy A payment by a government to a firm or household that provides or consumes a commodity. For example, governments often subsidize food by paying for part of the food expenditures of low-income households.

Substitutes See complements.

Substitution effect (of a price change) The tendency of consumers is to consume more of a good when its relative price falls (to "substitute" in favor of that good), and to consume less of the good when its relative price increases.
Terms of trade A phrase usually employed with respect to international trade, referring to the "real" terms at which a nation sells its export products and buys its import products. It equals the ratio of an index of export prices to an index of import prices.

Supply and demand, law of The "law" that stipulates that (under perfect competition) market price will move to the level at which the quantity purchasers wish to buy just equals the quantity that sellers wish to sell.

Supply curve A schedule showing the quantity of a good that suppliers in a given market would be prepared to sell at each price, holding other things equal.

Supply shock In macroeconomics, a sudden change in production costs or productivity that has a large and unexpected impact upon aggregate supply. As a result of a supply shock, real GNP and the price level change unexpectedly. For example, when oil prices rose sharply in 1978–1979, inflation increased sharply and real output fell.

Supply-side economics A view emphasizing policy measures to affect aggregate supply or potential output. This approach holds that high marginal tax rates on labor and capital incomes reduce work effort and saving; a cut in marginal tax rates will thereby increase factor supplies and total output. An extreme view, put forth by Arthur Laffer, is that a cut in taxes may actually raise total tax revenues.

Surplus value A term used in Marxian economics to refer to the excess of a price over the value of the total direct and indirect labor that went into the manufacture of the good. See also labor theory of value.

Tariff A levy or tax imposed upon each unit of a commodity imported into a country.

Tax incidence See incidence.

Technological change The introduction of a new production method, yielding product improvements or cost reduction and thereby raising productivity. It results in an outward shift in the production-possibility curve.

Technological progress Same as technological change.

Tight-money policy A central bank policy of restraining or reducing the money supply and of raising interest rates. This policy has the effect of slowing the growth of real GNP, reducing the rate of inflation, or raising the nation's foreign exchange rate. Contrast with easy-money policy.

Time deposit Funds, held in a bank, that have a minimum "time of withdrawal." Included in broad money (M1) but not in M1 because they are not accepted as a means of payment.

Token money Money with little or no intrinsic value.

Total cost Refer to cost, total.

Total factor productivity An index of productivity that measures total output per unit of total input. The numerator of the index is total output (say GNP), while the denominator is a weighted average of inputs of capital, labor, and resources. The growth of total factor productivity is often taken as an index of the rate of technological progress.

Total product (or output) The total amount of a commodity produced measured in physical units such as bushels of wheat, tons of steel, or number of haircuts.

Total revenue Refer to revenue, total.

Trade barrier Any of a number of protectionist devices by which governments discourage imports. Tariffs and quotas are the most visible barriers, but in recent years non-tariff barriers (or NTBs), such as burdensome regulatory proceedings, have replaced more traditional measures.

Transactions demand for money See demand for money.

Transfer payments, government A payment made by a government to an individual, for which that individual performs no current service in return. Examples are social security payments and unemployment insurance. Transfer payments are usually intended to change the distribution of income by aiding particular groups (e.g., the poor, the blind, or the aged).

Treasury bills (T-bills) Short-term bonds or securities issued by the federal government.

Underground economy Unreported economic activity. The underground economy includes otherwise legal activities not reported to the taxing authorities (such as garage sales or services "bartered" among friends) and illegal activities (such as the drug trade, gambling, and prostitution).

Undistributed profit Same as retained earnings.

Unemployment (1) In economic terms, involuntary unemployment occurs if there are qualified workers who would be willing to work at prevailing wages but cannot find jobs. (2) In the official (U.S. Bureau of Labor Statistics) definition, a worker is unemployed if he or she (a) is not working and (b) either is waiting for recall from layoff or has actively looked for work in the last 4 weeks.

Unemployment, frictional See frictional unemployment.

Unemployment, structural See structural unemployment.

Unit-elastic demand (with respect to price) The situation between elastic demand and inelastic demand, in which price elasticity is just equal to 1 in absolute value. This means that when price changes by 1 percent, quantity demanded changes by 1 percent (in the opposite direction). In addition, when price changes, total revenue (P × Q) is unchanged. See also price elasticity of demand.

Unlimited liability See limited liability.

Usury The charging of an interest rate above a legal maximum on borrowed money.

Utility-possibility frontier Analogous to the production-possibility frontier. A graph showing the utility or satisfaction of two consumers (or groups), one
on each axis. It is downward-sloping to indicate that redistributing income from A to B will lower the utility of A and raise that of B. Points on the utility-possibility frontier display allocative (or Pareto) efficiency. For the allocation implied by these points, it is impossible to devise feasible outcomes that would make one party better off without making someone else worse off.

Utility, total The total satisfaction derived from the consumption of commodities. To be contrasted with marginal utility, which is the additional utility arising from consumption of an additional unit of the commodity.

Value added The difference between the value of goods produced and the cost of materials and supplies used in producing them. In a $1.00 loaf of bread embodying $0.60 worth of wheat and other materials, the value added is $0.40. Value added consists of the wages, interest, and profit components added to the output by a firm or industry.

Value-added tax (or VAT) A tax levied upon a firm as a percentage of its value added.

Value, paradox of See paradox of value.

Variable A magnitude of interest that can be defined and measured. Important variables in economics include prices, quantities, interest rates, exchange rates, dollars of wealth, and so forth.

Variable cost Refer to cost, variable.

Velocity of money Money, in serving its function as medium of exchange, moves from buyer to seller to new buyer and so on. Its "velocity" refers to the "speed" of this movement. The income velocity of money is defined, more precisely, as nominal GNP divided by the (average) total money supply for the period in question, or \(V = \frac{P \times Q}{M} = \frac{GNP}{M} \).

Vertical equity See horizontal vs. vertical equity.

Vertical integration Refer to integration, vertical vs. horizontal.

Vertical merger See merger.

Wealth The net value of tangible and financial items owned by a nation or person. It equals all assets less all liabilities.

Welfare economics The normative analysis of economic systems, i.e., the study of what is "wrong" or "right" about the economy's functioning.

What, how, and for whom The three fundamental problems of economic organization. What is the problem of how much of each possible good and service will be produced with the society's limited stock of resources or inputs. How is the choice of the particular technique by which each good of the what shall be produced. For whom refers to the distribution of consumption goods among the members of that society.

Yield Same as the interest rate or rate of return on an asset.
INDEX

Page references in **boldface** indicate Glossary terms.

Abilities in income inequality, 303, 461–462
Ability-to-pay principle of taxation, 438–439, 619
Absolute advantage, 556–557, 619, 622
(See also Comparative advantage)
Accelerated Cost Recovery System (ACRS), 145
Accelerated depreciation, 144, 145
Accelerations (Phillips curve)
(See also Natural rate of unemployment)
Accelerator principle, 526n., 619
Accident insurance, 467
Account(s):
 types of:
 balance-of-payments, 564–567, 606, 620
 bank (insurance of), 412
 capital, 566–567
 current, 565–566, 606, 620
 national income and product, 513, 632
 payable, 140, 141, 146
 unit of, special drawing rights as, 602
Accounting, 139–150
 depreciation in, 141–147, 372n., 624
 (See also Depreciation allowances)
 by economists versus accountants, 149–150
 growth, 517–520, 628
 (See also Balance sheets; Income statements)
Accounting costs, 178–181
Accounting prices, 493
Acid rain, 425
Acquisitive Society, *The* (Tawney), 484
ACRS (Accelerated Cost Recovery System), 145
 Actual budget, 619
 Adjustable peg exchange rate system, 598–602, 619, 623, 627
 Administered pricing, 259, 260, 619, 634
 Administrative costs, 465
 Advantage:
 absolute, 556–557, 619, 622
 comparative (see Comparative advantage)
 Advertising, spending on, 259, 260
AFDC (Aid to Families with Dependent Children), 467–470
Affirmative action policies, 346
Afluent Society, *The* (Galbraith), 26, 483, 484
AFL (American Federation of Labor), 354–356
AFL-CIO, 355
Age:
 labor-force participation rate by, 336
 poverty by, 460, 461
 unemployment by, 461
 Agenda setting in public-choice theory, 421–422
 Aggregate production function, 161–162
 Agricultural productivity, 545–546
 Agricultural programs, 87, 95
 Agriculture:
 collectivization of, 491–492
 in economic development, 532, 545–546
 in economic surpluses, 478
 economics of, 77–78, 86–87
 in input-output analysis, 528–529
 Aid to Families with Dependent Children (AFDC), 467–470
 Air controllers strike, 358–359
 Airline deregulation, 89, 90, 244, 359
 Alcoa antitrust case, 273
 Allocative (Pareto) efficiency, 202n., 401–406, 429n., 481, 620, 623, 638
 (See also Efficiency)
 American Capitalism (Galbraith), 483
 American Federation of Labor (AFL), 354–356
 American Medical Association, 90, 417
 American Tobacco Company antitrust case, 273
 Anarchism, 487
 Antidumping tariffs, 582
 Antipoverty policies, 467–473
 (See also Income redistribution; Negative income tax; Transfer payments)
 attitude toward, 277–278
 case law on, 272–277
 illegal conduct in, 272–273, 622
 mergers in, 272, 273, 275–277, 282
 statutory basis of, 271–272
 structure in, 273–275
 Apartheid in South Africa, 485
 Appreciation of currency, 595, 603–607, 624
and economic growth, 509–513, 516, 518, 525
(See also Capital deepening)
demand for, 375–377, 518
(depreciation or, 141–147, 372n., 624
(See also Depreciation allowances)
as factor of production, 24, 50–52, 371, 372, 374
formation of (see Investment)
growth of, 509–511, 513–515
in law of diminishing returns, 375–377, 510, 511, 515–516
marginal product of, 376, 511, 512
present value of, 373–374, 387–389, 634
productivity of, 162, 386–387
rate of return on, 162, 259, 260, 372–374, 376–379, 510, 513n., 635
(See also depreciation of, above)
rentals on, 372, 374
supply of, 510
taxation of, 449
(See also Capital gains, taxes on)
and technological change, 512–513
theories of, 372–381, 386–389
classical, 374–381
neoclassical growth, 509–511
types of:
foreign, 540–541
social overhead, 540, 636
Capital account in international trade, 566–567
Capital deepening, 510, 515–517, 527, 621
(See also Capital, physical, accumulation of)
Capital gains, 621
taxes on, 447
Capital goods (see Capital, physical)
Capital-labor ratio, 510, 511, 527
Capital-output ratio, 514–516, 526, 527, 621
Capital-saving inventions, 513
Capital widening, 621
Capitalism, 621
crises of, 486–487
crisis of, 483–484
in economic history, 507
in economic theories:
classical, 479, 480
Marxian, 489
income distribution under, 301n., 479–481
and living standards, 463
in socialism, transition of, 489
types of:
competitive (see Market mechanism and market economies)
laissez-faire, 487, 507
(See also Laissez-faire doctrine; Laissez-faire government)
(See also Mixed economies)
Capitalism and Freedom (Friedman), 482
Capitalism, Socialism, and Democracy (Schumpeter), 416n., 525n.
Cardinal utility, 103
Carlson, Chester, 383, 404, 427
Carlyle, Thomas, 411, 508, 616
Carried (for, 315, 427
Cartels, 91, 95, 261, 263–265, 621
Cartier, Jimmy, 244, 439, 445, 471
Cash on balance sheets, 141, 146
Cassel, Gustav, 614
CEA (Council of Economic Advisers), 480–483
Ceilings:
interest-rate, 94
price, 92–93
Central banks, 414, 621
(See also Federal Reserve System)
Centrally planned (command) economies, 25, 38, 43–48, 487–488, 491–498, 622
(See also Communism; Marxism; Socialism)
Chamberlin, Edward H., 258, 265
Chance (luck):
in income inequality, 305
and law of diminishing marginal utility, 252
Chaplin, Charlie, 49
Cheap foreign labor, competition from, 581–582
Chernobyl nuclear disaster, 493
Chicago School of Economics, 278, 482–483, 621
China, Soviet communism in, 487
Choice:
opportunity cost of, 32–33, 178–181, 628, 633
public (see Public-choice theory)
and utility, 101–102, 490
Churhill, Winston, 11n., 424
CI0 (Congress of Industrial Organizations), 355
Circular flow, 41, 42, 396–405, 478, 527–528
Civil Aeronautics Board (CAB), 89, 244
Civil Rights Act of 1964, 346
Clark, John Bates, 217–319, 620
Class consciousness in Marxist theory, 489
Classical economics, 478–480, 621–623, 630
comparative advantage in, 564
history of, 508–509
Income distribution in, 478–479
laissez-faire in, 478–479
law of diminishing returns in, 479–480
market mechanism and market economies in, 478–479
new (rational-expectations macroeconomics), 482–483, 635
wage theories in, 340–341
Classical theory of capital, 374–381
Classical unemployment, 363, 366
Clayton Antitrust Act of 1914, 271–272, 275, 356
Clean Air Act of 1970, 427, 428
Clearing markets, 62–63, 493, 622
Clinch River Breeder Reactor, 423
Closed shops, 357
Club of Rome, 535–536
Concorde, 428, 622
Coase theorem, 428–429, 622
Cobb-Douglas production function, 185
Coeb-web model of supply and demand, 216–218
Codetermination in socialism, 490
COLAs (cost-of-living adjustments), 356, 626
Colbert, Jean-Baptiste, 439, 478
Collective bargaining, 355–357, 362, 364, 622
(See also Strikes; Union contracts (agreements)
Unions; Unions; Unions)
Collectivization of agriculture, 491–492
(See also Antitrust policy; Cartels)
Collective oligopoly, 261–263, 622
Command (centrally planned) economies, 25, 38, 43–48, 487–488, 491–498, 622
(See also Capitalism; Marxism; Socialism)
Commercial banks (see Banks)
Commodities:
in international trade, 552, 554, 576
options on, 133, 633
Commodity demand, 315
Common property resources, 323–324
Commonwealth, 300–311, 333–344, 622
Commerce, 275–277n.
Communism, 301n., 487, 491–498, 507, 622
(See also Commercial (centrally planned) economies)
Communist Manifesto, The (Marx and Engels), 494–495, 507
Comparable-worth doctrine, 346–348
Comparative advantage, 496, 555–559, 619, 622
and cheap foreign labor, 581–582
graphical analysis of, 560–564
law of, 556–558, 575n.
Compensating wage differentials, 335–337, 622
(See also Wages, differentials in)
Compensation (see Wages; entries beginning with the term: Wage)
Competition:
barriers to, 223, 225–227, 270–271, 620
(See also restriction of, below)
from cheap foreign labor, 581–582
in game theory, 285–287
government regulation of, 226–227
and innovation, 325
restriction of, 277–278
(See also barriers to above)
types of (see Imperfect competition; Monopolistic competition; Monopoly; Perfect competition; entries beginning with the term: Perfectly competitive)
union control over, 365
unions undermined by, 359
Competitive capitalism (see Market mechanism and market economies)
Competitive equilibrium, 40, 203–204, 397, 399, 480, 622
(See also Supply and demand, equilibrium of)
Competitive fringe in dominant-firm oligopoly, 263–264
Competitive markets:
ensemble of, 397–405
equilibrium in, 40, 203–204, 397, 399, 480, 622
(See also Supply and demand, equilibrium of)
labor, 331
opportunity costs in, 180
perfectly (see Perfectly competitive markets)
(See also Perfect competition)
Competitive supply, 193–207, 211–218
Complements, 109, 622
Composition, fallacy of, 8, 321, 626
Concentration ratios, 228–229, 239, 260, 275–276, 282, 622
Conflicts of interest in corporations, 135–136
Congestion fees, 324, 328–329
Conglomerate mergers, 276–277, 631
Conglomerates, 129, 622
Congress of Industrial Organizations (CIO), 355
Consensus in public-choice theory, 419–420
Constant costs, 211–212
Constant returns to scale, 157–159, 176n., 186, 636
Consumer behavior, 101–112
Consumer demand, 58–59, 106–109, 111
Consumer equilibrium, 103–105, 116–123, 400, 625
Consumer goods, 39–42, 205–206, 492–493
INDEX

Consumer price index (CPI), 332, 622–623, 629, 634
Consumer sovereignty, 623
Consumer spending (see Consumption; entries beginning with the term: Consumption)
Consumer surpluses, 110–112, 204, 205, 237–238, 258, 481, 578, 623, 624
Consumers:
consistency of, 105
marginal utility of, 237–238, 399–401, 480
in market mechanism, 41
preferences of, 58, 59, 95, 105, 555
(See also Households)
Consumption, 9–10, 623
and income, 9–10, 121
in input-output analysis, 528–529
and investment, 375, 492, 494, 621
in perfect competition, 405
present:
forgone, and economic growth, 51
versus future, 375, 386–387
and price changes, 122
stabilization of, 253–254
theories of, 305
(See also Utility)
Consumption goods, 30–32
Consumption-possibility curve, 562–563
Consumption-possibility line (budget line), 118–123, 621
Consumption spending (see Consumption)
Consumption taxes (sales taxes), 439–441, 447, 451, 626
(See also Value-added taxes)
Contractionary monetary policy, 625, 637
Contracts:
tying, 272, 273
union, 356, 362, 628
(See also Collective bargaining)
wage, 356, 626
Controlled experiments, 6–7
Cookbook, L., 157
Coolidge, Calvin, 125, 136, 358, 437–438
Cooperation in game theory, 285–287
Corporate bureaucracies (corporocracies), 484
Corporate income taxes, 131–132, 381, 441–442, 623
costs in, 447, 448
direct taxes, 440
increases in, 447–448
state, 451
in Tax Reform Act of 1986, 145
windfall profits, 587
(See also Businesses, taxes on)
Corporate profits (see Profits)
Corporations, 130–137, 623
advantages and disadvantages of, 131–132, 630
directorates of, interlocking, 272, 278
financial capital for, 130, 132–134
(See also Financial capital; Securities; Stockholders; Stocks, corporate)
and government, 136–137, 270–271
(See also Antitrust policy; Deregulation; Government regulation)
large, 129, 134–136, 207–211, 622
in imperfect competition, 266–271, 276–277
leveraged, 133, 134
management of, 135, 136, 267
structure of, 130–131, 135–136
takers over, 133, 136
fiscalization of (see Businesses, taxes on; Corporate income taxes)
Cost-benefit analysis, 426–428
Cost conditions for oligopolies, 259–260
Cost curves, 109, 171, 173–177, 202, 242
Cost of living, 332, 459
Cost-of-living adjustments (COLAs), 356, 626
Cost minimization, 176–178, 187–191
(See also Least-cost rule)
Costs:
analysis of, 166–181, 185–191
and production, 173–181
(See also Specific entries, e.g., Assets, historical costs of; Increasing-cost industries; Least-cost rule; Opportunity costs; Variable costs)
Council of Economic Advisers (CEA), 482–483
Counter-vailing power of unions, 364
Coupon rationing, 92–93
CPI (consumer price index), 332, 622–623, 629, 634
Craft unions, 354–355, 623
Crawling peg system, 602, 623
Credit(s), 623
in balance of payments, 565–566
(See also Exports)
types of:
bank, 133–134
tax, 145, 441, 443, 447
Crop restriction programs, 87
Cross elasticities of demand, 83, 623
Currency, 600, 624
appreciation of, 593, 603–607, 624
depreciation of, 595, 603–607, 614, 624
devaluation of, 595, 624
reference ranges for, 608
revaluation of, 595, 624, 636
types of:
foreign, 497–498, 565
snake, 607
(See also Arbitrage; Exchange rate systems; Foreign exchange markets; Foreign exchange rate; Money)
Currency blocks, 602
Current account, balance of, 565–566, 606, 620
Current assets, 140, 141, 146
Current consumption, forgone, and economic growth, 51
Current consumption goods, 30–32
Current liabilities, 140, 141, 146
Curves in graphs, 16–20
multiple, 20–21
shifts of and movement along, 19–20, 89
slopes of (see Slopes of curves)
(See also Specific entries, e.g., Average cost curve; Lorenz curve; Supply curves)
Customs, economic systems ruled by, 25
Cyclical voting, 421–422

Damages in antitrust cases, 275–278
da Viret, Leonardo, 213
Death rates, 536–538
Debits in balance of payments, 565–566, 624
(See also Imports)
Debreu, Gerard, 401n.
Debt:
bank, 133–134
business: 51n., 127–131, 621, 631, 636
(See also Bonds; Securities; Stocks, corporate
foreign, 540–541, 600–601
government (public, national) (see Budget deficits; Government debt)
(See also Interest rates)
Debt crisis, 540
Decreasing returns to scale, 157–159, 636
Default risk, 382
Defense spending, 436, 446, 492
Deficits (see Balance-of-payments deficits; Budget deficits; Trade deficits)
Demand:
changes in, 59–60, 64–65, 621
cross relations of, 109
elasticities of, 78–83, 106, 107, 232, 634
cross, 83, 623
income, 82–83, 106, 107, 628
equilibrium in, 85–86
for factors of production, 311, 314–317, 375–377
and income, 58, 59
for labor, 316, 322–333
and marginal utility, 480
shifts in, 211–215
and supply (see Supply and demand)
types of:
commodity, 315
consumer, 38–59, 106–109, 111
derived, 314, 315, 317, 376, 624
downward-sloping, 57–58, 78, 83, 102, 104–106, 215, 625
market, 58–59, 106–109, 111
price elastic, 78–80, 232, 625, 637
price inelastic, 78–80, 87, 232, 625, 629, 637
unit-elastic, 78–80, 232, 637
(See also Income effect; Substitution effect; Supply; Supply and demand; Utility)
Demand curves, 57–59, 624
in computation:
perfect, 221–222, 261–266
imperfect, 195–196, 221–222
deriving, 122, 123
and marginal revenue curves, 231
market, 58–59, 106–109, 111
in monopoly, 229–231
other things equal approach to, 65–66
shifts in, 59, 64–65, 77, 107–109, 621
versus movement along, 66–67
slope of, 57–59, 104, 221–222, 334, 376–377, 626
(See also Downward-sloping demand, law of; Downward-sloping demand curve)
(See also Supply curves; Supply and demand curves)
Demand schedule, 56–57
(See also Demand curves)
Demand-side economics (see Keynesian economics)
Demographic groups, poverty by, 460, 461
Demographic transition, 536–537
Demography, defined, 536, 624
(See also Population, Population growth)
Denison, Edward F., 513, 516, 518, 520
Denmark, taxes in, 444
Depreciation:
in accounting, 141–147, 372n., 624
(See also Depreciation allowances)
EMS (European Monetary System), 602, 606–608
Enclosure movement in Great Britain, 324
Energy price increases, 519
Enclosed curves, 121
Engels, Friedrich, 294, 483, 488, 507
Entitlement programs, 436
Envelope (average cost) curve, 176, 177
Environmental damage, forecast about, 535–536
Equal-cost lines, 188–190
Equal Employment Opportunity Commission, 448
Equal marginal utilities per dollar, law of, 103–105
Equal Pay Act of 1963, 346
Equal-product curves, 188–190
Equal-utility contours, 116–123
Equal weight versus comparable weight, 346
Environmental quality, 463
Equality: costs of, 463–467
of economic opportunity, 463
of economic outcome, 463–464
and efficiency, 206–207, 346–346
of political rights, 463
[See also Equity (fairness); Inequality of income distribution]
Equiribrium: 625
in demand, 85–86
in imperfect competition, 261–266
long-run, 84–86
monetary, 84–86
non-monetary, 84–86, 377
of supply, 84–86
of competitive, 40, 203–204, 397, 399, 480, 622
consumer, 103–105, 116–123, 400, 625
general (see General equilibrium)
monopoly, 234, 235
capital, 285
non-trade, 574–575
partial, 395, 627, 633
producer, 400
Equilibrium price ratio, 561–562
Equities (common stocks), 130–131, 133–134, 622
[See also Stocks, corporate]
Equity (fairness)
government role in, 45–47
and inefficiency, 464–466
in radical economics, 485
of supply-demand pricing, 94–96
taxes, 95, 323
types of: horizontal, 438–439
vertical, 439, 628
Equity, financial, 123
owner's or stockholders' (net worth), 139–141, 146, 147, 620, 632
Escape-clause import relief, 582
Essay on the Principle of Population (Malthus), 534
Estate taxes, 439, 452
Europe 1992 plan, 587
European Common Market, 227, 442
European Community, 385, 587
European Monetary System (EMS), 602, 606–608
Exchange:
foreign (see Exchange rate systems; Foreign currency; Foreign exchange markets; Foreign exchange rate)
of goods for goods (barter), 50, 620
medium(s) of, 49–50
Exchange rate systems, 595–603, 619, 626
fixed:
best adjustable (pegged, Bretton Woods), 598–602, 619, 623, 627
gold standard, 11n, 568, 595–597, 600, 603, 627
proposed, 608
flexible, 595, 597–602, 606–608, 627
freely floating, 595, 598, 599, 602
managed floating, 293, 359–602, 606–608, 630
purchasing-power parity, 533, 614
[See also Foreign exchange markets; Foreign exchange rate]
Excise taxes, 440–441, 626
[See also Sales taxes]
Exclusive dealings in antitrust law, 272
Excessive government spending, 411n.
Expectations:
in investment, 379
rational, 218, 635
[See also Rational-expectations macroeconomics]
[See also Uncertainty]
Expenditures (see Spending)
Expenses, total, in accounting, 142
Experiments in economics, 6–7
Explicit collusion, 261
Exploitation rate in Marxist theory, 489
Exponential (balanced) growth, 526–527, 544–545
Exports, 626
by commodity, 552, 554
by country, 547
and dollar volatility, 604–606
under gold standard, 597
net, 604–606, 621, 632
[See also Current account, balance on specialization in, 49n., 546–547, 553, 555–559
[See also Imports]
Externality(ies), 631
in the commons, 324
correcting, 427–429, 622
cost-benefit analysis of, 426–427
defined, 44–45, 424, 626
in economic development, 540
in government programs, 437–438
government regulation of, 44–45, 95, 415, 427–428
as market failures, 404
market inefficiency with, 425–427
in monopoly, 427
in perfect competition, 427
and international trade, 555
[See also Reunification, to scale]
macroeconomics, 304–305, 460–462
in less-developed countries, 533, 539
by race, 460–462
Education expenditures, 437
Efficiency: 27–29, 202, 401, 625
allocative (Pareto), 202n., 401–406, 429n., 481, 620, 625, 638
and comparative advantage, 555–559
of competitive equilibrium, 203–204
and equality, 206–207, 464–466
and factor prices, 323–325
government role in, 43–45, 47
through antitrust laws, 277–278
loss of:
and equity, 464–466
with externalities, 425–427
and featherbedding, 360
and imperfect competition, 44, 47, 236–238, 266
and income distribution, 405–406
and market failures, 404–405
in monopolistic competition, 266
in monopoly, 236–238
and tariffs, 377–379
and unemployed resources, 28–29
through markets, 95
and perfect competition, 202–207, 401–404
of public-choice theory, 418, 419
of supply-demand pricing, 94–96
and taxes, 322, 446–451
and technological change, 40
Efficiency units, 526
Efficiency wages, 363
Efficient pollution, 428–427
Effron, Brian G., 336
Ehrenreich, David D., 23
Elastic demand, 78–80, 232, 625, 637
Elastic supply, 83–84
Elasticity, 625
of curves versus slopes, 78n., 81–82
demand:
cross, 83, 623
income, 83–84, 106, 107, 628
price, 78–83, 106, 107, 232, 634
of supply:
price, 83–84, 320, 634
unitary, 84
Electors (see Voters, dollar; Voting, cyclical; Voting paradox; Voting system)
Electric equipment industry collision, 273
Electricity, David, 471
Elimination of output, 99
Elimination of subsidies, 49
Electromagnetic pollution, 428
Employment:
growth of:
with tariffs, 583–585
in industries, 813–815
and inflation, 507
(See also Macrophone)
union effects on, 566
(See also Unemployment; Unemployment in—
index
INDEX

social, 256, 440, 441
unemployment, 436, 467, 468, 470
(See also Uninsurable risk)
Intangible assets, 148, 297
integration, vertical and horizontal, 129, 629
Intelligence quotient (IQ), 461
Interdependence, problems of, 49
Interest, 629
theory of, 386–389
Interest groups, 241–242, 417, 581
Interest-rate ceilings, 94
Interest rates, 51, 629
interest determination of, 376–378, 386–387
and economic growth, 604
and inflation, 380
(See also types of, real, below)
and investment, 376, 397–398
and production costs, 61
as return on financial assets, 373, 374, 376–378
and technological change, 378–379
(banking, and interest rates, 535, 636)
market, 376, 380–387
nominal (money), 379–380, 632
real, 379–381, 510, 511, 514, 515, 527, 632, 635
(See also Debt; Present value of capital)
Interlocking directorates, 272, 278
International Finance, 564–568, 635
(See also Debt crisis)
International financial system, 552, 591–609
interest of, 599–609
importance of, 595
International Monetary Fund in, 498, 599–602
problems in, 602–609
regulating, 599
World Bank in, 599, 601
(See also Balance of payments; Currency; Exchange rate systems; Foreign exchange rate)
International Monetary Fund (IMF), 498, 599–602
International monetary system (see International financial system)
International payments, balance of (see Balance of payments)
International trade, 552–554
advantage in;
absolute, 556–557, 619, 622
comparative (see Comparative advantage)
capital account in, 566–567
versus domestic trade, 551–552
bilateral, 559, 560
triangular and multilateral, 559–560
(See also Balance of payments; Trade, entries beginning with the term: Trade)
International Trade Commission, 582
Incentive Commissions Commission (ICC), 240, 412
Intervention (see Government intervention)
Introduction to the Principles of Morals, An. (Bergson), 101
Inventions, 525, 629
economic gains from, 427, 513
in economic growth, 509, 512, 513
as favorable externalities, 425
patents on, 226–227, 269, 633
and rate of return on capital, 378–379, 513
social returns to, 269–270
(banking, and interest rates, 535, 636)
types of, 513
undercompensation for, 404
(See also Innovation; Technological change)
Investment, 140, 141, 143, 146
Inverse relationships in graphs, 17
Investment, 629
and accelerator principle, 526n., 619
and consumption, 375, 492, 494, 621
in economic development, 540
in economic growth, 32
neoclassical growth model of, 526
 Expectations in, 379
and GNP, 516
in human capital, 337–338
and interest rates, 376, 379–380
and macroeconomic policy, 381
national rate of, 520
in plant and equipment, 519
returns on, 376, 510
profits as, 382–383
(See also Rate of return on capital (rate of profit))
and saving, 381, 466, 526, 540
in Soviet Union, 492, 494
and taxes, 466
uncertainty in, 379
“Investment,” (stocks), 267, 629
Investment banking firms, 130
Investment funds (venture capital), 128
Investment goods, 30–32
Investment tax credits, 145, 441, 447
Invisible-hand doctrine of Adam Smith, 41–43,
qualifications of, 404–406, 415
“Invisibles” in international trade, 565, 566, 620
Inward orientation in economic development, 546
IQ (intelligence quotient), 461
Iran, Shah of, 49
Iron and Steel Institute, 417
Iron law of wages, 340–341, 479, 629, 635
Italy, economic growth in, 507
Japan:
balance of payments stages of, 567
bonus system in, 484
economic development in, 541, 543
economic growth in, 483–484, 486–487, 507, 518
export quotas in, 385
GNP growth rate in, 495
productivity growth in, 484
tariffs against, 382
Tariffs in, 576
taxes in, 444
wages in, 331
Jefferson, Thomas, 437–438
Jevons, William Stanley, 103, 489
Jewkes, John, 270
“Jim Crow” legislation, 332
job security as union issue, 359–360
Jobs, 383
Johansen, 140
Junk bonds, 136
Jurisdictional strikes, 357
“Just” prices, 478
Kahn, Alfred, 244, 324
Kantorovich, Leonid V., 206n., 496
Kapfer, Mick, 383
Kaufman, Elliott, 226
Kennedy, Jack, 450n.
Kendrick, John, 161, 513, 515, 516
Kennedy, John F., 136, 424, 459, 617
Kennedy, Paul, 608–609
Keynes, John Maynard, 47, 507, 599, 600,
609n., 616–617, 632
General Theory of Employment, Interest, and Money of, 4, 12, 481, 489, 629
Keynesian economics, 47–48, 481, 629
business cycles in, 507
and French socialism, 607–608
unemployment in, 566
(See also Neo-Keynesian economics)
Keynesian multiplier model, 632
and international trade, 584n.
Khrushchev, Nikita S., 492, 495
Kildron, Michael, 553
Kinselberger, Charles P., 544
King, Gregory, 64, 77, 80
Kissinger, Henry, 338
Knight, Frank, 166, 382, 482
Knights of Labor, 353
Knowledge in economic growth, 518
Kohler, Heinz, 107
Koopmans, Tjalling, 407
Korea:
economic growth of, 483–484, 486–487
investment in, 540
tariffs against, 582
wages in, 331
Kotlikoff, Laurence, 305
Kuznets, Simon, 513, 544, 545
Labor, 24, 52
and capital, ratio of, 510, 511, 527
cheap foreign, competition from, 581–582
costs of, total, 489
division of, 48–49, 483, 625
in economic growth, 518
and land, ratio of, 323, 400–401, 508
lump of, as fallacy, 341, 630
marginal cost of, 364
marginal product of, 154, 155, 186, 312, 313, 315, 318–319, 400–401, 510
marginal revenue product of, 313, 316, 364
in neoclassical growth model, 309–311
as primary factor of production, 50, 372
productivity of (see Labor productivity)
quality of, 332–333, 337, 519
rental of, 324–325, 338
supply curve for, 214
supply and demand for, 331–332
unfair practices against, 357
Labor-saving technological change, 526, 527
Labor demand, 316, 332–333
Labor earnings (see Wages)
Labor force, 333n., 629
union share of, 333, 354
Labor force participation rates, 333n., 334, 336, 434, 630
Labor income, 296, 303–305
(See also Wages)
Labor-Management Relations Act of 1947 (Taft-Hartley Act), 357, 358
Labor markets:
discrimination in, 338–339, 341–351, 460, 461, 625
reducing, 346–348, 415
general equilibrium in, 339
imperfect competition in, 360–361
noncompeting groups in, 338–339, 340
perfectly competitive, 331
segmentation of, by gender, 344–345
Labor movement (see Union contracts (agreements); Unionism; Unions)
Labor productivity, 162, 322–333, 634
growth in:
slowdown of, 519–522
spending, 520
in labor theory of value, 508
marginal, 332–333, 363
(See also partial productivity, marginal product of)
in Soviet Union, 494
union restraint on, 359–360
and union wages, 363
Labor-saving inventions, 513
Labor supply, 333–336, 362, 515, 630
Labor theory of value, 479, 488–489, 508, 630
Labor unions (see Union contracts (agreements); Unionism; Unions)
Laifer, Arthur, 449, 450n., 603, 637
Laffer curve, 449–451, 465
Laissez-faire doctrine, 37, 278, 478–479, 481, 482, 630
Laissez-faire government, 278, 405, 411, 414–415, 487, 507, 567, 629, 630
(See also Capitalism)
Land, 630
in economic development, 539–540
in economic growth, 480, 518
marginal product of, 155, 186, 315, 400–401
marginal revenue product of, 314
as primary factor of production, 30, 372, 630
scarcity of, 508, 534
Land-labor ratio, 323, 400–401, 508
Land rears, 316, 319
and factor pricing, 320–325
as return in fixed factors, 320–321
taxation of, 321–323
Landes, William, 278n.
Laplace, Pierre Simon, Marquis de, 9
Larner, R. J., 135n.
Latin America, economic prospects of, 546
Law of averages, 10
(See also Comparative advantage)
Law of diminishing marginal product, 186–187
Law of diminishing marginal utility, 101–102, 252–255, 624
(See also Consumer surpluses)
Law of diminishing returns, 155–156, 186–187, 312, 624
capital in, 375–377, 510, 511, 515–516
in classical economics, 479–480
and increasing costs, 212–213
and innovation, 525
for labor, 332–333
and land scarcity, 508, 534
and long-run supply, 201
and product tangency, 189–190
and productivity, 33–34
and technological change, 516
and U-shaped cost curves, 174–176
Law of equal marginal utilities per dollar, 103–105
Law of scarcity, 25–34, 636
Law of substitution, 116–117
Law of supply and demand, 91–96, 637
Law of the Sea Convention, 324
Lawns, economic, 9–10
(See also entries beginning with the term: Law of)
government (see Antitrust policy; Deregulation; Government regulation; specific entries, e.g., Civil Rights Act of 1964; Sherman Antitrust Act of 1890)
Leasing sector in economic development, 543
Leakages in income redistribution, 464–466, 473
Leaky bucket experiment, 464–466, 473
Least-cost rule, 176–178, 187–191, 315, 630
Least-cost targeting, 189–190
Lenin, V. I., 483, 485, 489, 491
Leontief, Wassily, 496, 527, 528n.
Less-developed countries (LDCs), 533–534, 630
economic development in (see Economic development)
population growth in, 536–538
vicious cycle of poverty in, 542, 543
Leveraged buyouts, 133, 136
Leveraged corporations, 133, 134
Lewis, John L., 91
Liabilities:
on balance sheets, 139–141, 146, 620
current, 140, 141, 146
defined, 630
long-term, 140, 141, 146
in wealth, 296–297
Liability:
limited, 130, 131, 630
unlimited, 129, 630
Liability laws, 429
Liberman, E., 636
Libertarianism (liberalism), 482, 630
(See also Chicago School of Economics)
Life-cycle model of consumption, 305
Life expectancy, 532, 533
Limit pricing model, 265, 281–282
Limited partners, 55
Limited liability, 130, 131, 630
Limits to Growth (Meadows et al.), 535
Lincoln, Abraham, 424, 425, 580
Lindbeck, Assar, 466
List, Friedrich, 507
Literacy, 532, 533, 539
Living, cost of, 332–349
(See also Cost-of-living adjustments)
Living standards (see Standard of living)
Local governments, 437–438
Local public goods, 437
Local taxes, 451–452
(See also Property taxes; Sales taxes)
Local unions, 335
Long, J. F., 344, 345n.
Long-run, etc., 159, 160, 175, 630
Long-run cost curves, 176, 177, 620
Long-run envelope (average cost) curve, 176, 177
Long-run equilibrium, 84–86, 200–201, 377–378, 511
Long-run supply curves, 199–201
Long-term liabilities, 140, 141, 146
Lorenz curve, 298–301, 630
Lous XIV of France, 478
Louvre accord of 1987, 608
Lucas, Robert, 482, 635
luck (chance):
in income inequality, 305
in law of diminishing marginal utility, 252
Luddites, 91
Lump-of-labor fallacy, 341, 630
MacArthur Foundation, 460
McKeeley, William, 296
Macroeconomic policy, 381–382
and capital accumulation, 381
in economic theories:
rational-expectations, 482–483
supply-side (see Supply-side economics)
(See also Classical economics; Keynesian economics; Rational-expectations macroeconomics)
Instruments of, 414
(See also Fiscal policy; Monetary policy; Stabilization policy)
and investment and saving, 381
in Reagan administration, 445
and unemployment, 584–583
Macroeconomics, 630, 631
approaches to (see Classical economics; Keynesian economics; Neo-Keynesian economics; Rational-expectations macroeconomics)
versus microeconomics, 5, 11
(See also Microeconomics)
variables of, 608
(See also Gross national product)
Madison, James, 421
Mainstream economics (see Neo-Keynesian economics)
Majority, the, tyranny by, 421
Majority rule in public-choice theory, 420–422
Malone, Monroe, 338
Malthus, Thomas R., 479, 508–509, 511, 521, 534, 616, 621, 629, 630
Malthusian theory of population growth, 340, 479, 534–537, 616, 630
Managed floating exchange-rate systems, 595, 598–612, 648–649, 650
Management:
of corporations, 135, 136, 267
of production, 127
Management styles, 484
Managerial incentives in Soviet Union, 494, 496–497
More, Sir Thomas, 487
Morgan, J. P., 272
Morgenthau, O. 263n.
Multicurve diagrams, 20–21
Multilateral trade, 359–360
Multilateral trade negotiations, 585–587
Multiplier-accelerator model of business cycles, 526n.
Multiplier model, 632
...international trade, 584n.
Mundell, Robert, 603
Murphy, R. D., 226
Murray, Charles, 469, 470
Nash, John, 285
Nash equilibrium, 285
National debt (see Government debt)
National income: 519, 330, 463, 625
National income and product accounts, 513, 632
National investment, 320
National Labor Relations Act of 1935 (Wagner Act), 355–357
National Labor Relations Board (NLRB), 355, 357
National output, 318, 464–465
measuring (see Gross national product)
National product (see Gross national product)
National public goods, 437
National Rifle Association, 417
National sales taxes (value-added taxes), 442, 638
National savings rate, 516, 520
National System of Political Economy (List), 507
National union, 325
Nationalization of industries, 490
National monopoly, 225–227, 240–244, 632
(See also Patents
Natural rate of growth, 526, 632
Natural resources, 24, 382, 539–540
Nannikov, A. 470
Navratilova, Martina, 338
Negative income tax, 443, 471–473, 632
Negotiation in political science, 428–429
Nell, Edward, 407
Neoclassical economics, 480–481
Neoclassical growth model, 509–513, 516, 526–527, 632
Neo-Keynesian economics, 481–482
...critiques of, 482–486
...versus rational-expectations macroeconomics, 482–483
...saving and investment in, 381
Neo-Malthusians, 534–537
Net exports, 604–606, 621, 632
(See also Current account, balance on)
Net income of businesses, 142
Net worth:
... on balance sheets, 139–141, 146, 147, 620, 623
...as wealth, 296–297
(See also Wealth)
Neutral inventions, 510
New classical economics (rational-expectations macroeconomics), 482–483, 635
New Deal activism, 273, 412
New Economic Mechanism of Soviet Union, 497–498
New Economic Policy, 445–448
of Ronald Reagan, 445–448
of Soviet Union, 491
New Industrial State, The (Galbraith), 483
New left school of economics, 484–486
Newly industrializing countries (NICs), 533, 546
Newman, Peter, 619b.
Nixon, Richard M., 92, 239, 471, 601
NLRB (National Labor Relations Board), 355, 357
No-free-lunch principle, 29
No-trade equilibrium, 574–575
Nominal interest rates, 379–383, 632
(See also Real interest rates)
Noncash benefits, 463n.
Noncooperating groups in labor markets, 338–339, 460
Nonexhaustive transfer payments, 411n.
Nonprofitable tariffs, 576
Nontariff barriers (NTBs), 585, 637
Normative economics, 10–11, 633
Normative role of government, 413
Norriss, LaGuardia Act of 1932, 356
Norton, Eleanor Holmes, 348
Notes payable, 140, 141, 146
Novak, Alje, 491
Novosadov, Viktor, 406
NTBs (nontariff barriers), 585, 637
Nuclear power, 423, 493
Nuclear power plants, 236n.
Numerical production function, 185–186
Observation of economic affairs, 5
Occupations:
... in income inequality, 303–304
... and labor market discrimination, 343–344
... by race, 461
(See also Jobs)
Ottol, Haim, 345
Official settlements in international trade, 567
Oil:
... imports of, 383n.
... prices of, 95, 465
(See also Gasoline stations)
Oil industry:
... deregulation of, 245
... protectionism for, 580
... Oil pipelines, 153, 156–158
... Okun, Arthur, 458, 464–466, 633
... leaky bucket experiment of, 464–466, 473
... oil crisis, 222–225, 228, 259–265, 633
... oil cartels, 261–263, 622
... dominance from, 261–263
Omission, Mansur, 542
OPEC (Organization of Petroleum Exporting Countries), 91, 95, 263–265
Open economies, 552, 554, 633
Open-shop laws, 537
Opportunity cost, 12–13, 176–181, 628, 633
Optimal tariffs, 583–584
Options on securities and commodities, 133, 633
Ordinary utility, 100
Organization of Petroleum Exporting Countries (OPEC), 91, 95, 263–265
Origin in graphs, 16
"Other things equal": Approach, 7, 63–66, 833
Outcome, equality of, 463–464
Outputs, 24, 153–154, 157, 637
and capital, ratio of, 514–516, 526, 527
growth in, 514, 515
in imperfect competition, 270
and labor (labor theory of value), 479, 488–489, 508, 630
level of, for producers, 400
of monopoly, 236–238
in supply-side economics, 335n.
... and technological change, 512–513
... types of:
... national, 318, 464–465
... potential (see Potential output (potential GNP))
real (see Real GNP)
realized (in Soviet Union), 494
per worker, 514, 515
(See also Input-output analysis; Law of diminishing returns; Production function)
Outward orientation in economic development, 546
Overhead costs (fixed costs), 167–168, 170–172, 194, 235, 236n., 623
average, 170, 172
Overspecialization in exports, 546–547
Owner’s equity (net worth), 139–141, 146, 147, 620, 632
Ownership and control, separation of, 636
Pacific Rim countries:
... economic growth of, 483–484, 486–487
investment in, 540
Par values (see Foreign exchange rate)
Paradox of value, 109–110, 633
Paretian, Vilfredo, 116, 202n., 300n., 402, 407
Pareto chart, 300n.
Pareto efficiency (allocative efficiency), 202n., 401–406, 426n., 481, 629, 635, 638
(See also Efficiency)
Paretian improvements, 418, 419, 421
Pareto’s Law, 300n.
Pavlovsky, 300n.
foreign exchange (see Foreign exchange rate)
... purchasing-power, 533, 614
Partial equilibrium, 395, 627, 633
Partnerships, 128–129, 630, 633
Patents, 220–227, 269, 633
Payoff matrix, 284–286
Payroll taxes, 440, 441
Pearce, David V., 619n.
Pechman, Joseph A., 448
Pegged exchange rate systems, 598–602, 619, 623, 627
Pereviakina in Soviet Union, 497
breakdown of, 201–202, 415
defined, 42, 195, 262
demand curves in, 195–196
(See also in supply-and-demand analysis, below)
and efficiency, 401–406
externalities in, 427
graphical depiction of, 221–222
versus imperfect competition, 271–225
(See also versus monopolistic competition, below; versus natural monopoly, below; imperfect competition)
and income distribution, 405
in invisible-hand doctrine (see Invisible-hand doctrine of Adam Smith)
versus monopolistic competition, 265
versus natural monopoly, 242
profit maximization in, 194–195, 234, 315
rate of return on capital under, 510–511
in supply-and-demand analysis, 68
(See also demand curves in, above)
wage determination under, 331–341
(See also Perfectly competitive markets)
Perfect rationality, 267
Perfectionist school, 534
Perfectly competitive businesses, 194–198
Perfectly competitive industries, 198–202
Perfectly competitive markets: efficiency of, 202–207
functioning of, 193–202
for labor, 331
supply in, 193–207, 211–218
supply curves in, 198–202
supply and demand curves in, 211–218
Performance, economic, 445–446, 495–496
Peron, Juan Domingo, 424
Personal characteristics in wage differentials, 345
Personal income, 296
(See also Disposable income)
Personal income taxes (see Income taxes)
Personal savings rates, 450
Pessimism in, pessimism out (PIPO), 536
Petty, Sir William, 311
Physica! capital (see Capital, physical)
Physiocrats (philosophers), 478
Pigou, A. C., 481
PIPO (pessimism in, pessimism out), 536
Planck, Max, 8
Planning:
centralized, 23, 38, 43–48, 487–488, 491–
498, 622
(See also Communism; Marxism; Socialism)
democratic, in radical economics, 485–486
Plato, 487
Plotz, Charles R., 7n.
Polacheck, Solomon, 345
Poland, strikes in, 29
Policy see specific entries, e.g., Fiscal policy;
Macroeconomic policy, Monetary policy
Political business cycles, 423
Political federalism, 437
Political leaders (elected), time horizons of,
423–424
Political rights, equality of, 463
Political unionism, 354
Politics in public-choice theory, 416–417
Pollution:
abatement of, 427–429
as externality, 425–427
forecasts about, 535–536
socially efficient, 426–427
Poor laws in Great Britain, 534
Population:
groups in, 460, 461, 536–537
study of, 536, 624
world, 538
Population growth, 513–515
birth and death rates in, 536–538
controlling, 537–538
by country groups, 532, 538
and demographic transition, 516–537
and economic conditions, 533–538
and economic growth, 536–538
and labor supply, 334
Malthusian theory of, 340, 479, 508–509,
534–537, 616, 630
Positive economics, 10–11, 633
Positive externalities, 404
Positive role of government, 413
Posner, Richard, 241n., 277–278
Post hoc fallacy, 7, 470, 484, 545, 633
Potential output (potential GNP), 506, 520, 633
(See also Economic growth)
Poverty, 468–471
definition of, official, 459, 634
fighting, government policies in, 467–473
(See also Income redistribution; Negative
income tax; Transfer payments)
incidence of, 460, 461
measuring, 459–462
sources of, 460–462
trends in, 462–463
vicious cycle of, 542, 543
(See also Inequality of income distribution)
Power and Progress (George), 321
Poverty line, 459, 634
PPF (see Production-possibility frontier)
PPP (purchasing-power parity), 533, 616
Predatory pricing, 273
Preferences:
base, 58, 59, 95, 105, 555
tax, 444, 445, 447
Preferred stocks, 133
Present value of capital, 373–374, 387–389, 634
Price ceilings, 60–61
Price changes, 122
and consumption, 122
effects of:
income, 58, 106, 334–335, 628
substitution, 58, 105–106, 334–335, 628,
636–637
types of balanced, 122–123
single, 122
Price controls, 38, 95, 239
Price discrimination, 272, 278
Price elastic demand, 78–80, 232, 625, 637
Price elasticity of demand, 78–83, 106, 107, 232, 634
(See also Cross elasticities of demand)
of supply, 83–84, 320, 634
Price fixing, 272
Price Flexibility, 259, 260, 619, 634
in game theory, 285
by market structure, 259, 260
in Soviet Union, 493
Price indexes, 622, 634
consumer, 332, 622–623, 629, 634
Price inelastic demand, 78–90, 87, 232, 625,
629
Price leadership, 265
Price levels:
and gold standard, 603
growth or decline of (see Inflation)
measuring (see Price indexes)
Price maintenance, retail, 273
Price ratios, equilibrium, 561–562
Price setters, 259, 260
Price supports for farmers, 87
Price system, 40
Price-takers, 195, 634
(See also Perfect competition)
Prices:
changes in (see Price changes)
cutting, 283–284
doctors of production (see Interest rates)
flexibility of (see Price flexibility)
geographical patterns of, 249–250
government regulation of, 91–94
and international trade (see Comparative ad-
vantage)
and labor theory of value, 479, 488–
489, 506, 630
levels of (see Price levels)
in market mechanism, 39–40
in monopoly, 232
and production:
costs of, 61
equilibrium of (see Competitive equilibrium;
Supply and demand, equilibrium of)
of production substitutes, 61
and quantity (see Demand; Supply; entries
beginning with the terms: Demand; Sup-
ply)
quantity theory of, 122–123, 597, 635
rising (see Inflation)
and speculation, 250–252
stability of, 250–251
(See also Stabilization policy)
in supply and demand, 67–68, 77–82, 84–86,
94–96, 316–317
(See also Supply and demand)
and tariffs, 577–578
(See also specific entries, e.g., Factor
prices; Market-clearing prices; Relative
prices)
(See also specific entries, e.g., Oil, prices of; Soviet
Union, prices in; Wage-price con-
trols)
Pricing:
aministered, 259, 260, 619
auction, 259
average-cost, 243
limit, 265, 281–282
marginal-cost, 206, 244
markup, 267–268, 631
predatory, 273
Primary factors of production, 50, 372, 528–529
(See also Labor; Land)
Principles of Political Economy (Mill), 480
Principles of Political Economy and Taxation
(Ricardo), 479
Prisoner’s dilemma. 285–287, 429n.
Prime minister, 275
Private antisubstute goods, 275
Private approaches to pollution abatement, 428–
429
Private goods, 30, 31, 425, 626, 635
Private property, 51–52, 490, 491, 508
Producer equilibrium, 400
Producers:
output conditions for, 400
profit maximization of, 399–401
Product, types of (see specific entries, e.g., Av-
erage product; Equal-product curves;
Gross national product)
(See also Goods)
Product differentiation, 227, 265–266, 634
Production:
conditions of, and trade, 553
costs of, 173–181
and rents, 321
social, 399–401
maximization of (see Profit maximization) in monopolistic competition, 265–266
in monopoly, 233, 235, 238–239, 382–383
rate of (ratio of return on capital), 162, 259, 260, 372–373, 376–379, 510, 513
in imperfect competition, 227
voluntary, 583
(See also Proportionality: Tariffs)

R&D (research and development), 259, 260, 268–270, 519
(See also Research, marginal social benefit of)
Rahbashka, Alvin, 444n.

Radical discrimination on basis of, 341–344, 460–462
education by, 460–462
income by, 461
occupation by, 461
poverty by, 460, 461
unemployment by, 461
wages by, union efforts on, 365
Radical economics (new left school of economics), 484–486
Railway Labor Act of 1926, 356
Ramsey, Frank, 322–323
Ramsey tax rule, 322–323
Rate of return on capital (rate of profit), 102, 259, 260, 372–374, 376–379, 510, 513
(See also Definition, in accounting)
Rational expectations, 218, 626, 635
Rational expectations macroeconomics, 482–483, 635
Rational speculation, 218
Rationality, 267
Rationing, 67–68, 92–93
(See also Supply and demand)
Reagan, Ronald, 29
administration of, 338
antitrust law in, 275
and business, 136
economic policy in, 445–448
government activity redefinition in, 409, 410, 413, 446–447
income-support programs in, 470
macroeconomic policy in, 482–483
oil price control in, 465
and Social Security, 413
and taxes, 439, 442, 444, 445–448, 450
and air controllers strike, 358–359
real estate, assessed value of, 451
Real GDP, 513–514, 518, 545, 605, 627–628
(See also Business cycles)
Real interest rates, 379–381, 510, 511, 514, 315, 527, 632, 635
Real net exports, 604–606
Real wages, 332, 635
in economic history, 507
and productivity, 399–401
and labor supply, 336
in labor theory of value, 508
movements in, 515, 527, 534
nepotism per worker, 514, 515
and poverty, 463
and unemployment, 366
and unionization, 365–366
Realized output in Soviet Union, 494
Recessions, 604, 605, 624, 635
[See also Depression(s)]
Redistributive taxes, 415, 464-466, 485
Reid, John, 491
Reference ranges for currency, 608
Regressive taxes, 439, 440, 452-454, 634
Regulation (see Antitrust policy; Deregulation; Government, laissez-faire; Government agencies; Government regulation)
Reich, Robert, 484
Related goods, 58, 39
Relative prices, 600
REM (rational-expectations macroeconomics), 482-483, 635
Rent controls, 93-94
Rentals:
on capital, 377, 374
[See also Rate of return on capital (rate of profit)]
implicit, 382
Rents, 320
income from, 296
to natural-resource owners, 382
and production costs, 321
in resource rationing, 323-325
type of:
economic (see Economic rent) implicit, 382
labor, 324-325, 338
land (see Land rent)
Report on Manufactures (Hamilton), 384
Research:
and development, 259, 260, 268-270, 519
marginal social benefit of, 425, 427
Reserve army of the unemployed, 340-341, 489, 635
Resources:
allocation of, 323-325, 414-415, 635
efficient (see Efficiency) depletion forecasts about, 535-536
scarcity of (see Scarcity)
type of:
common property, 323-324
human (in economic development), 539
natural, 24, 382, 539-540
productive (see Factors of production (inputs))
Restrain of trade, 271-273, 356, 412
Retail price maintenance, 273
Retained earnings (undistributed profits), 136, 146, 147, 655-656
Retaliatory tariffs, 582-583
Return(s):
on capital, rate of, 162, 259, 260, 372-374, 376-379, 510, 513n., 635
[See also Depreciation, in accounting] diminishing (see Law of diminishing returns) on financial assets, interest rates at, 373, 374, 376-378
[See also Interest rates] to fixed factors, 320-321
to inventory, 269-270
on investment, 376
profits at, 382-383
[See also on capital, rate of, above] to scale, 156-159, 176l., 186, 553, 555, 636
Revaluation of currency, 595, 624, 636
Revenue:
and labor costs, 489
in supply and demand, 77-82
from tariffs, 378, 579
from taxes, 447, 449-451
types of:
average, 231-232, 620
marginal (see Marginal revenue; Marginal revenue curves; Marginal revenue product)
total, 79-81, 142, 229-233, 381, 636
Revenue neutral tax law, 447
Revenue sharing, general, 452
Reverse discrimination, 346
Ricardo, David, 293, 310, 319, 479-480, 511, 556-558, 575n., 614, 621
Right-to-work laws, 357
Rise and Fall of the Great Powers, The (Kennedy), 608-609
Risky, 249-255
bearing, profits as a reward for, 382
hedging, 251-252, 254-255, 628
in income inequality, 305-306
of investments, 267
spreading, 251-252, 254-255
[See also Insurance]
types of:
default, 382
insurable, 254-256
pure (statistical), 382
uninsurable, 255-256, 382
Risk premiums, 379, 382
Risk, Uncertainty, and Profit (Knight), 166
Roberts, Paul Craig, 449
Robustification, 513n.
Rockefeller, John D., 460
Rogers, Will, 320
Roosevelt, Franklin D., 136, 273, 412, 413, 437, 445, 467
Roosevelt, Theodore, 411-412
Rostow, W. W., 543
Roth, Timothy P., 336
Roundsomeness in classical theory of capital, 375
Rule of reason doctrine, 273
Rules of thumb, 267
Sabbatage, defined, 359
Safety, legal aspects of, 414, 519
Salaries (see Wages; entries beginning with the term: Wage)
Sales taxes, 439-441, 447, 451, 626
[See also Value-added taxes]
Salk, Jonas, 427
Santayana, George, 5
Sargent, Thomas, 482, 635
Sarnoff, David, 383
Satisfaction (see Utility)
Saunder, Peter, 454n.
Saving, 636
and budget deficits, 516
and capital production, 373
in economic development, 540
in income inequality, 305-306
and investment, 381, 466, 526, 540
and macroeconomic policy, 381
in neoclassical growth model, 526
and taxes, 466
Saving-income ratio, 526, 527
Savings rates:
national, 516, 520
personal, 450
Say, J. B., 636
Say's Law of Markets, 381, 481, 622, 636
Scale:
economies of (see Economies, of scale) returns to, 156-159, 176n., 186, 555, 655, 636
Scandinavia, economic growth in, 507
Secracy, 67-68, 92-93, 508
law of, 25-34, 636
[See also Supply and demand] Scattered diagrams, 20
Scheler, F. M., 226, 238n., 276
Schlesinger, Arthur Jr., 136
Scholastics, medieval, 478
Scholtz, Theodore, 304
Schumpeter, Joseph A., 268, 269, 378, 416n., 427, 434, 478n., 480, 507, 525, 612, 629
Schumpeterian hypothesis, 268-270, 277, 427, 525
Scientific Autobiography (Planck), 8
Scope, economics of, 241, 271, 625
SDEs (special drawing rights), 602-603
Seasonal prices, 250-251
Secondary boycotts, 357
Securities, 132-134, 633, 636
government, 134, 633, 637
[See also Government debt]
[See also specific entries, e.g., Bank debt (credit): Bonds; Stocks, corporate]
Securities and Exchange Commission (SEC), 131, 133
Segal, Ronald, 553
Self-sustaining growth, 543
Sellers (see Supply)
Services:
and goods, dollar value of (see Gross national product) in international trade, 565, 566, 620
[See also Goods]
Sex (see Gender)
Shakespeare, William, 26
Shareholders, 131, 133, 135, 136, 267
[See also Net worth, on balance sheets]
Shaw, George Bernard, 152
Shepherd, William G., 276
Sherman Antitrust Act of 1890, 271-274, 356, 412
Shmelev, N. P., 497n.
Shocks, economic, 381-382
Short run, the, 159, 160, 174, 197, 636
Short-run average cost curve, 174, 176, 177, 630
Short-run costs, 197-198
Short-run equilibrium, 84-86, 377
Short-run supply curves, 199
Shortages, 63, 92-93
Shutdown point (price, rule), 197-199, 636
Simms, Henry, 482, 621
Sin taxes, 451
Singapore:
economic growth of, 483-484, 486-487 investment in, 540
Single-price changes, 122
Single proprietorships, 127-128
Single-tax movement, 321-322, 636
Skills in income inequality, 303
Slopes of curves, 16-20, 636, 636